
SINGH et al.: COLLABORATIVE ADAPTATION FOR ENERGY-EFFICIENT HETEROGENEOUS MOBILE SOCS 1

Collaborative Adaptation for Energy-Efficient
Heterogeneous Mobile SoCs

Amit Kumar Singh, Member, IEEE, Karunakar Reddy Basireddy, Member, IEEE, Alok
Prakash, Member, IEEE, Geoff V. Merrett, Member, IEEE, Bashir M Al-Hashimi, Fellow, IEEE

Abstract—Heterogeneous Mobile System-on-Chips (SoCs) containing CPU and GPU cores are becoming prevalent in embedded
computing, and they need to execute applications concurrently. However, existing run-time management approaches do not perform
adaptive mapping and thread-partitioning of applications while exploiting both CPU and GPU cores at the same time. In this paper, we
propose an adaptive mapping and thread-partitioning approach for energy-efficient execution of concurrent OpenCL applications on
both CPU and GPU cores while satisfying performance requirements. To start execution of concurrent applications, the approach
makes mapping (number of cores and operating frequencies) and partitioning (distribution of threads between CPU and GPU)
decisions to satisfy performance requirements for each application. The mapping and partitioning decisions are made by having a
collaboration between the CPU and GPU cores’ processing capabilities such that balanced execution can be performed. During
execution, adaptation is triggered when new application(s) arrive, or an executing one finishes, that frees cores. The adaptation
process identifies a new mapping and thread-partitioning in a similar collaborative manner for remaining applications provided it leads
to an improvement in energy efficiency. The proposed approach is experimentally validated on the Odroid-XU3 hardware platform with
varying set of applications. Results show an average energy saving of 37%, compared to existing approaches while satisfying the
performance requirements.

Index Terms—SoC, Heterogeneous computing, Adaptation, Energy-efficiency, concurrent execution.

F

1 INTRODUCTION

The reliance of embedded computing systems is increasing
to heterogeneous mobile SoCs consisting of different types
of cores such as CPU and GPU. An example includes the
Samsung Exynos 5422 SoC containing a CPU with four
ARM cortex-A15 (big) and four ARM Cortex-A7 (LITTLE)
cores, and a GPU with six ARM Mali-T628 cores [1]. These
architectures provide opportunities to exploit distinct fea-
tures of CPU and GPU cores to meet performance and
energy consumption requirements. Further, the cores in
these SoCs support dynamic voltage and frequency scal-
ing (DVFS), which can be used to reduce dynamic power
consumption (P ∝ V 2f). This helps to reduce energy
consumption if the extra time taken to run the workload
at a lower voltage and frequency can be accounted by a
sufficient reduction in the power consumption.

Open Computing Language (OpenCL) [2] provides an
opportunity to write applications that can execute across
heterogeneous cores including CPUs and GPUs [3]–[7].
However, since CPU and GPU cores typically handle
task/thread and data level parallelism, respectively, the
performance and energy consumption of an application
varies when executed on only CPU, only GPU, or both CPU

A. K. Singh is with the School of Computer Science and Electronic Engi-
neering, University of Essex, Colchester CO43SQ, United Kingdom (email:
a.k.singh@essex.ac.uk).
B. K. Reddy, G. V. Merrett, and B. M. Al-Hashimi are with the
School of Electronics and Computer Science, University of Southamp-
ton, United Kingdom (e-mail: krb1g15@ecs.soton.ac.uk; gvm@ecs.soton.ac.uk;
bmah@ecs.soton.ac.uk)
A. Prakash is with the School of Computer Engineering, Nanyang Technolog-
ical University, Singapore (e-mail: alok@ntu.edu.sg)
Manuscript received August xx, 2018; revised November xx, 2018.

and GPU cores [8]. The variation depends upon the kind
of parallelism dominating the application. Existing studies
have shown significant reduction in execution time and
energy consumption when an application simultaneously
exploits both the CPU and GPU cores with an appropriate
partitioning of threads between them [7].

For concurrently executing applications in a heteroge-
neous mobile SoC, e.g., image and MP3 decoding with
respective frames per second (fps) requirements, energy-
efficient run-time management of applications on SoC re-
sources is desired. Recently, several efforts have been made
towards this [9]–[15], but at an application completion
and/or arrival, they lack to perform adaptations while using
both the CPU and GPU cores for concurrently executing
applications. Thus, cores freed by an application cannot be
used by already running applications or to start execution
of a waiting application, which could help in improving
resource utilisation and/or energy efficiency. For executing
and arrived applications, the adaptation process needs to
identify new mapping (defined as the number of used cores,
their types (e.g., big, LITTLE) and operating frequencies)
and thread-partitioning (defined as the portion of threads to
be executed on CPU cores). However, performing energy-
efficient adaptation while satisfying applications’ perfor-
mance requirements possess several key challenges. First,
since OpenCL enqueues all application threads between the
CPU and GPU before starting execution, with no track of
executed threads over time, online thread-partitioning is
not possible. To enable this, threads can be grouped into
several equal size chunks, and enqueuing and partitioning
done at the chunk level. However, this requires to identify
the best number of chunks (each chunk contains the same

SINGH et al.: COLLABORATIVE ADAPTATION FOR ENERGY-EFFICIENT HETEROGENEOUS MOBILE SOCS 2

number of threads) so that the cores are neither ’starved’ nor
’overfed’ from threads. Second, upon an application’s com-
pletion, energy saving benefits of adaptation (to a higher
number of cores) for each executing application needs to
be identified by considering timing and energy overheads.
Third, upon an application’s arrival, energy-efficient and
performance satisfying adaptation (to a lower number of
cores) of executing applications needs to be performed to
facilitate performance satisfying execution of the arrived
application. Finally, collaboration between CPU and GPU
is required by identifying their processing capabilities at
various adaptation points such that balanced and energy-
efficient execution can be performed.

To address the above-mentioned challenges, this paper is
the first study on energy-efficient collaborative adaptation
for concurrently executing performance constrained appli-
cations on CPU and GPU cores of a mobile SoC, and makes
the following contributions:

1) A collaborative adaptation approach that per-
forms an energy-efficient mapping and thread-
partitioning between CPU and GPU cores for con-
current applications, and applies energy optimizing
adaptations (remapping and thread-repartitioning)
at application completion and arrival through CPU
and GPU collaboration.

2) To reduce adaptation overhead, for each ap-
plication, energy-efficient mapping and thread-
partitioning when using a different number of CPU
core are explored at design-time and stored for
using at run-time. Additionally, the best number
of chunks for each application is also explored at
design-time and execution starts by feeding chunks
to CPU and GPU continuously by collaborating on
their processing capabilities.

3) Implementation and experimental validity of the
proposed approach on an Odroid-XU3 platform [16]
(contains a state-of-the-art mobile SoC prevalent in
tablet/smart-phone devices).

The structure of this paper is organized as follows.
Section 2 provides a motivational case-study for performing
adaptation in CPU-GPU mobile SoC. Section 3 presents
related works. The proposed adaptive approach while high-
lighting the target problem is presented in Section 4. Section
5 presents the experimental set-up and results while includ-
ing details of the considered hardware and software infras-
tructure. The concluding remarks are provided in Section
6.

2 MOTIVATIONAL CASE STUDY: ADAPTATION IN
CPU-GPU MOBILE SOC
We present an experimental case study to illustrate the
potential of adaptation i) when an application completes ex-
ecution and frees cores, and ii) when an application arrives,
but there is no free core.

