
ACDC: An Accuracy- and Congestion-aware
Dynamic Traffic Control Method for

Networks-on-Chip

Siyuan Xiao1 Xiaohang Wang2 Maurizio Palesi3 Amit Kumar Singh4 Terrence Mak5

12South China University of Technology, 3University of Catania, 4University of Essex, 5University of Southampton
1syxiao1337@gmail.com, 2xiaohangwang@scut.edu.cn, 3maurizio.palesi@dieei.unict.it,

4a.k.singh@essex.ac.uk, 5t.mak@soton.ac.uk

Abstract—Many applications exhibit error forgiving features.
For these applications, approximate computing provides the
opportunity of accelerating the execution time or reducing
power consumption, by mitigating computation effort to get an
approximate result. Among the components on a chip, network-
on-chip (NoC) contributes a large portion to system power and
performance. In this paper, we exploit the opportunity of ag-
gressively reducing network congestion and latency by selectively
dropping data. Essentially, the importance of the dropped data is
measured based on a quality model. An optimization problem is
formulated to minimize the network congestion with constraint
of the result quality. A lightweight online algorithm is proposed
to solve this problem. Experiments show that on average, our
proposed method can reduce the execution time by as much as
12.87% and energy consumption by 12.42% under strict quality
requirement, speed up execution by 19.59% and reduce energy
consumption by 21.20% under relaxed requirement, compared
to a recent work on approximate computing approach for NoCs.

Index Terms—approximate computing, many-core system, on-
chip network

I. INTRODUCTION

A golden result is absent for many modern applications

[15], thus some trade-offs between accuracy and other metrics

(e.g. execution time) can be made. In an emerging powerful

compute paradigm, approximate computing [12], the com-

putation/communication effort is reduced by utilizing error-

resilience in applications. Approximate computing approaches

are found among several layers [1]–[3].

Networks-on-chip (NoCs) have a large impact on system

performance and power consumption. Figure 1 shows the

opportunity of improving system performance by dropping

data in NoC. Legends indicate the proportion of data discarded

at NI before being injected into the network. It shows that on

average, blindly dropping 60% of data speeds up the execution

by 25.77% compared to the case of only dropping 20% of data.

However, blindly dropping data causes the application to both

waste error tolerance and obtain less performance gain, since

the impact on network congestion varies with different packets.

This research program is supported by Natural Science Foundation
of Guangdong Province 2018A030313166, and the Science and Technol-
ogy Research Grant of Guangdong Province No. 2016A010101011 and
2017A050501003, Pearl River S&T Nova Program of Guangzhou No.
201806010038

Fig. 1. Execution time at varying the proportion of data dropped for different
applications.

Quality control aims at achieving design objectives by

utilizing limited error resilience. Previous researches [4]–[6]

present quality control mechanisms for different purposes.

However, quality control in NoCs is quite challenging since it

involves NoC features.

Recent studies have also shown their interest in applying

approximate computing to NoCs [7]–[10]. [7] allows more

data to be compressed using existing pattern-based NoC

compression techniques, by compressing similar patterns using

the same word. [8] drops data according to runtime buffer

utilization of each router. [9] proposes a dual-voltage router

architecture, which tolerates bit flips running in low-power

mode. In [10], similar data flits can be transferred simulta-

neously using a auxiliary network. However, Among these

works, a general formulation for quality control in NoCs

is not yet presented. Therefore, in this paper, we formulate

the performance optimization problem for approximate NoC,

along with a lightweight control mechanism to solve it.

The main contributions of this paper are as follows:

1) We model quality loss, network congestion, packet zero

load latency and a congestion minimization problem

under the approximate NoC context.

2) Based on a flow predicting method, we also propose a

control mechanism ACDC to first solve the congestion-

minimization problem, then reduces zero load latency.

3) Based on full-system simulation, evaluation shows that

ACDC significantly outperforms [8] on both system

performance and energy consumption.

II. PROBLEM FORMULATION

A. Notations

We denote n as the number of nodes, m as the number of

links, ω as packet size. A flow fij is defined as communication

from the ith node to the jth node. vij , the volume of fij ,

is defined as the communication bandwidth on it. rijk is a

binary value, which is 1 if fij passes through the kth link, or

0 otherwise. The link capacity c is defined as the maximum

bandwidth on each link.

Some optional drop rates X = {π1, . . . , πd} with π1 <
· · · < πd are provided. Using a drop rate πi ∈ X indicates

that the amount of data after data dropping is (1− πi) of the

original. Control knob xij is defined as the data drop rate for

fij . For an application a, a quality model qa which estimates

quality loss for dropping a certain proportion of data, is used.

