
Two-stage Thermal-Aware Scheduling of Task Graphs on 3D Multi-cores
Exploiting Application and Architecture Characteristics

Zuomin Zhu Vivek Chaturvedi Amit Kumar Singh
Hong Kong University of Science and Technology Nanyang Technological University University of Southampton

Clear Water Bay, Kowllon, Hong Kong P.O. Box 1212, Singapore Southampton,SO17,1BJ, UK
zzhuae@connect.ust.hk vchaturvedi@ntu.edu.sg A.K.Singh@soton.ac.uk

Wei Zhang Yingnan Cui
Hong Kong University of Science and Technology Nanyang Technological University

Clear Water Bay, Kowllon, Hong Kong N4-02a-32 Nanyang Avenue, Singapore
wei.zhang@ust.hk ycui@e.ntu.edu.sg

Abstract —In this paper, we propose a two-stage thermal-
aware task scheduling policy which exploits the application and
system architecture characteristics to decouple the mapping of
task-graphs for the performance and peak temperature optimiza-
tion into two stages. At the first stage, the algorithm collects the
best mapping of task-graphs exploiting the application and ar-
chitecture characteristics to minimize the makespan of the task-
graphs. At the second stage, a light-weight online algorithm com-
prised of efficient thermal rank and combined power models is
performed to map the task nodes to the real cores for temper-
ature minimization while maintaining the best possible perfor-
mance achieved in the first stage. Compared to the previous ap-
proaches which perform the performance and temperature opti-
mization together, our method can reduce the online mapping al-
gorithm complexity and improve its efficiency. Experiments on
real benchmarks show that an average of 6.3◦C peak temperature
reduction and 6.8% performance improvement can be achieved
compared to other existing methods.

I. INTRODUCTION

Three-dimensional (3D) chip-multiprocessor (CMP) is a
promising multi-core architecture in which multiple active sil-
icon layers are stacked vertically using Through Silicon Vias
(TSVs) [7] to gain tremendous performance with energy effi-
ciency and scalability [15]. However, 3D integration causes
severe thermal challenges due to increasing power density and
rapid heat transfer between vertically placed computational
units resulting in soaring chip temperature, causing reliability
threat and device aging [14].

In order to address thermal challenges in multi-core, sev-
eral system level task mapping and scheduling techniques are
proposed [4, 12, 2, 3, 8]. Unfortunately, most of the existing
approaches are designed for 2D CMP and cannot be applied ef-
ficiently to 3D CMP due to its distinctly different thermal char-
acteristics. The reported approaches for 3D CMP either only
target independent tasks, or require compute-intensive online
procedure for task-graph mapping.. Because they considered
performance and temperature optimization together, relatively
complicated thermal simulations and searches are required for
candidate mappings [12, 8]. Moreover, in many techniques
leakage power consideration is missing from the power model

that is closely related to temperature [4, 3, 8, 12].
In this paper, we propose a two-stage thermal-aware task

scheduling algorithm, namely communication-aware group
(CAG) stage and thermal-aware scheduling (TAS) stage, for
peak temperature minimization with best possible performance
of task-graph mapping on 3D CMP system. The CAG stage is
implemented at design-time while TAS stage is implemented
at run-time. We decouple the optimization of makespan and
temperature into two stages and optimize them separately. Ex-
ploiting the application characteristics with brute-force or ge-
netic algorithm method at CAG stage, we bind individual tasks
to super tasks assuming different number of available cores to
minimize the makespan considering the worst-case communi-
cation. Such consideration facilitates the second stage to min-
imize the peak temperature while not affecting the optimized
makespan of the first stage. At TAS stage, super tasks will be
mapped to real available cores for peak temperature minimiza-
tion while maintaining the performance optimization achieved
in the first stage. A novel thermal-aware mapping algorithm
comprised of thermal rank model and combined power model
(defined in Sec.B.2 and Sec.B.3) which captures the charac-
teristics of 3D CMP, especially targeting different layer using
different tactics, is proposed to direct the super task mapping
with high efficiency and low computation complexity.

Thus, our proposed two-stage scheduling algorithm, called
TSS, can achieve the peak temperature minimization of the 3D
system while optimizing the makespan of the application with
light-weight online complexity.