2.1 Adaptation at Application Completion
Fig. 1 illustrates the mapping and thread-partitioning pro-
cess of applications Symmetric rank 2k (SYR2K) and Sym-
metric rank k (SYRK) from the Polybench benchmark [17]

B B

B B

L L
L L

G G
G G
G G

SoC
Time (seconds)

SYR2K

SYRK

SYR2K SYRK

Non-Adaptive

Unused

cores SYR2K

SYRK

SYR2K SYRK

Adaptive

SYRK

33
Time (seconds)

Early

Completion

of SYRK

Adapting to

cores freed

by SYR2K

50 33 42

Energy consumption = 85 J Energy consumption = 68 J

Figure 1. Adaptation at application completion: Non-adaptive vs. adap-
tive mapping and thread-partitioning on big (B), LITTLE (L) and GPU
(G) cores of Samsung Exynos 5422 mobile SoC.

on the Samsung Exynos 5422 SoC when employing non-
adaptive (e.g., [7], [15]) and our proposed collaborative
adaptation approaches. To begin execution, the threads of
SYR2K are enqueued to big (B) and GPU (G) cores, and
to LITTLE (L) and GPU (G) cores for SYRK. Since em-
bedded GPU drivers do not support spatially isolated and
time multiplexed execution of multiple applications, SYR2K
uses all the GPU cores until its completion. Thereafter,
SYRK starts using the GPU cores. Both the applications
are started with appropriate thread-partitioning between
CPU and GPU cores by taking CPU and GPU processing
capabilities into account, i.e., by having proper collaboration
between CPU and GPU. It can be seen in Fig. 1 that the
non-adaptive approach leaves cores unused when SYR2K
completes execution. This has resulted in a higher execution
time of 50 seconds for SYRK and a total energy consump-
tion of 85 joule (J) for both the applications. In contrast,
upon completion of SYR2K, the adaptive approach per-
forms adaptation (through collaboration between CPU and
GPU cores), i.e. remapping SYRK by taking the freed cores
into account, and execution is started with a new thread-
partitioning that enqueues more threads to CPU cores as
it has increased processing capability. This leads to early
completion of SYRK at 42 seconds. As a result of reduced
execution time, total energy consumption is reduced to 68 J,
i.e. by 20%.

2.2 Adaptation at Application Arrival
Fig. 2 illustrates the non-adaptive and adaptive mapping
and thread-partitioning process when application CORRE-
LATION (CR) arrives around 15 seconds after the start of
SYR2K and SYRK. Initially, execution of SYR2K and SYRK
starts as in Fig. 1. When CR arrives, it cannot be started
immediately while following the non-adaptive approach as
there is no available core. Rather, it starts execution when
SYR2K releases cores after completion, which is not desired
by the end users. Further, freed cores by SYRK are not used
by CR. This has resulted in a higher execution time of 54
seconds for CR and a total energy consumption of 110 joule
(J) for all the three applications. In contrast, by the adaptive
approach, application CR is started immediately after its
arrival by adapting running applications to lower number
of cores. The approach chooses the running application that
is over performing and releases its cores while updating the
design point in terms of mapping and partitioning. Here,
SYR2K is chosen to adapt to lower number of cores such

SINGH et al.: COLLABORATIVE ADAPTATION FOR ENERGY-EFFICIENT HETEROGENEOUS MOBILE SOCS 3

B B

B B

L L
L L

G G
G G
G G

SoC

Time (seconds)

SYR2K

SYRK

SYR2K SYRK

Non-Adaptive

CR Cannot be mapped when

arrived as no cores available

SYRK

SYR2K

(Proposed) Adaptive

CR

SYR2K
CR

Adapting SYR2K to

accommodate CR

Time (seconds)

Adapting to

cores freed

by SYR2K

CR

33 50 37

U
n

u
s
e
d

 c
o

re
s

54

SYR2K

SYRK

SYRK

45

CR

CR

50

Adapting to

cores freed

by SYRK

Early

Completion

Energy consumption = 110 J Energy consumption = 87 J

Arrived

Figure 2. Adaptation at application arrival: Non-adaptive vs. adaptive
mapping and thread-partitioning on big (B), LITTLE (L) and GPU (G)
cores of Samsung Exynos 5422 mobile SoC.

that CR can be started when it arrived. The next collab-
orative adaptation is performed when application SYR2K
completes execution at 37 seconds. The freed resources are
used by SYRK. The last collaborative adaptation happens
at the completion of SYRK at 45 seconds, where the freed
resources are used by CR. The adaptation at each instance is
performed through collaboration between CPU and GPU
cores processing capabilities that are determined as the
inverse of the time required to process the same number
of threads on CPU and GPU cores, respectively.. This has
resulted in early completion of CR at 50 seconds. The total
energy consumption is also reduced to 87 J, i.e. by 21%, due
to the reduction in execution time.

In summary, adaptation (remapping and repartitioning)
at application arrival and completion brings several benefits
such as the exploitation of freed cores, addition of a new
application when no core is available and early completion
of applications by exploiting freed cores, which also leads to
lower energy consumption.

3 RELATED WORKS

To execute multiple applications concurrently in a hetero-
geneous mobile SoC, recently several efforts have been
made, but they perform mapping and thread-partitioning of
applications by assuming cores having the same instruction
set architecture (ISA), e.g., big and/or LITTLE cores [9]–
[14]. They have achieved energy efficiency by exploiting
the appropriate cores. Usually, they employ Pthreads, which
cannot be used to exploit cores of different ISAs such as CPU
and GPU. Further, a close observation of these approaches
indicates that most of them do not exploit more than one
type of cores concurrently [9], [10], [12], [13]. Although
the approaches in [11], [14] exploit big and LITTLE cores
concurrently, exploitation of GPU cores is not possible as
they handle instructions differently than the big and LITTLE
cores.

For desktop SoCs containing CPU and GPU cores within
the same chip, there have been some efforts to efficiently
exploit the cores [18]–[22]. A run-time algorithm to partition
the workload and power budget between CPU and GPU
cores of an AMD Trinity SoC is proposed in [18]. Similar
AMD SoC is used in [20] to perform coordinated CPU-GPU
executions. However, due to access of the same memory
bank in different patterns by the CPU and GPU, it results

in memory contention. The problem of shared resources
in AMD SoCs is addressed in [19]. In [21], Intel Haswell
and Atom SoCs are considered to partition the workload
between CPU and GPU cores for reducing energy consump-
tion, but concurrent applications are not considered. In [22],
criticality of GPU accesses is used to accelerate an applica-
tion execution. However, these approaches do not comply
with the limited power budget that is typical for embedded
systems and coordination between CPU and GPU cores
in such SoCs needs different kinds of consideration than
mobile SoCs.

For desktop platforms, there has also been efforts to
simultaneously exploit CPU and GPU cores, but the CPU
and GPU cores are situated into different chips [4]–[6],
[8], [23]. However, most of these consider static mapping
[4], [5] and thus they cannot cater for run-time changing
scenarios, and others suitable for run-time scenarios [6] do
not concurrently exploit CPU and GPU cores. Further, CPU
and GPU cores have separate memory in contrast to an
embedded mobile SoC. Therefore, communication support
between CPU and GPU cores is different and they cannot be
efficiently applied to mobile SoCs.

For mobile SoCs containing CPU and GPU cores, some
relevant efforts have been made with the use of OpenCL
[7], [15], [24], [25]. To achieve energy efficiency, workloads
are executed on Mali GPU cores in [24], but a potential
collaboration with CPU cores is missing. In a similar way,
GPU cores are not used for OpenCL kernel execution in
[25]. However, threads representing the workload are par-
titioned by considering shared resources and synchroniza-
tion. OpenCL framework for ARM processors was intro-
duced in [26]. In [7], a similar open source framework,
FreeOCL [27] is used for the ARM CPU that acts as both the
host processor and an OpenCL device, enabling concurrent
exploitation of CPU and GPU for an application threads.
However, only a single application is considered at a time
to perform static partitioning of threads between the CPU
and GPU cores, and no adaptation happens. An adaptive
approach for CPU-GPU SoC has recently been presented
[28], but it considers only a single application at a time
and only CPU or GPU for application execution. Other
adaptive approaches have also been studied [29]–[32], but
they consider only one type of core and mostly do not
perform evaluation on a real mobile SoC [29], [30].

