
Adaptation in Heterogeneous Mobile SoCs
Amit Kumar Singh
University of Essex
United Kingdom

a.k.singh@essex.ac.uk

Geoff V. Merrett
University of Southampton

United Kingdom
gvm@ecs.soton.ac.uk

Bashir M. Al-Hashimi
University of Southampton

United Kingdom
bmah@ecs.soton.ac.uk

Motivation for Heterogeneous Mobile SoCs
The reliance of embedded computing systems is increasing to het-
erogeneous mobile SoCs consisting of different types of cores such
as CPU and GPU. An example includes the Samsung Exynos 5422
SoC containing a CPU with four ARM cortex-A15 (big) and four
ARM Cortex-A7 (LITTLE) cores, and a GPU with 6 ARM Mali-T628
cores [1]. These architectures provide opportunities to exploit dis-
tinct features of CPU and GPU cores to meet performance and
energy consumption requirements. Further, the cores in these SoCs
support dynamic voltage and frequency scaling (DVFS), which can
be used to reduce dynamic power consumption (P ∝ V 2f). This
helps to reduce energy consumption if the extra time taken to run
the workload at a lower voltage and frequency can be accounted
by sufficient reduction in the power consumption.

Open Computing Language (OpenCL) [3] provides an opportu-
nity to write applications that can execute across heterogeneous
cores including CPUs and GPUs [6, 8–10]. However, since CPU
and GPU cores typically handle task/thread and data level paral-
lelism, respectively, the performance and energy consumption of
an application varies when executed onto only CPU, only GPU, or
both CPU and GPU cores [17]. The variation depends upon the
kind of parallelism dominating the application. Existing studies
have shown significant reduction in execution time and energy
consumption when an application simultaneously exploits both the
CPU and GPU cores with an appropriate partitioning of threads
between them [6].

Related Research and Their Shortcomings
For concurrently executing applications in a heterogeneous mobile
SoC, e.g., image and MP3 decoding with respective frames per
second (fps) requirements, energy-efficient run-time management
of applications on SoC resources is desired. Several efforts have
been made towards this [4, 7, 11, 13, 15]. However, they consider
cores having the same instruction set architecture (ISA), e.g., big
and/or LITTLE cores. Usually, they employ Pthreads, which cannot
be used to exploit cores of different ISAs such as CPU and GPU.
As mentioned earlier, the OpenCL programming model overcomes
such limitations, but most of the existing works for embedded
systems utilize either the CPU or GPU [12, 14], and there are limited
efforts to exploit both at the same time [5, 6]. In [6], only a single
application at a time is considered. Concurrent applications are
considered in [5], but the mapping (defined as the number of used
cores, their types (e.g., big, LITTLE) and operating frequencies) and
thread-partitioning (defined as the fraction of threads to be executed
on CPU cores) for each application remain fixed, which is identified
before starting applications’ execution. This indicates no adaptation

ArmSummit-2018, 2018,
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

of themapping and thread-partitioning during execution. Therefore,
due to the lack of adaptation, the freed cores by an application
cannot be used by already running applications or to start execution
of a waiting application. This could help in improving resource
utilisation and/or energy efficiency. Further, for CPU-GPU SoC, the
adaptation needs to consider collaboration between CPU and GPU
cores processing capabilities for energy efficiency, which is missing.
An adaptive approach for CPU-GPU SoC is recently presented [18],
but it considers only a single application at a time and only CPU or
GPU for application execution.

Motivational Case Study: Adaptation in
CPU-GPU Mobile SoC
Fig. 1 illustrates the mapping and thread-partitioning process of ap-
plications SYR2K and SYRK from Polybench benchmark [16] on the
Samsung Exynos 5422 SoC when employing non-adaptive (e.g.,
[5, 6]) and our proposed adaptive approaches. At the beginning,
SYR2K is started on big (B) and GPU (G) cores and SYRK on LITTLE
(L) cores. Since embedded GPU drivers do not support spatially
isolated and time multiplexed execution of multiple applications,
SYR2K uses all the GPU cores till its completion. Thereafter, SYRK
starts using the GPU cores. Both the applications are started with
appropriate thread-partitioning between CPU and GPU cores by
taking CPU and GPU processing capabilities into account, i.e., by
having proper collaboration between CPU and GPU. It can be seen
in Fig. 1 that the non-adaptive approach leaves cores unused when
SYR2K completes execution. This has resulted in a higher execution
time of 50 seconds for SYRK and a total energy consumption of
85 joule (J) for both the applications. In contrast, upon completion
of SYR2K, the adaptive approach performs adaptation (through
collaboration between CPU and GPU cores), i.e. remapping SYRK
by taking the freed cores into account, and execution is started
with a new thread-partitioning that enqueues more threads to CPU
cores as it has increased processing capability. This leads to early
completion of SYRK at 42 seconds. As a result of reduced execution
time, total energy consumption is reduced to 68 J.