II. RELATED WORK

The reported thermal-aware task mapping and scheduling
techniques for 3D CMP can be classified into two categories:
those targeting independent tasks and others targeting task
graphs.

Most of these works targeting independent tasks utilize
thermal-aware or power-aware scheduling approaches [12, 18,
17, 16, 9]. In [12, 18], temperature minimization is achieved
based on stack power balance. In [17], incremental update of
thermal simulation is used. A power-aware partition scheme
and thermal-aware speed adjustment policy are introduced in
[16]. In [9], supertasks are allocated to 3D core stacks based

on their thermal profile, and dynamic voltage and frequency
scaling (DVFS) is applied on selected cores to achieve bet-
ter cooling in case of thermal emergencies. Although these
works show some benefits, some of them ignore influence of
neighboring cores and leakage power on temperature[12, 18],
or exhibit high computational complexity [17], or consider only
power of cores ignoring real time temperature during allocation
[16] and incur frequent DVFS switching [9]. In addition, these
methods cannot be directly applied to task graphs as task de-
pendencies are not considered.

A few works are proposed to address the challenge of task
graph mapping and scheduling on 3D CMP [2, 4, 8, 3, 10]. In
[2], hot tasks are first mapped to the layer closest to the heat
sink and then tasks are swapped between hot and cold stacks
to reduce temperature. However, it might incur huge swapping
overhead. In [4], first at run-time, all tasks are scheduled to
the bottom layer and then low-power tasks are moved to the
top layer. This leads to high online complexity and execu-
tion overhead. In [8], tasks are scheduled in the order of as-
signed priority based on the data dependencies. However, ther-
mal simulations at the scheduling stage lead to high scheduling
overhead. In [3], offline optimized thermal profiling results are
used during online scheduling, but real-time temperature is not
considered. In a recent work [10], layer-by-layer task-to-core
mapping and energy-aware voltage scaling are incorporated to
reduce peak temperature and temperature gradient without ex-
tensive thermal simulation. However it includes several com-
putation steps both for mapping and voltage scaling incurring
large online overhead.

III. PRELIMINARIES

A. 3D Multiprocessor Model

The target 3D CMP consists of multiple active silicon lay-
ers stacked vertically using TSVs as depicted in Fig.1. An ac-
tive layer is modeled as a two-dimensional mesh of processing
cores, where each core is composed of three functional units:
processing element (PE), network interface (NI) and L2 cache
(MEM). Communication between any two cores on the same
layer takes place via a network-on-chip (NoC), while TSV bun-
dles are employed for vertical communication. We refer to ver-
tically aligned cores as a core stack. The TSV models, com-
munication protocols and NoC routing algorithms are based on
the information provided in [3].

Horizontal link TSV bundles
NoC router

Stack

MEM
PE

NI

Fig. 1. Two-layer 3D CMP
architecture

c

d

b4200000

11000000

3750000

[1500]

[1500]

a

e

2400000

5000

[1500]

[400]

f

[400]

5000[400] [1500]

Fig. 2. An example DG model:
Autoindust2

B. Application Model

An application is modeled as directed graph (DG), for exam-
ple, the task graphs used in multimedia applications. The DG
can be cyclic or acyclic. A typical DG consists of a set of ver-
tices and directed edges, denoted as G(V,E). The vertices V

denote the tasks (nodes) to be executed, and edges E represent
the precedence relationship between tasks. Each node is char-
acterized with its execution time and dynamic power consump-
tion and each edge with its communication load, which are as-
sumed to be known at design time. An example DG model of
the Autoindust2 is depicted in Fig.2. The value at each vertex
represents its execution time in cycles, and value on edges are
the number of bits to be transferred between dependent nodes.

C. Power Model

For each core, the overall power consumption is composed
of dynamic power and leakage power. Dynamic power is in-
dependent of temperature, while leakage power is sensitive to
temperature. Following to the simple yet sufficiently accurate
model in [13], we model the leakage power of core i as follows:

Pleak,i = α · Ti(t) + β (1)
where α and β are constants depending on the manufacturing
technology and can be calculated based on parameters provided
in [11].