Mobile SoCs containing CPU and GPU cores are exten-
sively exploited for mobile gaming and graphics workloads,
[33]–[37]. However, these approaches have several draw-
backs, e.g., consider a single application, no adaptation is
employed and there is no control on the partitioning of
application between CPU and GPU, i.e., it is fixed and well
decided as all the graphics part of the application must be
executed on the GPU while the remaining calculations have
to be done on the CPU.

Our prior work considers execution of concurrent appli-
cations for mobile SoCs containing CPU and GPU [15], but
the mapping and thread-partitioning for each application re-
main fixed, which is identified before starting applications’
execution. This indicates no adaptation of the mapping and
thread-partitioning during execution. Further, addition of a
new application at run-time is not considered and thus run-
time collaborative thread-partitioning is not performed. In

SINGH et al.: COLLABORATIVE ADAPTATION FOR ENERGY-EFFICIENT HETEROGENEOUS MOBILE SOCS 4

Table 1
Features of relevant existing and our approaches for executing

concurrent applications on a CPU+GPU mobile SoC

Concurrent Partition Run-time
Ref. Apps CPU+GPU Control App. Add. Adapt.
[9]–[14] 3 7 7 7 7
[33]–[37] 7 3 7 7 7
[7] 7 3 3 7 7
[15] 3 3 3 7 7
Proposed 3 3 3 3 3

contrast, the proposed approach performs energy-efficient
adaptation (run-time remapping and thread-repartitioning)
for concurrently executing applications at an application
completion and at a new application arrival (addition) to
start its execution as soon as possible in case no core is
available. Table 1 shows a comparison of the features of
the relevant existing approaches with our approach. It can
be observed that only our approach considers adaptations
for concurrently executing applications (Apps) on mobile
SoCs containing CPU+GPU with the flexibility of run-time
collaborative thread-partitioning between CPU and GPU
(applied based on changes in execution scenarios) and run-
time application addition (App. Add.).

4 PROPOSED ADAPTIVE APPROACH

The proposed adaptive approach solves the following prob-
lem.

Given performance constrained applications to be exe-
cuted at different moments of time on a heterogeneous CPU-
GPU SoC supporting DVFS.

Optimize energy consumption (EC, computed by Equa-
tion 1) by performing efficient adaptation upon an applica-
tion completion and start (arrival).

EC = ECCPU + ECGPU + ECMEM (1)

where, ECCPU , ECGPU and ECMEM are the energy con-
sumptions of CPU cores, GPU cores and memory, respec-
tively, which can be computed as the product of respective
power consumption and execution time. The power values
are measured with the help of power sensors present for
CPU, GPU and memory.

Subject to meeting performance requirement of each ap-
plication within limited SoC resources.

For each application to be executed, the adaptation pro-
cess needs to find energy-efficient mapping (used CPU cores
and their frequency) and thread (referred to as work-item
in OpenCL terminology) partitioning between CPU and
GPU cores while enqueuing the chunks (a group of threads)
continuously.

The proposed adaptive approach consists of two steps: i)
offline profiling and ii) online mapping and partitioning for
initial applications and adaptation by utilizing the profiled
results.

4.1 Offline Profiling
Fig. 3 provides an overview of the offline profiling. It
assumes that the applications are already installed into the
system, for example in a mobile phone, and thus they can
be profiled. For each available application (App1 to Appm)

…
Tm1 Tmk..

App1

T11 T1k..

Offline Profiling
(to find number of chunks, thread-partitioning,

performance and energy consumption at various

number of used cores and their frequencies)

Appm

Profiled

Data
(Performance,

Energy, NrChunks

& Partitioning

Traces @ Various

nL,nB,fL,fB&fG)

CPU-GPU

SoC

Figure 3. Offline profiling.

and considered CPU-GPU mobile SoC (Samsung Exynos
5422), it provides number of chunks, thread-partitioning, perfor-
mance (1 / execution time) and energy consumption at various
combinations of used big (B), LITTLE (L) and GPU (G)
cores and their operating frequencies. These combinations
representing total design points (TDP) can be computed as
follows:

TDP = {(Nb × Fb) + (NL × FL) + (Nb × Fb ×NL × FL)}×
{1× Fg}

(2)
where, Nb and NL are the number of big and LITTLE cores,
respectively. Fb, FL and Fg are the number of voltage-
frequency levels for big, LITTLE and GPU cluster, respec-
tively. In Equation 2, {(Nb×Fb)+(NL×FL)+(Nb×Fb×NL×
FL)} is the number of design points using big and LITTLE
CPU cores and {1 × Fg} for GPU cores. For GPU cores,
since all the cores are used by the application, the number of
design points depends on the number of available voltage-
frequency levels.

For each Dp (∈ TDP) of an application, the computa-
tions of number of chunks, thread-partitioning, performance (1
/ execution time) and energy consumption are performed as
follows.

Number of chunks: The best number of chunks (NC) is
identified by grouping all the threads of the application
into several equal size chunks such that the used cores
are neither starved nor overfed by enqueuing next chunk
after the completion of the currently executed chunk and
application execution time remains the same as that of
enqueuing all the threads (or chunks) at the beginning.
The starving situation occurs when the cores do not have
enough threads to fully utilize them, i.e. at 100%. The cores
are always fully utilized (100%) in overfed situations and
there are more threads enqueued than can be processed by
fully utilizing the cores. Fig. 4 demonstrates the process of
finding the best number of chunks for SYR2K application
when executed on the Samsung Exynos SoC with varying
number of equal size chunks that contain all the application
threads. The variation in the number of chunks defines the
number of iterations and continues until the execution time
in the current iteration exceeds the previous one. This helps
to avoid unnecessary iterations. The maximum number of
chunks (each contain a set of threads) leading to the same
execution time (ET = 33 seconds) as that of enqueuing all
the threads at the same time is 8 and chosen as the number
of chunks, as highlighted in the figure. Such identification
of the chunks avoids over and under feeding of threads for
the considering design point. In Fig. 4, when the number of
chunks is less than 8, it represents the case of overfeeding

SINGH et al.: COLLABORATIVE ADAPTATION FOR ENERGY-EFFICIENT HETEROGENEOUS MOBILE SOCS 5

SoC 1 chunk
0 512

Chunk-size = 512

ET=33s

SoC 2 chunks
0 512

Chunk-size = 256

ET=33s

SoC 4 chunks
0 512

Chunk-size = 128

256

128 256 384

ET=33s

SoC 8 chunks
0 512

Chunk-size = 64

128 256 384

ET=33s
64

SoC 16 chunks
0 512

Chunk-size = 32

128 256 3846432

ET=38s

SoC 8 chunks
0 512

Chunk-size = 64

128 256 384

ET=33s
64

Figure 4. Finding number of chunks.

as more threads are enqueued than the SoC can process to
achieve the same ET. With 16 chunks, the SoC is underfed,
i.e. starves for the threads as chunk does not contain enough
threads to fully utilize the cores and thus the execution
is extended to 38 seconds. This indicates that 8 chunks
represent the case of just enough feeding to achieve an
execution time of 33 seconds.

This facilitates to achieve the same execution time while
providing opportunity for required adaptation in terms of
partitioning threads within a chunk between the CPU and
GPU. Further, it helps to keep a track of the number of
chunks or threads completed and remained for execution.
To avoid memory inconsistency issues between work-items,
each chunk contains many work-groups (a group of work-
items) and thus the chunk-size CS in Fig. 4 represents the
number of work-groups.