Besides, θa is a user-defined quality requirement, indicating

the maximum acceptable quality loss for application a.

The proportion of data that can be dropped is q−1
a (θa),

and flow volume in the network can be formulated as∑n
i=1

∑n
j=1,i �=j vij . Then the total error budget g can be

calculated as

g = q−1
a (θa)

n∑
i=1

n∑
j=1,i �=j

vij (1)

which is the maximum amount of flow volume that is allowed

to be dropped.

B. Quality Model

For each application, a quality model is constructed. First,

the error-tolerable data (e.g., pixels of an input image) is

figured out in the application source code. The source code

is modified to evaluate the quality loss caused by performing

approximation on these error-tolerable data.

The modified application is executed for multiple times,

varying the proportion of approximated data, to collect their

resulting quality loss. These are some discrete samples in the

form of (data drop rate, quality loss), and they are transformed

into a continuous piecewise function by linear interpolation,

which is the required quality model.

C. Congestion Model

The link capacity c, which is the maximum bandwidth on a

single link, can be used as a congestion threshold. If the total

volume of flows passing through a link exceeds c, this link is

regarded as congested. Moreover, the exceeded flow volume

indicates the extent of congestion.

Thus for the kth link, link congestion can be formulated as

clink
k = max

⎛
⎝0,

n∑
i=1

n∑
j=1,i �=j

(rijk (1− xij) vij)− c

⎞
⎠ (2)

where (1− xij) vij represents the volume of fij whose data

is dropped by xij .

D. Problem Formulation

Since congestion is critical to network performance, we de-

fine an optimization problem to minimize network congestion

by selecting an optimal data drop rate xij for each fij , while

satisfying the quality requirement.

The optimization problem can be formulated as

min

m∑
k=1

clink
k (3)

s.t.

n∑
i=1

n∑
j=1,i �=j

xijvij≤g (4)

for each xij∈X .

Equation 3 is to minimize the accumulated congestion on

all m links. Equation 4 guarantees that the amount of dropped

data is under the total error budget g, which is the maximum

allowed amount of data to be dropped. Calculation of g is

stated in Equation 1, which involves the user-defined quality

requirement.

E. Serialization Latency

When the network is not congestion-dominant, the most

critical factor impacting the network performance is no longer

the time spent queueing in a buffer, but the packet zero load

latency. Typically, it can be expressed as

Lzero = Lh + Ls (5)

where Lh is the latency for the first flit to reach the destination,

which depends on communication distance (hop counts), and

Ls is the serialization latency, e.g., the latency that the destina-

tion NI spent receiving all flits since the first arrival. Therefore,

this serialization latency can be reduced by decreasing the size

of packet.

III. THE PROPOSED METHOD

A. Overview

We propose a runtime control mechanism for approximate

NoC to optimize system performance, which consists of global

control and local control. As shown in Figure 2 (a), it includes

a global controller at the master node and local controller

at each node. Each NI is equipped with a data dropper

and a recoverer, to drop data at a given drop rate before

injected into the network, and recover them at the destination

node, respectively. Data dropper and recoverer used in [8] are

adopted for evaluating our proposed control mechanism. It is

performed periodically with control interval τ :

1) At the beginning of each control interval, flow prediction

is performed in a distributed way that each node sends

the flow prediction to the master node, as shown in the

left of Figure 2 (b). After receiving flow prediction from

all nodes, the global controller triggers global control.

2) In global control, a feasible combination of flow drop

rates that minimizes network congestion is first searched

out, which preserves a portion of the total error budget.

Second, the remaining error budget is allocated to each

NIR

C L

NIR

C L Global
Controller

G

L LL

L L

LLL

Local Controller

Data Recoverer

Data Dropper Flow Prediction

G

Control Information

L LL

G

L LL

(a) (b)

L Normal NodeG Master Node L Caches R RouterC Core NI Network Interface

Fig. 2. An overview of ACDC. (a) the components of each node. (b) control data passing in the NoC.

node for reducing serialization latency. The control

information delivered to each node, as in the right of

Figure 2 (b), includes the corresponding congestion-

minimized flow drop rates, the error budget for con-

gestion minimization and the error budget for reducing

serialization latency.

3) The local controller of each node adjusts drop rate for

each incoming packet.