D. Definitions

To ease the understanding of the paper, we define the neces-
sary terminologies as follows:

1) Super Task: It is a group of tasks (nodes) which are
mapped to a particular core in a given scheduling inter-
val as shown in Fig.4.

2) Thermal Rank: A metric that determines the likelihood of
a core to receive new tasks for execution. It essentially
calculates the thermal efficiency of each core based on
its topological position and thermal influence of adjacent
neighbours.

3) Combined Power: A metric that evaluates the weighted
summation of powers of all cores in a core stack.

IV. TWO-STAGE THERMAL AWARE TASK MAPPING
ALGORITHM

Our two-stage algorithm consists of the CAG stage, which
uses design-time exhaustive or GA approach for makespan
minimization exploiting task graph characteristics, and the TAS
stage which uses run-time heuristic for peak temperature mini-
mization exploiting the 3D architecture characteristics.

A. CAG Stage: Design-Time Makespan Optimization

For each application to be mapped at run-time, the CAG
stage computes the best mappings from makespan point of
view while utilizing different number of cores such that one
of these mappings can be selected for the real platform. De-
pending on the dependence of the tasks,, the best mappings
are identified and super tasks are generated by employing an
exhaustive exploration or genetic algorithm (GA) based explo-
ration.

The exhaustive exploration evaluates all the possible tasks
to cores combinations, i.e. mappings, and the tasks assigned
in one core form a super task. Since exhaustive exploration
evaluates all the possible mappings, it leads to optimal mapping
at different number of used cores. However, the number of

mappings increases with the number of tasks n and thus the
overall evaluation time. Therefore, for large number of tasks,
the evaluation may not be completed within a limited time and
GA based heuristic is employed to find optimized mapping.

Applying the GA requires to identify the fitness function and
initial population. Since this stage tries to optimize makespan,
it has been chosen as the fitness function. Based on the applica-
tion tasks and number of cores to be used, a set of random and
unique tasks-to-cores mappings is assigned as the initial pop-
ulation. To steer the optimization process in order to identify
the makespan optimized mapping, we employ NSGA-II as the
underlying GA [5]. Assuming different number of cores, the
same process is applied for each of the individual applications.

For a given 3D CMP, the cores are assumed to be separated
by the maximum hop in the architecture to take maximum com-
munication delay into account. This ensures that in the sec-
ond stage the dependency and timing constraints between task
nodes will be satisfied when the super tasks are mapped to real
cores as the distance between real available cores is definitely
less than the longest distance.

While searching for the best mappings, the number of cores
is varied from one to the number of tasks in the application
in order to exploit all the potential parallelism present in the
application by assuming that each task can occupy only one
core. For each application, the allocation leading to optimized
makespan at different number of used cores is stored to be used
at run-time so that makespan optimized mapping can be per-
formed at run-time and thermal optimization can be carried out.
Fig.3 and Fig.4 show the design-time makespan optimization

#Cores C1 C2 C3 C4 C5 C6 Period(cycles)

6 e d c b f a 19018400

5 * e d c bf a 19004900

4 * * de c bf a 18991400

3 * * * cde bf a 18977900

2 * * * * bcdef a 18960000

1 * * * * * bacdef 21360000

Fig. 3. Best mappings generated at
design-time for Autoindust2

a

b c d e f

t
Super
Task 1

Super
Task 2 f

Fig. 4. Two super tasks with the
minimum makespan

results after applying exhaustive exploration for the benchmark
task graph shown in Fig.2. In the table of Fig.3, each entry from
core C1 to core C6 represents a super task. The asterisk means
that the specific core is not used. The last column gives the min-
imum makespan of the application based on different number
of available cores. Fig.4 shows the two super tasks correspond-
ing to the mapping using 2 cores with optimal makespan. At
TAS stage, run-time thermal optimization algorithm will map
these two super tasks to idle cores.

Note that we exploit the characteristics of application in
CAG stage, assuming the normal task-graphs with medium
communication volume that the communication delay will not
dominate the total delay. Thus, during the second stage, when
the super task node is mapped to the real cores, although the
distance between super task nodes may vary from the first stage
mapping, the makespan will improve with better communi-
cation delay, however, the best mapping will not be altered.
Hence, the makespan optimization will not be compromised.