Thread-partitioning: To achieve minimum execution
time for each design point Dp (∈ TDP), the partitioning
can be performed by having collaboration between CPU
and GPU, which can be based on their individual pro-
cessing capacities, and measured as the inverse of time
taken to complete execution of all the work-groups on the
CPU-only and GPU-only, respectively. Let WG be the total
number of work-groups in the application, ETCPUODp

and
ETGPUODp

are the execution times for CPU-only and GPU-
only executions, respectively. Then, the portion KDp of the
work-groups that should be executed on the CPU can be
computed by assuming the completion on both CPU and
GPU at the same time [7], [15], i.e.:

KDp
× ETCPUODp

= (WG−KDp
)× ETGPUODp

i.e.,KDp =
WG

1 +
ETCPUODp

ETGPUODp

(3)

To facilitate adaptations, enqueuing of work-groups
takes place at chunk level and thus the thread-partitioning
between CPU and GPU for a chunk needs to be defined.
Since each chunk contains the same number of work-
groups, the portion of the chunk CKDp

to be executed on
the CPU can be computed as:

CKDp
=
KDp

NC
(4)

Thus, the portion on the GPU would be = CS − KDp

NC .
For the identified number of chunks of application SYR2K
(demonstrated in Fig. 4) as 8, Fig. 5 provides example
demonstration of thread-partitioning. Each chunk contain-
ing a total of 64 work-groups is partitioned between the

0

Chunk-size = 64

8 chunksSoC

CPU (32)

GPU (32)

512128 256 3846432

 32 work-groups on CPU
32 work-groups on GP U

1 2 3 4 5 6 7 8

Figure 5. Thread-partitioning of chunks.

CPU and GPU equally, i.e. both CPU and GPU are enqueued
with 32 work-groups for each chuck.

Performance (1 / execution time): The execution time by
enqueuing the work-groups based on the identified number
of chunks as earlier and by enqueuing all the work-groups
as one chunk is the same as demonstrated in Fig. 4. There-
fore, to maintain simplicity, we have computed it based on
one chunk. To take contentions between CPU and GPU into
account, it is computed as follows:

ETDp = max{KDp × ETCPUODp
, (WG−KDp)× ETGPUODp

}
(5)

This indicates that ETDp
is governed by the device taking

longer time to complete the execution of assigned work-
groups.

Energy consumption: Application energy consumption for
Dp, i.e. ECDp , is computed by following Equation 1.

Similarly, computations (NC , CKDp
, ETDp

, and ECDp
)

are performed for other design points (∈ TDP) for each
application. This results in generation of the profiling data.
Considering all the used terms, each design point Dp of an
application is represented and stored as an 11-tuple:
Dp = (Prf,ECCPU , ECGPU , ECMEM , NC,CK, nb, fb,
nL, fL, fg)

where, Prf is performance, ECCPU , ECGPU and
ECMEM are energy consumptions of CPU, GPU and mem-
ory, respectively, NC is the number of chunks, CK is the
chunk portion on CPU, nb and nL are the number of used
big and LITTLE cores, respectively, and fb, fL and fg are
frequencies of big, LITTLE and GPU cores, respectively.
Since the number of design points can be huge, they are
distilled using the techniques of [15] so that only efficient
points are stored and storage overhead is reduced. Towards
this, if execution time and energy consumption of a point
using higher number of cores are the same or smaller than
that of a point using lower number of cores, then the former
point is discarded. All the design points for each application
(App1 to Appm) are stored in descending order of Prf and
shown as Profiled Data (Performance, Energy, NrChunks &
Partitioning Traces @ various nL, nb, fL, fb & fG) in the stor-
age database of Fig. 3. For further illustration, Table 2 shows
some real samples of the stored profiling results for SYR2K
application. When a core type is not used, e.g. nb equals
to 0, the corresponding frequency is denoted as X. Storing
the profiling results sorted by Prf leads to low complexity
search of points meeting a certain level of performance. The
offline profiling and storing can be avoided by employing
the best effort or online learning heuristics [10], [11], [38]
to find a design point at an adaptation instance, but online
complexity will increase and achieved results might not be
efficient.

SINGH et al.: COLLABORATIVE ADAPTATION FOR ENERGY-EFFICIENT HETEROGENEOUS MOBILE SOCS 6

Table 2
Profiling results for SYR2K

Prf(1/seconds) ECCPU (J) ECGPU (J) ECMEM (J) NC CK(work-groups) nb fb(MHz) nL fL(MHz) fg(MHz)
0.056 85.742 5.266 3.340 8 32 4 2000 4 1400 177
0.054 86.642 5.462 3.324 8 32 3 2000 2 800 177
0.050 95.093 5.142 3.558 8 32 4 2000 3 1400 177

...
...

...
...

...
...

...
...

...
...

...
0.007 11.809 43.915 8.770 256 32 0 X 1 800 600

B;&&*+1-;+4-

 </,;4C

.;/3*3*0+*+1-2B .@-

(0/-D0+67//,+3-

E5,673*0+

Initial

Applications

Performance

requirements

D.FCG.F-

H0D

Application

addition and/or

completion

No

Profiled

Data

Execute with

MTP

Yes

 /*11,/-%4;&3;3*0+

Figure 6. Adaptive mapping and thread-partitioning.

4.2 Online Adaptation

Fig. 6 provides an overview of the online (run-time) map-
ping and thread-partitioning with adaptation (remapping
and thread-repartitioning) while utilizing the profiling data.
First, it performs mapping and thread-partitioning of appli-
cations that arrived at time t = 0, i.e. initial applications that
a user can start with. The adaptation process triggers at an
application addition and/or completion. It could lead to a
new mapping and thread-partitioning (MTP), computed by
remapping and thread-repartitioning, of executing applica-
tions if beneficial in terms of energy, otherwise execution
is continued with earlier MTP. The detailed steps are pre-
sented in Algorithm 1, where mapping/thread-partitioning
of initial (line 1) and newly added applications (line 9) and
adaptation (lines 16 and 31) is performed as follows.

4.2.1 Mapping and Partitioning for Initial Applications

The mapping of applications’ threads to cores and thread-
partitioning (MTP) is identified by taking the performance
requirements and the design points (profiled data sample
shown in Table 2) generated in the previous step into ac-
count, as shown in Fig. 6. As mentioned earlier, the mapping
is defined as the number of used cores, their types (e.g., big,
LITTLE) and operating frequencies, i.e. nb, fb, nL, fL and
fg , whereas thread-partitioning defines portion of work-
groups (CK) of each chunk (∈ NC) to be executed on CPU.
To identify the MTP, each initial application’s stretched
execution due to co-scheduling needs to be considered.
First, performance requirement satisfying points is chosen
for each application from its storage design space, e.g., from
Table 2 for SYR2K application. Then, for each combination
of design points, CDP , formed by considering one point
from each initial application such that the total number
of used CPU cores is less than or equal to the number of
available CPU cores and individual frequencies of used big,
LITLLE and GPU cores are the same, each application’s
stretched execution time SET due to co-scheduling, new
partitioned workload (work-groups) K ′, total energy con-
sumption (ECK′

) and execution time (ETK′
) are computed

as follows.

SET: Since spatially isolated CPU cores are chosen for
each application, the execution time on the CPU side re-
mains almost the same. However, on the GPU side, it is
stretched by the time taken to complete earlier enqueued ap-
plication threads as existing embedded GPU driver doesn’t
support spatial and time-multiplexed execution of applica-
tions. Considering i initial applications, App1 to Appi, are
enqueued sequentially, the stretched execution time of Appi
on the GPU cores is computed as follows [15].

SETAppi =

Appi∑
a=App1

ETGPUa (6)

where,

ETGPUa
= ETCPUa

=
1

PrfaDp

(7)

It indicates that balanced execution was performed be-
tween CPU and GPU during offline profiling through col-
laboration.

K’: To balance the execution between CPU and GPU
cores while considering SET , K ′ is computed by having
collaboration between CPU and GPU, which takes their
processing capabilities into account, as follows [15].

K ′ × ETCPUowg
= (WG−K ′)× ETGPUowg

i.e.,K ′ =
WG

1 +
ETCPUowg

ETGPUowg

(8)

where, ETCPUowg
and ETGPUowg

are the time required to
process one work group (owg) on the CPU and GPU cores,
respectively, and can be computed as follows.

ETCPUowg
=
ETCPUAppi

K

ETGPUowg
=
SETAppi

WG−K

(9)

ETCPUAppi
can be computed by Equation 7 as CPU side

execution is not stretched.
As mentioned earlier, since enqueuing is performed at

chunk level to enable adaptations, the portion of each chunk
to be executed on the CPU is computed as:

CK ′ =
K ′

NC
(10)

ECK′
is computed as:

ECK′
= K ′×ECCPU

K
+(WG−K ′)× ECGPU

WG−K
+ECMEM

(11)
where, ECCPU , ECGPU and ECMEM are obtained from
the chosen design point of the application.