B. Flow Prediction

In this paper, we propose a flow prediction method based on

autoregressive (AR) model and runtime feedback. An AR(p)

model can be stated as

yAR (t) = λ1yt−1 + λ2yt−2 + · · ·+ λpyt−p + μ+ εt (6)

where yAR (t) is the prediction of AR model using previous

p observed values. yt represents the observed value at time t,
i.e, the volume of a flow. The AR model is trained offline, and

the model order p is determined using Bayesian information

criterion (BIC). By introducing runtime feedback, it becomes

ŷt = yAR (t) + Δt, Δt = Δt−1 + α (yt−1 − ŷt−1) (7)

where α represents learning rate.

C. Global Control

1) Congestion Minimization: The optimization problem in

Section II-D has a huge decision space of size |X|n(n−1),

(xij∈X and n (n− 1) variables). When the network size

scales up, the optimal decision cannot be efficiently found

at runtime. Thus in Algorithm 1, we propose a lightweight

greedy heuristic.

Congestion of a flow is defined as the accumulation of

link congestions along its path. Each flow is associated with

a flag eij indicating whether it is processed or not. After

initialization, drop rates for the flows are set iteratively. Before

each iteration, the most congested flow fi∗j∗ is selected from

the unprocessed flows, and the most congested link along its

path is figured out.

Let clink
k∗ = xi∗j∗vi∗j∗ , a drop rate xi∗j∗ = clink

k∗ /vi∗j∗

is calculated for compensating the corresponding congestion

on fi∗j∗ . Adding the limitation of the error budget and the

maximum drop rate πd provided, the drop rate is finally

decided as in line 9. Since the flow volume after data dropping

is lower, all links along this flow is affected, and so are the

Algorithm 1 A greedy heuristic

Input: vij : data volume of fij .

Output: xij : data drop rate for fij .

1: Initialize each xij to 0;

2: Initialize total error budget g;

3: Initialize each link congestion clink
k ;

4: Initialize each cflow
ij to

∑m
k=1 rijkc

link
k ;

5: Initialize each eij to 0;

6: (i∗, j∗) = arg max(i,j)

(
eijc

flow
ij

)
;

7: while ei∗j∗ = 0 and cflow
i∗j∗ > 0 and g > 0 do

8: k∗ = arg maxk

(
ri∗j∗kc

link
k

)
;

9: xi∗j∗ = min
(
πd,min

(
clink
k∗ , g

)
/vi∗j∗

)
;

10: ei∗j∗ = 1;

11: g = g − xi∗j∗vi∗j∗ ;

12: for each k′ that ri∗j∗k′ = 1
13: Update clink

k′ to max
(
0, clink

k′ − xi∗j∗vi∗j∗
)
;

14: for each (i, j) that rijk′ = 1 and eij = 0
15: Update cflow

ij to
∑m

k=1 rijkc
link
k ;

16: end for
17: end for
18: (i∗, j∗) = arg max(i,j)

(
eijc

flow
ij

)
;

19: end while

flows passing through those links. Their congestion statuses

updated except the flows already processed.

The loop ends when there is no unprocessed flow, the

congestion is eliminated, or the error budget is used up. By

analyzing the innermost loop, the worst case time complexity

of Algorithm 1 is O(mn3).
The error budget preserved for congestion minimization is

denoted as μ, the portion of μ for the ith node as μi, then

μ =

n∑
i=1

μi, μi =

n∑
j=1,i �=j

xijvij (8)

where μi is the amount of dropped data on all flows starting

from the ith node, when the congestion-minimized flow drop

rates are in use.
2) Reducing Serialization Latency: The remaining error

budget is denoted as ν (ν = g − μ), the portion allocated

to the ith node as νi, then we have

νi = ν · ρi∑n
j=1 ρj

, ρi =

n∑
j=1,i �=j

(πd − xij) vij (9)

TABLE I
SYSTEM CONFIGURATION

Number of processors 64 (Alpha 21264 ISA)
Fetch/Decode/Commit size 4 / 4 / 4
L1 D cache (private) 16KB, two-way, 32B line, two cycles,

two ports, dual tags
L1 I cache (private) 32KB, two-way, 64B line, two cycles
L2 cache (shared) 64KB slice/node, 128B line, six cycles,

two ports, MESI protocol
Main memory size 2 GB, latency 200 cycles
NoC flit size 32 bits NoC VC number 2
Meta packet 2 flits Data packet 32 flits
NoC buffer 5× 12 flits Routing algorithm XY routing
NoC latency two cycles for router, one cycle for link

where ρi measures the opportunity of dropping more data at

the ith node , of which νi is allocated proportionally.

D. Local Control

At the ith node, after receiving control information from

the global controller, the two error budgets (μi and νi) and

the congestion-minimizing drop rates for its n − 1 flows are

updated to the values just received.