Adaptation is also beneficial to support a new application when
no resource is available by adapting running applications to lower
number of cores. The running application that is over performing
can be chosen for this purpose. and the freed resources can be used
for the new application. This has resulted in timely start of the new
application and early completion as well, which results in lower
energy consumption.

In summary, adaptation (remapping and repartitioning) at appli-
cation arrival and completion brings several benefits such as the
exploitation of freed cores, addition of a new application when no
core is available and early completion of applications by exploiting
freed cores, which also leads to low energy consumption (Power ×
time).

https://doi.org/10.1145/nnnnnnn.nnnnnnn

B B
B B
L L
L L
G G
G G
G G

MPSoC
Time (seconds)

A1

A2

A1 A2

Non-Adaptive

Unused
cores

A3 Cannot be mapped
as no cores available

A1

A2

A1 A2

Adaptive

A3

A1
A3

Adapting A1 to
accommodate A3

A2

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Time (seconds)

Early Completion
of A2

=> Lower energy
consumption

Adapting A2
to cores

freed by A1

B B
B B
L L
L L
G G
G G
G G

SoC
Time (seconds)

SYR2K

SYRK

SYR2K SYRK

Non-Adaptive

Unused
cores SYR2K

SYRK

SYR2K SYRK

Adaptive

SYRK

33
Time (seconds)

Early
Completion

of SYRK

Adapting to
cores freed
by SYR2K

50 33 42

Energy consumption = 85 J Energy consumption = 68 J

B B
B B
L L
L L
G G
G G
G G

SoC
Time (seconds)

SYR2K

SYRK

SYR2K SYRK

Non-Adaptive

CR Cannot be mapped when
arrived as no cores available

SYRK

SYR2K

(Proposed) Adaptive

CR

SYR2K
CR

Adapting SYR2K to
accommodate CR

Time (seconds)

Adapting to
cores freed
by SYR2K

CR

33 50 37

U
nu

se
d

 c
or

es

54

SYR2K

SYRK

SYRK

45

CR

CR

50

Adapting to
cores freed

by SYRK

Early
Completion

Energy consumption = 110 J Energy consumption = 87 J

Arrived

Figure 1: Adaptation at application completion: Non-
adaptive vs. adaptive mapping and thread-partitioning on
big (B), LITTLE (L) and GPU (G) cores of Samsung Exynos
5422 mobile SoC.

Challenges
To perform energy-efficient collaborative adaptation (remapping
and thread-repartitioning) of executing applications while satisfy-
ing their performance requirements, the following key challenges
need to be addressed:

• Since OpenCL enqueues all application threads between CPU
and GPU before starting execution, with no track of executed
threads over time, online thread-partitioning is not possible.
To enable this, threads can be grouped into several equal
size chunks, and enqueuing and partitioning done at chunk
level. However, it imposes challenges to identify the best
number of chunks (each chunk contains the same number
of threads) so that the cores are neither starved nor overfed
from threads.

• Upon an application completion, identifying the energy sav-
ing benefits of adaptation (to higher number of cores) for
each executing application by considering timing and energy
overheads.

• Upon an application arrival, energy-efficient and perfor-
mance satisfying adaptation (to lower number of cores) of
executing applications to facilitate performance satisfying
execution of the arrived application.

• Collaboration between CPU and GPU is required by identify-
ing their processing capabilities at various adaptation points
such that balanced execution can be performed.

Contributions
To address the above-mentioned challenges, we have made the
following contributions:

(1) An collaborative adaptation approach that performs an energy-
efficient mapping and thread-partitioning between CPU and
GPU cores for concurrent applications, and applies energy
optimizing adaptations (remapping and thread-repartitioning)
at application completion and arrival through CPU and GPU
collaboration.