SINGH et al.: COLLABORATIVE ADAPTATION FOR ENERGY-EFFICIENT HETEROGENEOUS MOBILE SOCS 7

Algorithm 1: Run-time Mapping/Thread-
partitioning and Adaptation
1 Map/Partition Initial Applications (Section 4.2.1) ;
2 while 1 do
3 if any executing application(s) have completed then
4 Adapt1 = true; Update SoC resources;
5 end
6 if any application(s) A arrived (need to be added) then
7 A.Adapt2 = true; Put applications(s) in AppQueue;
8 end
9 if AppQueue.size() > 0 then

10 for each application a ∈ AppQueue do
11 Find required cores, M and K of a;
12 if required cores <= available cores then

// Perform Allocation
13 Execute a based on M and K ;
14 Update SoC resources;
15 end
16 else if a.Adapt2 == true then
17 for each executing application ea do
18 while ea is over-performing do
19 Consider releasing one core of ea

and update its M ′′ and K′′ ;
20 if released cores ==

required cores then
21 Execute a based on M and K;
22 Update SoC resources;
23 break;
24 end
25 end
26 end
27 a.Adapt2 = false;
28 end
29 end
30 end
31 if Adapt1 == true then // Try Adaptation
32 for each executing application ea do
33 Find RC, RT and REC;
34 Find M ′′′ and K′′′ based on fair sharing of

resources with other executing applications
and REC′/REC;

35 For M ′′′ and K′′′, estimate RT ′;
36 if

RT ′+Mo t < RT && REC′+Mo e < REC
then

37 Execute ea by following M ′′′ and K′′′;
38 Update SoC resources;
39 end
40 end
41 Adapt1 = false;
42 end
43 end

ETK′
is computed as:

ETK′
= max{K ′×ETCPUowg

, (WG−K ′)×ETGPUowg
}+µ
(12)

where, µ is memory contention overhead due to concurrent
execution.

After performing above computations, total energy con-
sumption for all the concurrent applications is computed by
adding individual application’s energy consumption. Then,
these computations are repeated for all the combination of
design points. Finally, the combination point having mini-
mum energy consumption and satisfying the performance
requirement of each application is chosen. For the chosen
point of each application, the number of used cores, their

types and operating frequencies are returned as the thread-
to-core mapping and CK ′ as the chunk partition to start
the execution of initial applications by using sched setaffinity
interface in the Linux scheduler while enqueuing applica-
tions’ chunks continuously. In addition to energy efficiency,
choosing such a point also results in performance im-
provement of the applications (shown in Section 5.2.2), i.e.
Prf(1/Execution T ime) is greater than the performance
requirement.

As a demonstration, for starting the execution of initial
applications SYR2K and SYRK based on the chosen design
points as in Fig. 1 (4 Big and GPU cores for SYR2K, and
4 LITTLE and GPU cores for SYRK), NC for both SYR2K
and SYRK is 8 (demonstrated in Fig. 4), and CK is 32 (Fig.
5) and 16 respectively. Due to their co-scheduling, SET of
SYRK is 71 (33+38 based on Equation 6). This results in
K ′ of 384 and thus CK ′ of 48, which is the number of
work-groups of each chunk to be enqueued and executed
on CPU cores for SYRK. However, since SYR2K occupies
the GPU first, its partitioning remains the same as earlier.
Without any adaptation, the overall energy consumption is
85J and execution time of SYR2K and SYRK is 33s and 50s,
respectively, as shown in Fig. 1.

4.2.2 Run-time Adaptation
For adaptation, Algorithm 1 checks for the following two
events: i) any application(s) has completed execution (line
3) to set Adapt1 flag as true and update cores availabil-
ity/unavailability (line 4) to maintain accurate status of
resources, ii) any application(s) needs to be added (line 6)
to put application in AppQueue (line 7). Therefore, there are
two possible instances of adaptation in the following order:
i) at application addition (arrival) and it needs more cores
than available ones (line 16) and ii) at application comple-
tion (line 31). The adaptation process at application addition
(line 16) is carried out first so that arrived applications can
be started as soon as possible for a better user experience.
The adaptation at application completion (line 31) is per-
formed to further explore the energy saving opportunities
for executing applications. Details of adaptation steps are as
follows.

Adaptation at application addition (arrival)
For each queued job (line 10), first allocation is tried on the
available cores so that unnecessary adaptations are avoided
(line 12). Therefore, if there are enough available cores
to satisfy the requirements, the execution is continued by
selecting the cores and their frequency (M) and thread-
partitioning (K) leading to minimum energy consumption
while following the profiled data (line 13) and SoC resources
are updated. Otherwise, adaptation of executing applica-
tions is tried (line 17) to allocate the queued application(s).
However, it is tried only when queued application is just
added so that overheads of trying for unnecessary multiple
adaptations for the same application can be avoided. To
perform adaptation, performance of each executing appli-
cation is checked to find if it is over-performing (line 18),
i.e. its Prf (1/ET) is greater than the performance require-
ment. If so, one of its core is released while updating the
mapping M ′′ and partitioning K ′′ (line 19). M ′′ contains
one core less compared to earlier mapping, but at the same

SINGH et al.: COLLABORATIVE ADAPTATION FOR ENERGY-EFFICIENT HETEROGENEOUS MOBILE SOCS 8

frequencies. Based on M ′′ (defines used cores, their types
and frequencies), CK is chosen from the profiling data as
K ′′. The same process continues while the executing ap-
plication over-performs and sufficient cores to support the
arrived application are released (line 20). Then, the arrived
application is executed on the required number of cores by
following M and K from the profiled data while ensuring
that the cores will have the same frequency as in M ′′ in case
they are used by an executing application. Thereafter, the
SoC resources are updated. In case sufficient cores cannot be
made available, the arrived application resides in the queue
and allocated on the freed cores (as available cores) by the
executing applications.

Adaptation at application completion

At application completion, the freed cores are tried to be
exploited by executing applications. For each application
(line 32), the following parameters are computed.
Remaining chunks (RC): Each executing application writes
the number of RC as (NC − NrProcessesChunks) to a
shared memory location. Therefore, NC is read from the
respective shared location.
Remaining time (RT):

RT =
RC

ATOC
(13)

where, ATOC is the average time to process one chunk
and is computed as inverse of number of processed chunks
divided by processing time.
Energy consumption to process RC (REC):

REC = RC × ECoc (14)

where, ECoc is average energy consumption to process
one chunk (oc) based on current mapping and partitioning,
and can be computed by observing energy consumption of
earlier processed chunks.
Mapping (M ′′′) and thread-partitioning (K ′′′): M ′′′ determines
the number of used cores such that other executing applica-
tions also get the same number of cores from the freed pool
to enable adaptation opportunity for each application. In
case not enough cores are available for equal share, energy
gain (REC ′/REC) of each application due to adaptation
to a higher core number is computed and the applications
achieving higher energy gains are given the freed cores.
M ′′′ may also include frequency of used cores such that
REC ′/REC is maximized while considering an appropri-
ate collaborative partitioning K ′′′ computed as follows (like
Equation 8).

K ′′′ =
RC

1 +
ETCPUoc

ETGPUoc

(15)

where, ETCPUoc
and ETGPUoc

are the executions time to
process one chunk (oc) on CPU and GPU, respectively, and
can be computed as in Equation 9.
Remaining energy consumption (REC ′): Based on M ′′′ and
K ′′′, it can be computed as in Equation 11.
New Remained Time (RT ′): can be computed as:

RT ′ =
RC

ATOC ′
(16)

where,ATOC ′ is the average time to process one chunk and
can be chosen from the profiled data based on M ′′′ and K ′′′.