B. TAS Stage: Run-time Thermal Optimization

Due to significant difference in thermal characteristics of dif-
ferent layers, it is important to consider layers in 3D CMP sep-
arately. Assuming a two-layer 3D CMP as illustrated in Fig.5,
for bottom layer (the layer closest to heat sink), dissipating heat
to ambient is much easier. Thus we should take full advantage
of it and allocate intense tasks to cores in this layer. For top
layer (the layer far away from heat sink), hotspot and temper-
ature emergency are easily generated. As a result, considera-
tion of power of vertical neighbors is critical to avoid potential
hotspots.

B.1 Overall TAS Algorithm

Our TAS approach is a combination of two heuristics for map-
ping in bottom and top layer called thermal rank and combined
power model, respectively. We handle different layers using
different tactics, aiming to dissipate the most possible heat in
bottom layer, meanwhile limiting the total power in a stack. In
previous approaches, they either only consider the total power
in a stack or just take advantage of the heat dissipation effi-
ciency of each core. Our method considers both factors effi-
ciently.

The complete online thermal-aware super tasks mapping al-
gorithm is depicted in Algorithm 1. The time complexity is
O(S), where S is the number of super tasks. When an appli-
cation represented as a task graph arrives, depending upon the
number of available cores, the best mapping and super tasks
computed at design-time are selected. First, the selected super
tasks are classified into hot super tasks and cool super tasks
with their power above or below the average power. The av-
erage power value is calculated through a sliding window con-
taining the past M tasks, where M is the size of the sliding
window. Next, the hot super tasks are scheduled to the idle
cores in bottom layer based on the thermal rank model, as de-
scribed in steps 7-11, and cool super tasks are scheduled to the
idle cores in the top layer according to the combined power
model, as described in steps 13-16. If there is not enough idle
cores in bottom layer, the hot super tasks with less power have
to be allocated to the top layer based on the combined power
model. Note that we map the cool super tasks to the top layer
even if there are available idle cores in the bottom layer. This is
because we need to spare the idle cores in the bottom layer for
future coming hot super tasks, and the cool tasks in top layer
will not increase the peak temperature sharply.

Our method utilizes light-weight models to efficiently model
the thermal efficiency of each core for best usage, meanwhile
limiting the total power in a core stack. In contrast to meth-
ods that simulate the peak temperature for a lot of candidate
mappings in the mapping step [8, 12], our method requires no
compute-intensive simulations.

B.2 Thermal Rank Model in Bottom Layer

Thermal rank model calculates the thermal efficiency of each
core and indicates the priority of the cores for receiving the
new task. During super tasks mapping in TAS stage, every idle
core in the bottom layer is assigned a thermal rank value. Super
tasks of incoming application are allocated to the cores with the

Algorithm 1 Thermal-Aware Mapping Algorithm
Require:

Super tasks set S generated at design-time stage;
Idle cores set IDLE0 in top layer;
Idle cores set IDLE1 in bottom layer;
Temperature set of all cores T ;

Ensure: A super task mapping scheme ;
1: ~TR : thermal rank array for idle cores in bottom layer
2: ~P : combined power array for idle cores in top layer
3: Calculate thermal rank value for cores in IDLE1, get array ~TR;
4: Calculate the potential highest combined power for cores in IDLE0, get

array ~P ;
5: while S is not empty do
6: TB = popping up a super task in S which is ready;
7: if TB is a hot super task AND IDLE1 6= ∅ then
8: Assign TB to bottom layer;
9: Find the minimum entry in ~TR, and corresponding core id i;

10: Assign TB to core i;
11: Delete core i from IDLE1 and ~TR.
12: else
13: Assign TB to top layer;
14: Find the minimum entry in ~P , and corresponding core id j;
15: Allocate TB to core j;
16: Delete core i from IDLE0 and ~P .
17: end if
18: end while

minimum rank values. A thermal rank value TR is calculated
as follows:

TR = (T + Lw · Tl + V w · Tv) · ρ · Pf (2)

where T is the temperature of the candidate core, Tl is the av-
erage temperature of immediately adjacent cores in the same
layer, Tv is the temperature of vertical neighbor in different
layers. Lw, V w, ρ, Pf are predefined constants. Lw and
V w indicate the influence from lateral and vertical neighboring
cores, and they are calculated as the lateral and vertical thermal
conductance, respectively. ρ denotes the proximity to the heat
sink, and it is calculated as the thermal resistance between the
specific layer to the ambient. Even if all cores have the same
power consumption in a 3D system, the steady-state tempera-
ture of cores in the same layer differs due to different absolute
position that has different number of surrounding cores. Thus
taking the absolute position into consideration is important. Pf

represents the influence of absolute position of a core in the
horizontal plane. It can be calculated by assigning all cores
the average power of task graphs and getting the steady-state
temperature of all cores in a layer, then normalizing the steady-
state temperature value of each core to the highest temperature.
These parameters are determined offline based on the thermal
characteristics of 3D CMP.

B.3 Combined Power Model in Top Layer

Considering thermal efficiency of individual core is not enough
to achieve efficient peak temperature reduction, because it
might map two hot super tasks into the same stack simulta-
neously. As a result, blocks with a high power consumption
that are stacked on top of each other will generate hotspot.
For the bottom layer, the consideration of thermal efficiency
dominates as it is easier in this layer to dissipate heat to the
ambient. While for the top layer, the consideration of con-
trolling hotspots and reducing peak temperature dominates be-
cause peak temperature is usually generated in this layer. Thus
it is imperative to consider cores in the same stack together for
mapping tasks to the cores in the top layer. Here we propose a

combined power model for cores in top layer to limit the total
power in a core stack as follows:

Pcombined = (R0 amb · P0 +R1 amb · P1) · Pf (3)

Where R0 amb and R1 amb denote the thermal resistance from
silicon layer 0 to the ambient, and layer 1 to the ambient, re-
spectively. Pf is exactly defined as in Sec.B.2. P0 and P1 de-
note the power consumption of cores in the same stack. For
peak temperature reduction, the lateral influence in the top
layer is not much significant. Thus we neglect the influence
from lateral neighbors for reducing model complexity. Con-
sidering a core located in silicon layer j, its equivalent thermal
resistance to the ambient Rj ambint can be calculated as,

Rj amb =

j∑
k=1

Rk,k−1 +R0,hsk +Rhsk,amb (4)

where Rk,k−1 represents the thermal resistance between sili-
con layers k and k − 1. R0,hsk denotes the thermal resistance
between silicon layer 0 and heat sink. Rhsk,amb represents the
thermal resistance from heat sink to the ambient. When a super
task is to be assigned to top layer, a sequence of potential high-
est combined power is generated by assuming it is mapped to
a candidate core. The core with the minimum combined power
is selected to receive this super task. Fig.5 shows the target 3D
CMP with cores in gray being unavailable. Assume that super
task 1 in Fig.4, SP1, is hot and super task 2, SP2, is cool.
Thus we assign SP1 to the bottom layer, and SP2 to the top
layer. For bottom layer, we calculate thermal rank values of
C5 and C6, and then allocate SP1 to the core with minimum
thermal rank value. Similarly, for top layer, we calculate the
combined power values of C1 and C4, and then allocate SP2
to the core with minimum combined power.

C. Extension To Multi-Layer 3D CMP
The earlier introduced algorithm for two-layer 3D CMP can

be easily extended to 3D CMP with more than two layers.
Since there is no industrial chip with more than two layers so
far, we limit the exploration of the layers to be no more than
four.

Combined power model in Eq.(3) can be adjusted as follows
to incorporate more layers:

Pcombined =

N∑
j=0

Rj amb · Pj (5)

where N is the number of layers. Rj amb and Pj are exactly
the same as defined in Section B.