For a packet sending to the jth node, first, if μi is more than

0, the drop rate is temporarily set to the congestion-minimizing

setting xij , and the amount of dropped data xijw must be

subtracted from μi (given the control interval τ , the bandwidth

occupied by a packet in this interval is w = ω/τ). Next, if

the error budget νi is more than 0, the maximum drop rate πd

is used for injecting this packet, and the increased amount of

dropped data is subtracted from νi.

IV. EVALUATION

A. Performance Comparison

Our proposed method is evaluated using a cycle-accurate

full-system many-core simulator [13]. System configuration is

stated in Table I. ABDTR [8] is implemented for comparison.

Six applications from PARSEC and AxBench [14] are used

for evaluation. Quality metrics and error-tolerable data in [2]

[14] are used. Two quality requirement settings are in use, as

QR1 being strict and QR2 a relaxed one.

Fig. 3. Execution time, energy consumption and quality loss comparing the
two control methods under QR1 and QR2.

Experimental result is shown in Figure 3, the 3 metrics are

normalized for each application. Compared to ABDTR, on

average, ACDC accelerates execution by 12.87% and reduces

energy consumption by 12.42% respectively under QR1, and

the counterpart is 19.59% and 21.20% under the more relaxed

QR2. Both experiments show that on every applications,

ACDC better utilizes error tolerance while not violating the

quality requirement.

B. Overhead

The global controller is implemented in software, whereas

local controller in hardware. Average execution time of the

global control is 419 cycles, much shorter than the control

interval (10000 cycles in our experiment). It is trivial since it

only occupies processor in the master node and will not stall

others.

According to the systhesis result reported by Synopsys

Design Compiler and PrimePower targeting a 45 nm TSMC

library, a local controller cost 968 μm2 and 0.636 mW on

area and power, respectively. Using DSENT with a 45 nm
CMOS technology, a router for configuration in Table I has

a total power of 125 mW , and a total area of 67686 μm2.

Therefore, the power and area of ACDC controller are only

0.5% and 1.43% of a router, respectively.

V. CONCLUSION

In this paper, we formulated a performance optimization

problem for approximate NoC, along with a lightweight con-

trol mechanism based on flow prediction, which consists of

global control and local control. Compared with a recent

work, the proposed method showed significant improvement

on performance, energy and error utilization.

REFERENCES

[1] Sidiroglou-Douskos S et al. “Managing performance vs. accuracy trade-
offs with loop perforation”, SIGSOFT FSE 2011: 124-134.

[2] Yazdanbakhsh A et al. “Mitigating the memory bottleneck with approx-
imate load value prediction”, IEEE Design & Test, 2016, 33(1): 32-42.

[3] D. Mohapatra et al. “Design of voltage-scalable meta-functions for
approximate computing”, DATE’11: 950–955.

[4] Khudia D S et al. “Rumba: An online quality management system for
approximate computing”, ISCA’15: 554-566.

[5] Xu C et al. “On Quality Trade-off Control for Approximate Computing
Using Iterative Training”, DAC’17: 52.

[6] Mahajan D et al. “Towards statistical guarantees in controlling quality
tradeoffs for approximate acceleration”, ISCA’16. IEEE, 2016: 66-77.

[7] Boyapati R et al. “APPROX-NoC: A Data Approximation Framework
for Network-On-Chip Architectures”, ISCA’17: 666-677.

[8] Wang L et al. “ABDTR: Approximation-Based Dynamic Traffic Regu-
lation for Networks-on-Chip Systems”, ICCD’17: 153-160.

[9] Akram B A et al. “AxNoC: Low-power Approximate Network-on-Chips
using Critical-Path Isolation”, NOCS’18.

[10] Venkata Y R et al. “DAPPER: Data Aware Approximate NoC for
GPGPU Architectures”, NOCS’18.

[11] Bienia C et al. “The PARSEC benchmark suite: Characterization and
architectural implications”, PACT 2008: 72-81.

[12] Xu Q et al. “Approximate computing: A survey”, IEEE Design & Test
33.1 (2016): 8-22.

[13] Wang, Xiaohang, et al. “On self-tuning networks-on-chip for dynamic
network-flow dominance adaptation”, TECS 13.2s (2014): 73.

[14] Yazdanbakhsh, Amir, et al. “AxBench: A multiplatform benchmark suite
for approximate computing”, IEEE Design & Test 34.2 (2017): 60-68.

[15] Chen Y K et al. “Convergence of recognition, mining, and synthesis
workloads and its implications”, Proc. of the IEEE 2008.