After above computations, it is checked if adaptation is
beneficial or not while taking the migration overhead in
terms of time (Mo t) and energy (Mo e) into account. The
migration overheads for all the possible migrations, e.g.
migrating from two to four cores, are computed offline to
keep a low run-time overhead. If adaptation is beneficial
(line 36), the application is executed by following M ′′′ and
K ′′′. Otherwise, it is continued with earlier mapping and
partitioning. It can be noticed that mapping and partitioning
is always achieved by having collaboration between CPU
and GPU processing capabilities. Further, our approach is
generic, but one-time profiling is required when the appli-
cation or platform changes. This implies that when a new
application is installed on a new mobile device, one-time
profiling is desired.

5 EXPERIMENTAL RESULTS

5.1 Experimental Set-up
5.1.1 Heterogeneous CPU-GPU Mobile SoC Hardware
In modern CPU-GPU mobile SoCs, usually, cores of the
same type are situated within a cluster and their number
could vary, e.g., big (B), LITTLE (L) and GPU (G) cores
shown in Fig. 1. In particular, we consider the Samsung
Exynos 5422 SoC [1], which is present on the Odroid-XU3
board [16]. The SoC is based on ARM’s big.LITTLE tech-
nology [39] and contains three clusters: one with four ARM
Cortex-A15 (big) CPU cores, one with four ARM Cortex-
A7 (LITTLE) CPU cores and another with six ARM Mali-
T628 GPU shader cores. The SoC provides DVFS per cluster,
where the big cluster can operate from 200 MHz to 2000
MHz and the LITTLE cluster between 200 MHz and 1400
MHz, with a step-size of 100 MHz. The GPU cluster can
operate at 177 MHz, 266 MHz, 350 MHz, 420 MHz, 480
MHz, 543 MHz and 600 MHz. It should be noted that, with
variation in frequency, the firmware automatically adjusts
the voltage based on preset pairs of voltage-frequency val-
ues.

5.1.2 Software for CPU-GPU Mobile SoC
Operating System
We used Ubuntu 14.04 LTS that enables use of all the CPU
cores (big and LITTLE) simultaneously by Heterogeneous
Multi-Processing (HMP). Additionally, it supports DVFS by
editing relevant virtual files of devices in the sysfs directory,
and core disabling of CPU cores to use selective big and/or
LITTLE cores for an application.

OpenCL and FreeOCL
To exploit heterogeneous multi-core architectures contain-
ing cores of two different ISAs such as CPU and GPU, data-
parallel applications are potential candidates and they can
be developed using the open standard of Open Computing
Language (OpenCL) [2] [40], [41]. It also supports exploita-
tion of multiple devices, e.g., CPU and GPU, by a single
program. In OpenCL context, a computing system consists
of many devices attached to a host (controller) processor that
is usually a CPU. The threads (computations) are referred

SINGH et al.: COLLABORATIVE ADAPTATION FOR ENERGY-EFFICIENT HETEROGENEOUS MOBILE SOCS 9

to as kernels, where a kernel instance is called as work-
item that operates on a single data point. A group of work-
items form a work-group. The OpenCL memory model
does not demand memory consistency among work-groups,
therefore, they can be launched on different devices (e.g.,
CPU and GPU). In additional to data-parallel applications,
other application models, e.g., data-flow graphs [42] can also
be considered, but they need to be translated to OpenCL to
exploit both CPU and GPU.

FreeOCL [27] is an open-source runtime library that
provides OpenCL support for the ARM CPU cores. Such
support is typically not available in current mobile SoCs
as OpenCL runtime software is supplied only for the Mali
GPU to promote its usage for general purpose computing
or acceleration. It enabled ARM CPU to act as both host
processor and an OpenCL device, and thus, both CPU and
GPU cores can be concurrently exploited for executing an
application.

OpenCL Applications
We used the GPU version of the popular Polybench bench-
mark suite [17], which contains several data-parallel appli-
cations from various application domains. Specifically, we
considered the following.

• Data mining applications: CORRELATION (CR) and
COVARIANCE (CV).

• Linear algebra kernels: 2 matrix multiplications (2M)
and Matrix vector multiplication (MV).

• Basic linear algebra subprograms (BLAS) Routines:
Generalized matrix multiply (GE), Symmetric rank k
(SR) and Symmetric rank 2k (S2).

• Deep learning application: two-dimensional convo-
lution (2D).

The applications CR, CV, 2M, MV, GE, SR, S2 and 2D
have 2048, 2048, 128, 4096, 512, 512, 512 and 2048 work-
groups, respectively. They form a diverse set of represen-
tative applications, containing varying number of kernels
and have varying execution times. The application codes are
slightly modified to launch them only on CPU cores, only
on GPU cores, or on both CPU and GPU cores.

C/C++ Mobile benchmarks
To diversify evaluations, we also considered mobile bench-
marks, specifically FFmpeg (FF) that is used for video/audio
processing [43] and VideoLAN Client (VLC) that is a cross-
platform media player and streaming media server [44].
Most part of the code for these applications is implemented
in C/C++. These applications use only CPU cores. However,
they can use GPU cores with required translation to an
embedded GPU programming language such as OpenCL.

Each application has a randomly assigned performance
requirement that represents required completion time of the
application. For frame based application like audio/video
processing, the timing requirement can be translated to
throughput requirement, where throughput is expressed as
a frame rate to guarantee a good user experience. Similarly,
it can also be translated to instructions per second (IPS)
requirement considering the total number of instructions in
an application is known.

The applications are considered in various random
mixes to make a representative set of concurrent applica-
tions and any of them can be added to the SoC at run-
time. Such scenarios can be observed in a mobile phone
where user tries to run more applications at the same time,
e.g., internet browser and mp3 player, and jpeg decoding at
the next moment. The contention overhead (µ in Equation
12) due to concurrent execution is computed as deviation
in applications’ performance when run individually and
concurrently, is experimentally found to be 3.8% in the
worst-case.

5.2 Comparison Results

The comparison candidates based on their closeness to our
approach are:

1) CPU or GPU for Mapping [8] (CoGM): The device
taking lower time is chosen for mapping an appli-
cation. A comparison with it shows the potential
of jointly using both the CPU and GPU. Since it
might end up mapping all the applications on one
device, to make a fair comparison, the applications
are distributed between CPU and GPU to achieve
lower overall execution time.

2) CPU for Mapping and Adaptation [31] (CMA): Big
and LITTLE CPU cores are used for mapping and
adaptation (remapping). To make a fair comparison,
adaptation happens only at application completion
and arrival.

3) Individual Application based Mapping and Partitioning
[7] (IAMP): It follows the same mapping and par-
titioning that is achieved by considering individual
applications.

4) Concurrent Application based Mapping and Partitioning
[15] (CAMP): The mapping and partitioning is per-
formed for initial concurrent applications based on
stretching on GPU (Section 4.2.1).

None of these approaches consider adaptation by using both
CPU and GPU cores, unlike our collaborative adaptation
approach, which has been referred to as adaptive mapping
and thread-partitioning (AdaptMTP). For each approach, the
runtime management thread is pinned to one of the big
(Cortex-A15) cores. Further, the offline profiling information
is made available to all the approaches for a fair comparison.

5.2.1 Energy consumption

Energy consumption is computed by measuring the power
consumption from on-board power sensors of Odroid-XU3
every 100ms. A power measurement circuitry present in the
SoC estimates the power as: voltage × current, where four
real time current/voltage sensors are used for four power
domains: big, LITTLE, GPU and DRAM. This allows us to
compute energy consumption of all the software compo-
nents, e.g., adaptive algorithm, profiled data, OS, drivers,
applications, etc., running in the SoC.

The energy consumption benefits due to adaptation is
evaluated for several run-time scenarios under the follow-
ing two cases.