(2) To reduce adaptation overhead, for each application, energy-
efficient mapping and thread-partitioning when using a dif-
ferent number of CPU core are explored at design-time and
stored for using at run-time. Additionally, the best number
of chunks for each application is also explored at design-time
and execution starts by feeding chunks to CPU and GPU

1

10

100

Run-time Application Scenarios

En
er

gy
 c

on
su

m
pt

io
n

(J
) Ref. [6] Ref. [5] Proposed

Figure 2: Energy consumption by various approaches for dif-
ferent run-time scenarios: two and three concurrent applica-
tions.

continuously by collaborating on their processing capabili-
ties.

(3) Implementation and experimental validity of the proposed
approach on an Odroid-XU3 platform [2] (contains a state-of-
the-art mobile SoC prevalent in tablet/smart-phone devices).

The talk will cover details of these contributions and obtained
results. A sample result is shown in Figure 2, which indicates that
the proposed adaptive approach achieves reduction in energy con-
sumption when compared to closely related approaches in [6] and
[5]. Additionally, performance improvements are achieved. To the
best of our knowledge, this is the first study on energy-efficient
collaborative adaptation for concurrently executing performance
constrained applications on CPU and GPU cores of a mobile SoC.

REFERENCES
[1] 2016. Exynos 5 Octa (5422). www.samsung.com/exynos/. (2016).
[2] 2016. Odroid-XU3. http://www.hardkernel.com/main/products/prdt_info.php?

g_code=g140448267127. (2016).
[3] 2016. The open standard for parallel programming of heterogeneous systems.

https://goo.gl/A9wXRJ. (2016).
[4] A. Aalsaud et al. 2016. Power–Aware Performance Adaptation of Concurrent

Applications in Heterogeneous Many-Core Systems. In ISLPED’16.
[5] A. K. Singh et al. 2017. Energy-Efficient Run-Time Mapping and Thread Parti-

tioning of Concurrent OpenCL Applications on CPU-GPU MPSoCs. TECS’17
(2017).

[6] A. Prakash et al. 2015. Energy-efficient execution of data-parallel applications
on heterogeneous mobile platforms. In ICCD’15.

[7] B. Donyanavard et al. 2016. SPARTA: runtime task allocation for energy efficient
heterogeneous many-cores. In CODES+ISSS’16.

[8] C. K. Luk et al. 2009. Qilin: exploiting parallelism on heterogeneous multiproces-
sors with adaptive mapping. In MICRO’09.

[9] D. Grewe et al. 2011. A static task partitioning approach for heterogeneous
systems using OpenCL. In CC’11.

[10] D. Grewe et al. 2013. OpenCL task partitioning in the presence of GPU contention.
In LCPC’13.

[11] E. D. Sozzo et al. 2016. Workload-aware power optimization strategy for asym-
metric multiprocessors. In DATE’16.

[12] I. Grasso et al. 2014. Energy efficient hpc on embedded socs: Optimization
techniques for mali gpu. In IPDPS’14.

[13] J. Ma et al. 2016. An Analytical Framework for Estimating Scale-Out and Scale-Up
Power Efficiency of Heterogeneous Manycores. TC (2016).

[14] K. Chandramohan et al. 2014. Partitioning data-parallel programs for heteroge-
neous MPSoCs: time and energy design space exploration. In LCTES’14.

[15] K. V. Craeynest et al. 2012. Scheduling heterogeneous multi-cores through
performance impact estimation (PIE). In ISCA’12.

[16] S. Grauer-Gray et al. 2012. Auto-tuning a high-level language targeted to GPU
codes. In InPar’12.

[17] Y. Wen et al. 2014. Smart multi-task scheduling for OpenCL programs on
CPU/GPU heterogeneous platforms. In HiPC’14.

[18] Ben Taylor et al. 2017. Adaptive optimization for OpenCL programs on embedded
heterogeneous systems. In LCTES’17.

2

www.samsung.com/exynos/
http://www.hardkernel.com/main/products/prdt_info.php?g_code=g140448267127
http://www.hardkernel.com/main/products/prdt_info.php?g_code=g140448267127
https://goo.gl/A9wXRJ

	References