In the extended thermal-aware task mapping algorithm, we
should also take the same consideration of thermal efficiency
for these layers which can fast dissipate heat to the ambient,
and limiting the total power in a stack for those layers where
hotspots usually arise. For a three-layer 3D CMP, we view the

Top layer

Bottom layer

C 1 C 2

C 3 C 4

C 5

C 8 C 7

C 6
SP1

SP2

Fig. 5. An example of target 3D
CMP

Parameter Value
Vw 0.016
Lw 0.348

R0 amb 3.25
R1 amb 1.625

TABLE I
PARAMETERS IN THE MODEL

bottom two layers as a hyper-bottom layer. For a four-layer 3D
CMP, we view the bottom two layers and the top two layers as
a hyper-bottom layer and hyper-top layer, respectively. Then
we can apply the same thermal rank model for tasks mapped to
the hyper-bottom layer, and apply the combined power model
for tasks mapped to the hyper-top layer.

V. EXPERIMENTAL RESULTS

A. Experiment Setup

Benchmark Applications: We consider 7 DG based applica-
tions picked from the real-life SDFG and E3S benchmarks as
taken in some prior studies[3]. In each DG, the execution cy-
cles for node is set to the default value provided by the SDFG
and E3S benchmarks. The active power consumption of each
node is set randomly between 2W to 4W based on model de-
rived in [6].

Target 3D CMPs:The parameters required in Eq. (2) and (3)
are defined in Sec.B.2 and calculated based on the physical pa-
rameters and summarized in Table I. The target thermal model
of 3D CMP is built using HotSpot 6.0 [1], which is a well es-
tablished thermal simulation platform. The physical proper-
ties of the target 3D CMPs including the area of each block in
a core are provided in table II. The other necessary parame-
ters used in our experiments are set to default in Hotspot. For
the communication protocol and routing algorithm, we refer
to the work in [3]. For the leakage power of each core that
is modeled by Eq.(1), we calculate the curve fitting constants
α = 0.011867, β = −2.4722, based on the parameters in [11]
for the temperature range of 45-110◦C.

Overall Experiment Flow: The experiments are conducted
to compare the effectiveness of the proposed algorithm with
other state-of-the-art thermal-aware approaches listed in Table
III. Thermal profiling in [12] uses a representative and effi-
cient temperature prediction model to guide the task mapping
for independent tasks. PTLS in [8] targets to schedule real ap-
plications for peak temperature minimization under deadline
constraint. TR in [12] and coolest-first algorithm [4] are con-
sidered for only temperature comparison, validating the TAS
stage. While PTLS is considered for both performance and
temperature comparison to validate the whole TSS algorithm.
We measure the efficiency of approaches on two different met-
rics which are peak temperature and performance. We define
the average execution time of all the applications as the mea-
sure of performance improvement. As for the CAG design-time
step, when the application has more than 8 tasks, GA is em-
ployed. Otherwise, exhaustive exploration is employed. More-
over, the scheduling interval varies from 1ms to 2ms to explore
the performance of proposed algorithm under different work-
load pressure. The scheduler dispatchs task graphs to the cores
every scheduling interval.

B. Peak Temperature Reduction

Fig.6 shows the absolute peak temperature of 7 benchmarks
at the fixed scheduling interval of 1ms when mapped on a
4 × 4 × 2 CMP. To make a fair comparison, we assume that
the design time makespan optimization results are available
to the approaches targeting independent tasks. From the his-
togram, we can see that TSS can reduce the peak temperature

TABLE II
PHYSICAL PROPERTIES & HOSPOT PARAMETERS

Parameter Value

Core size [mm] 2×2
Processing element size [mm] 2×1
Network interface size [mm] 1×1
L2 cache size [mm] 1×1
Thermal interface material thickness [um] 20
Silicon layer thickness [um] 150
Ambient temperature [◦C] 45

TABLE III
METHODOLOGIES CONSIDERED FOR COMPARISON

Methods Abbreviation References
Coolest First CF [4]
Thermal Profiling TR [12]
Peak Temperature List Scheduling PTLS [8]
Two-stage scheduling TSS proposed

up to 5.0◦C compared to CF, and up to 4.39◦C compared to TR.
Fig.7 shows the observed relative average peak temperatures at

96

98

100

102

104

106

108 CF TR TSS

JPEGdecoder Autoindust1 Autoindust2 Consumer1 Consumer2 Network1 Network2 A
b

so
lu

te
 P

ea
k

te
m

p
er

at
u

re
[°

C
]