SINGH et al.: COLLABORATIVE ADAPTATION FOR ENERGY-EFFICIENT HETEROGENEOUS MOBILE SOCS 10

C
V

G
E

M
V S
2

S
2

-C
R

2
D

-G
E

V
L-

C
R

F
F

-S
2

S
R

-S
2

-C
R

S
R

-S
2

-C
V

G
E

-2
M

-2
D

C
R

-F
F

-V
L

1

10

100

1000
E

n
e

rg
y
 c

o
n

su
m

p
ti

o
n

 (
J)

CoGM CMA IAMP CAMP AdaptMTP

(a) (b)

Run-time application scenario

(c)

Figure 7. Energy consumption by various approaches for different run-
time scenarios: (a) single, (b) two and (c) three concurrent applications,
without runtime application addition.

Without application addition
This evaluation shows energy saving benefits of our
AdaptMTP approach when adaptation happens only for
initial application(s), i.e., no application is added during
the execution of initial applications. Fig. 7 provides the
energy consumption results when various approaches are
employed for different run-time scenarios: (a) single, (b) two
and (c) three initial concurrent applications. For two and
three concurrent application scenarios in (b) and (c), respec-
tively, it can be observed that our approach achieves lower
energy consumption compared to existing approaches. This
is due to beneficial adaptations at an application completion,
where freed cores are allocated to the currently running
application, if beneficial. However, for single application
scenarios in (a), energy consumption is not reduced by
AdaptMTP over IAMP and CAMP as there is no oppor-
tunity of adaptation. Since IAMP, CAMP and AdaptMTP
achieve the same mapping and partitioning for each appli-
cation, the overall energy consumption remains the same.
Further, AdaptMTP leads to similar results as that of IAMP
and CAMP when there is no opportunity of adaptation due
to completion of applications around the same time, e.g.,
in scenario CR-FF-VL. It can also be observed that energy
consumption is higher when running higher number of
applications. Our approach also satisfies the performance
requirement of each application in all the considered scenar-
ios in Fig. 7. However, performance requirements are not
satisfied by existing approaches in some cases and bar is
made absent for them, e.g., in run-time scenario GE-2M-2D
when CMA is employed.

With application addition
This evaluation shows energy saving benefits of adaptation
for both initial and newly added application(s) at different
moments of time. Fig. 9 provides energy consumption re-
sults when various approaches are employed for different
run-time scenarios. The execution starts with the initial ap-
plications as in Fig. 7 and a random number of applications
between one (+X) to three (+X*3) are added at different
moments of time during the execution of initial applica-
tions. The added applications are amongst those mentioned
in Section 5.1.2. A couple of observations can be made
from Fig. 9. First, AdaptMTP outperforms all the existing
approaches for all the run-time scenarios. As compared to

0

50

100

150

200

250

E
n

e
rg

y
 c

o
n

su
m

p
ti

o
n

 (
J)

Performance requirement

CoGM CMA IAMP CAMP AdaptMTP

xxxx xxxxx

Figure 8. Energy consumption at varying performance constraints

Fig. 7, the energy savings by AdaptMTP are more significant
as adaptation opportunities are exploited for more number
of applications. Second, for some scenarios (marked by red
X), the additional application cannot be allocated either
due to unavailability of resources or performance satisfying
mapping and partitioning is not found. Further, perfor-
mance requirements are not satisfied by existing approaches
in some cases and bar is made absent for them, e.g., for 2D-
GE+X*2 scenario when CMA is employed. In such cases,
the additional application is placed in the application queue
for later execution when resources become available. These
scenarios typically arise due to a higher number of initial
concurrent applications, e.g. Fig. 7 (c), where resources are
fully occupied by the applications while satisfying their
performance requirements. This also indicates that a large
number of applications cannot be executed concurrently
without violating the performance requirements due to
limited SoC resources.

On an average for the above two cases (Fig. 7 and Fig. 9),
AdaptMTP achieves energy savings of 37% when compared
to the most promising existing approach CAMP.

Effect of Varying Performance Constraints
We also analysed the effect of varying performance
constraints on energy consumption when employing
AdaptMTP and existing approaches. Figure 8 shows energy
consumption results when performance constraints of con-
current applications SR, S2 and CR are varied from 0.001
to 0.0145. With a higher value of performance constraint,
e.g., 0.0145, all the approaches fail to satisfy the constraint
(xxxx in Figure 8), but AdaptMTP satisfies the constraint.
However, with further increase in the value of the per-
formance constraint, e.g., 0.0174 and beyond, none of the
approaches satisfy the constraint. It can also be observed
that AdaptMTP always provides energy savings over exist-
ing approaches, i.e., it has lower energy consumption. This
indicates that AdaptMTP outperforms existing approaches
for any chosen performance constraint.

5.2.2 Performance
Adaptation also leads to performance (1 / execution time)
improvement over existing approaches as demonstrated
earlier in Fig. 1 and Fig. 2. Fig. 10 shows normalized aver-
age performance improvement of AdaptMTP over existing
approaches when applied to various run-time scenarios.
AdaptMTP achieves better performance by performing ben-
eficial adaptations. The achieved performance values are

SINGH et al.: COLLABORATIVE ADAPTATION FOR ENERGY-EFFICIENT HETEROGENEOUS MOBILE SOCS 11

C
V

 +
 X

*
2

G
E

 +
 X

*
2

M
V

 +
 X

*
2

S
2

 +
 X

*
3

S
2

-C
R

 +
 X

2
D

-G
E

 +
 X

*
2

V
L-

C
R

 +
 X

F
F

-S
2

 +
 X

S
R

-S
2

-C
R

 +
 X

S
R

-S
2

-C
V

 +
 X

G
E

-2
M

-2
D

 +
 X

C
R

-F
F

-V
L

+
 X

1

10

100

1000
E

n
e

rg
y
 c

o
n

su
m

p
ti

o
n

 (
J)

CoGM CMA IAMP CAMP AdaptMTP

(a) (b)

Run-time application scenario

(c)

x x x

Figure 9. Energy consumption by various approaches for different run-
time scenarios: (a) single, (b) two, and (c) three initial concurrent ap-
plications, and random number (X) of applications added at different
moments of time in each scenario.

S
2

-C
R

2
D

-G
E

S
R

-S
2

-C
R

S
R

-S
2

-C
V

G
E

-2
M

-2
D

2
M

-M
V

-2
D

G
E

-M
V

-2
D

C
V

 +
 X

*
3

G
E

 +
 X

*
2

M
V

 +
 X

*
2

S
2

 +
 X

*
3

S
2

-C
R

 +
 X

2
D

-G
E

 +
 X

*
2

G
E

-M
V

-2
D

 +
 X

0

0.2

0.4

0.6

0.8

1

1.2

Application scenario

N
o

rm
a

li
ze

d
 a

v
e

ra
g

e
 p

e
rf

o
rm

a
n

ce

im
p

ro
v

e
m

e
n

t

CoGM CMA IAMP CAMP AdaptMTP

Figure 10. Performance improvement in different run-time scenarios.

normalized with respect to (w.r.t.) the AdaptMTP approach.
A better performance by AdaptMTP also helps to achieve
low energy consumption, which is computed as the prod-
uct of average power consumption and execution time.
However, in some scenarios, lower energy consumption
is achieved by performing execution at lower frequencies,
leading to low average power consumption.

5.3 Offline Profiling

The profiling time for each application depends on the total
number of design points (TDP) to be evaluated. TDP can
be computed by Equation 2 provided Nb, NL, Fb, FL and
Fg are known. For the considered mobile SoC, Nb, NL, Fb,
FL and Fg are 4, 4, 19, 13 and 7, respectively. Therefore,
TDP = {4×19 + 4×13 + 4×19×4×13} × 7 = 28560. For each
design point of an application, the profiling consists of find-
ing the best number of chunks (NC), thread-partitioning
(CK), performance (Prf) and energy consumption (EC) as
described in Section 4.1. The time to find the NC depends
upon the number of iterations taken and execution time of
the application in each iteration, as explained in Section 4.1.
The value of CK for NC is computed by equation 4 in the
order of µs. When the application completes execution with
the identified NC and CK, Prf is computed as the inverse
of execution time (ET) and EC by Equation 1, in the order

of µs. Out of all these times, time to find the NC dominates
as whole application execution needs to be completed in
each iteration. Since the number of design points are huge
(28560) and such computations have to be performed for
each design point of each application, we considered step-
size of frequency as 200MHz instead of 100MHz, i.e. values
of Fb and FL as 10 and 7, respectively, which resulted in
only 8316 total design points (computed by Equation 2). This
includes usage of only CPU, only GPU and both CPU and
GPU. For all the applications, whole profiling took around
90 hours. Since it is one time process and its usage leads
to energy savings and performance improvement as shown
earlier, it is suitable to employ.