Fig. 6. Absolute peak temperature of individual benchmarks

varying scheduling interval for the benchmarks shown above.
We can see that our run-time scheduling algorithm achieves
significant peak temperature reduction compared to the other
two algorithms. The average reduction is 3.6◦C, and the max-
imum reduction is 6.1◦C. This is due to the fact that our al-
gorithm maps super tasks to different layers based on different
decision models, dissipating as much heat as possible in bottom
layer, meanwhile limiting the combined power in a stack. Such
power distribution is thermal-efficient as explained in Sec. B.

C. Performance Evaluation

Fig.8 demonstrates the results of comparing our approach
with PTLS of 7 benchmarks on a two-layer 3D CMP arranged
in the 4 × 4 × 2 pattern. The broken line demonstrates the
performance improvement, which clearly shows that our algo-
rithm can achieve an average of 4.9% performance improve-
ment, with a maximum performance saving of 6.8%. This is
owing to the fact that our design-time algorithm is effective
in optimizing the makespan of task graphs based on different
available cores and results in super tasks which when mapped
during run-time improves the performance. Meanwhile, note
that the histogram indicates that our algorithm greatly outper-
forms PTLS in the peak temperature as well. An average peak
temperature reduction of 6.3◦C is achieved. Peak tempera-
ture reduction increases with larger scheduling interval because
there are more idle cores giving bigger exploration space for
TSS with the increase of scheduling interval.

D. Results For Multi-layer 3D CMP

Fig.9 manifests the results of comparing TSS with PTLS on
a four-layer 3D CMP arranged in the 2 × 4 × 4 pattern. We

-1.0

1.0

3.0

5.0

7.0

1.0 1.2 1.4 1.6 1.8 2.0

Scheduling interval (ms)

TSS TR CF
R

el
at

iv
e

P
ea

k
Te

m
p

er
at

u
re

[°
C

]

Fig. 7. Relative peak temperature on two layer 3D CMP

0

1

2

3

4

5

6

7

0

2

4

6

8

10

12

14

16

1 1.2 1.4 1.6 1.8 2

Pe
rf

o
rm

an
ce

Im

p
ro

ve
m

en
t[

%
]

Pe
ak

 T
em

p
er

at
u

re

R
ed

u
ct

io
n

 [
°C

]

Scheduling interval (ms)

Peak Temperature Reduction Performance Improvement

Fig. 8. Improvement compared to PTLS for two layers

use the same application set tested in the above experiments as
input. We can see that TSS achieves an average peak tempera-
ture reduction of 10.0◦C and an average performance improve-
ment of 6.78% compared to PTLS. From Fig.8 and Fig.9, it is
shown that greater improvement is achieved with the increas-
ing of number of layers. This is because the thermal challenge
is more severe in four-layer 3D CMP, thus TSS has bigger ex-
ploration space to reduce the peak temperature. To validate

0

1

2

3

4

5

6

7

8

0

2

4

6

8

10

12

14

16

18

1.0 1.2 1.4 1.6 1.8 2.0

Scheduling interval (ms)

Peak Temperature Reduction Performance Improvement

P
ea

k
Te

m
p

er
at

u
re

R

ed
u

ct
io

n
 [

°C
]

P
er

fo
rm

an
ce

Im
p

ro
ve

m
en

t[
%

]

Fig. 9. Improvement compared to PTLS for four layers

our proposed TAS approach which incorporates the consider-
ation of both thermal efficiency and power stack against the
ones considering only one factor. Fig.10 gives the relative peak
temperature at fixed scheduling interval of 1ms on two-layer,
three-layer and four-layer 3D CMPs. Every layer is comprised
of 4×4 identical cores. “Thermal rank only”means using ther-
mal rank model for all layers, while “combined power only”
means using combined power model for all layers. We can see
that our proposed TAS approach outperforms them by an aver-
age of 7.31◦C and 5.7◦C reduction, respectively. Thus we can
conclude that the extension of TAS stage approach to multi-
layer 3D CMP work efficiently in peak temperature reduction.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a novel two-stage thermal-aware task
scheduling algorithm to solve the thermal challenges faced by
modern 3D CMP system. Our algorithm is constituted of two
steps: the communication-aware group step at design-time, and
thermal-aware scheduling step at run-time. The experimen-
tal results show that our algorithm outperforms other existing

0

5

10

2 L A Y E R S 3 L A Y E R S 4 L A Y E R S

Consideration of both
Thermal rank only
Combined power onlyR

el
at

iv
e

P
ea

k
Te

m
p

er
at

u
re

[°
C

]

Fig. 10. Relative peak temperature on 3D CMPs with different layers

methods and achieves average peak temperature reduction up
to 6.3◦C. In future, we plan to apply DVFS into our thermal-
aware scheduling algorithm to further reduce the peak temper-
ature.

REFERENCES

[1] Hotspot 6.0 temperature modeling tool, http://lava.cs.
virginia.edu/HotSpot/.

[2] V. Chaturvedi et al. Thermal-aware task scheduling for peak temperature
minimization under periodic constraint for 3D-MPSoCs. In Proc. of Int.
Symp. on Rapid System Prototyping, pages 107–113, 2014.

[3] M. Cox et al. Thermal-aware mapping of streaming applications on 3D
multi-processor systems. In Proc. of Symp. on Embedded Systems for
Real-time Multimedia, pages 11–20, 2013.

[4] Y. Cui et al. Thermal-aware task scheduling for 3D network-on-chip: A
Bottom-to-Top scheme. In Proc. Int. Symp. on Integrated Circuits, pages
224–227, 2014.

[5] K. Deb et al. A fast and elitist multiobjective genetic algorithm: NSGA-
II. IEEE Trans. on Evolutionary Computation, 6(2):182–197, 2002.

[6] X. Feng et al. Power and energy profiling of scientific applications on
distributed systems. In Proc. of Int. Parallel and Distributed Processing
Symposium, pages 34–34, 2005.

[7] J. U. Knickerbocker et al. 3-D silicon integration and silicon packag-
ing technology using silicon through-vias. IEEE Journal of Solid-State
Circuits, 41(8):1718–1725, 2006.

[8] J. Li et al. Thermal-aware task scheduling in 3D chip multiprocessor with
real-time constrained workloads. ACM Trans. on Embedded Computing
Systems, 12(2):24, 2013.

[9] C.-H. Liao et al. An online thermal-constrained task scheduler for 3d
multi-core processors. In Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), pages 351–356, 2015.

[10] C.-H. Liao et al. Thermal-constrained task scheduling on 3-d multicore
processors for throughput-and-energy optimization. Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, 23(11):2719–2723,
2015.

[11] W. Liao et al. Temperature and supply voltage aware performance and
power modeling at microarchitecture level. IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, 24(7):1042–1053,
2005.

[12] S. Liu et al. Thermal-aware job allocation and scheduling for three di-
mensional chip multiprocessor. In Proc. of Int. Symp. on Quality Elec-
tronic Design, pages 390–398, 2010.

[13] Y. Liu et al. Accurate temperature-dependent integrated circuit leakage
power estimation is easy. In Proc. of Conf. on Design, Automation & Test
in Europe, pages 1526–1531, 2007.

[14] R. Rao et al. Statistical estimation of leakage current considering inter-
and intra-die process variation. In Proc. of Int. Symp. on Low Power
Electronics and Design, pages 84–89, 2003.

[15] A. W. Topol et al. Three-dimensional integrated circuits. IBM Journal of
Research and Development, 50(4.5):491–506, 2006.

[16] T.-H. Tsai et al. Thermal-aware real-time task scheduling for three-
dimensional multicore chip. In Proc. of ACM Symposium on Applied
Computing, pages 1618–1624, 2012.

[17] C. H. Yu et al. Thermal-aware on-line scheduler for 3-D many-core pro-
cessor throughput optimization. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 33(5):763–773, 2014.

[18] X. Zhou et al. Thermal-aware task scheduling for 3D multicore pro-
cessors. IEEE Trans. on Parallel and Distributed Systems, 21(1):60–71,
2010.