The profiled data (design points) for each application is
stored for using at run-time, as shown in Table 2 for SYR2K.
As described in Section 4.1, only the efficient design points
are stored by discarding the points using higher number of
cores and leading to lower performance and higher energy
consumption as compared to a design point using lower
number of cores. The storage overhead for each application
is 11.5 kB, which is quite low and thus suitable for a mobile
SoC. Further, the energy required to store the profiled data
is included in the energy consumption evaluation in Section
5.2 as it includes energy consumption of the memory. This
indicates it is worth investing in such small overheads to
achieve energy efficiency.

In case the architecture is large, the number of design
points and their storage overhead might become huge. In
such cases, regression model can be derived by using some
of the design points and rest can be achieved by using the
model [10], [11]. The storage overhead to store the model
will be low, but results will not be as accurate as that of
storing the design points.

5.4 Online Overheads
5.4.1 Initial applications mapping and thread-partitioning
The run-time overhead for mapping and thread-partitioning
of initial applications depends on the number of CDP
considered for the concurrent initial applications and time
taken to perform various computations (e.g., SET , K ′,
CK ′, ECK′

and ETK′
) for each application. These compu-

tations are done in the order of µs. The number of CDP
depends on the number of applications nAa, number of
big and LITTLE cores (Nb and NL) and frequency levels
of big, LITTLE and GPU cores (Fb, FL and Fg). Therefore,
overall complexity isO(nAp.Nb.NL.Fb.FL.Fg). The average
timing overhead over various run-time scenarios appears to
be approximately 20 ms, which is quite small. The average
energy overhead computed as the product of average power
consumption of the core executing AdaptMTP to find the
mapping/thread-partitioning and timing overhead is 13mJ
(0.65×20), which is significantly low compared to the aver-
age overall energy consumption of around 178J, shown in
Fig. 7 and 9.

5.4.2 Adaptation
Fig. 11 shows overall adaptation overhead (%) in terms of
timing and energy for various run-time scenarios w.r.t. total
execution time and energy consumption, respectively. The
average total execution time and energy consumption for

SINGH et al.: COLLABORATIVE ADAPTATION FOR ENERGY-EFFICIENT HETEROGENEOUS MOBILE SOCS 12

0
0.0002
0.0004
0.0006
0.0008
0.001
0.0012

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

S
2

-C
R

2
D

-G
E

S
R

-S
2

-C
R

S
R

-S
2

-C
V

G
E

-2
M

-2
D

2
M

-M
V

-2
D

G
E

-M
V

-2
D

C
V

 +
 X

*
3

G
E

 +
 X

*
2

M
V

 +
 X

*
2

S
2

 +
 X

*
3

S
2

-C
R

 +
 X

2
D

-G
E

 +
 X

*
2

G
E

-M
V

-2
D

 +
 X

%
 E

n
e

rg
y
 o

v
e

rh
e

a
d

 (
w

.r
.t

.
to

ta
l

e
n

e
rg

y
 c

o
n

su
m

p
ti

o
n

)

%
 T

im
in

g
 o

v
e

rh
e

a
d

 (
w

.r
.t

.
to

ta
l

e
xe

cu
ti

o
n

 t
im

e
)

Application scenario

Timing overhead Energy overhead

Figure 11. Adaptation overhead for different run-time scenarios.

various scenarios are 160 seconds and 178J, respectively. The
absolute average timing and energy overhead of adapta-
tions are 1.2 seconds and 0.001J, respectively, where each
adaptation is performed in the order of milliseconds. The
overhead depends mainly on the number of adaptations
(nAd) performed over the whole execution and time and
energy taken by each adaptation. Further, for each adapta-
tion, sched setaffinity interface of Linux changes the threads
to cores affinity based on the identified mapping. The over-
head associated with changing the core affinity varies with
number of used cores and their operating frequencies, but it
is quite small [45]. Considering these factors, the worst-case
complexity for adaptation is O(nAd.Nb.NL.Fb.FL.Fg). This
indicates that adaptation complexity increases when the
platform has more core types and frequency points (levels).
However, since the number of adaptations is minimized
while having reduced adaptation overheads facilitated by
offline profiling information, the approach is scalable to
higher size platforms containing more core types and fre-
quency levels. For the considered scenarios and platform
in Fig. 11, the average timing and energy overhead of
adaptations is 0.75% and 0.00059% w.r.t. total execution time
and energy consumption, respectively. These overheads are
very minimal and thus proposed approach can be efficiently
applied to achieve energy savings.

6 CONCLUSIONS

We proposed a run-time management approach that per-
forms energy-efficient mapping and thread-partitioning of
initial and newly added performance constrained applica-
tions and adaptation when any application(s) completes
execution and/or there is no available resource at an ap-
plication arrival. The mapping and partitioning is always
identified through collaboration between CPU and GPU
cores, and exploitation of profiling results. The adaptation
process recomputes the mapping and partitioning, and is
applied when beneficial in terms of energy consumption.
Comparative evaluations on real hardware platform show-
ing energy savings by the proposed adaptive approach over
existing approaches indicate that it can be used to develop
future energy-efficient embedded systems with CPU-GPU
mobile SoCs.

ACKNOWLEDGMENT

This work was supported in part by the Engineering and
Physical Sciences Research Council under EPSRC Grant
EP/L000563/1 and EP/K034448/1 the PRiME Programme
Grant (www.prime-project.org). Experimental data used in
this paper can be found at DOI: 10.5258/SOTON/D1077

REFERENCES

[1] (2016) Exynos 5 Octa (5422). www.samsung.com/exynos/.
[2] (2016) The open standard for parallel programming of heteroge-

neous systems. https://goo.gl/A9wXRJ.
[3] P. Greenhalgh, “Big. little processing with arm cortex-a15 & cortex-

a7,” ARM White paper, pp. 1–8, 2011.
[4] D. Grewe and M. F. O’Boyle, “A static task partitioning approach

for heterogeneous systems using OpenCL,” in International Confer-
ence on Compiler Construction. Springer, 2011, pp. 286–305.

[5] D. Grewe, Z. Wang, and M. F. O’Boyle, “OpenCL task partitioning
in the presence of GPU contention,” in International Workshop on
Languages and Compilers for Parallel Computing. Springer, 2013,
pp. 87–101.

[6] C.-K. Luk, S. Hong, and H. Kim, “Qilin: exploiting parallelism
on heterogeneous multiprocessors with adaptive mapping,” in
Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2009, pp. 45–55.

[7] A. Prakash, S. Wang, A. E. Irimiea, and T. Mitra, “Energy-efficient
execution of data-parallel applications on heterogeneous mobile
platforms,” in IEEE International Conference on Computer Design
(ICCD). IEEE, 2015, pp. 208–215.

[8] Y. Wen, Z. Wang, and M. F. O’Boyle, “Smart multi-task scheduling
for opencl programs on cpu/gpu heterogeneous platforms,” in
High Performance Computing (HiPC), 2014 21st International Confer-
ence on. IEEE, 2014, pp. 1–10.

[9] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling heterogeneous multi-cores through performance im-
pact estimation (pie),” in ACM SIGARCH Computer Architecture
News, vol. 40, no. 3. IEEE Computer Society, 2012, pp. 213–224.

[10] J. Ma, G. Yan, Y. Han, and X. Li, “An analytical framework for
estimating scale-out and scale-up power efficiency of heteroge-
neous manycores,” IEEE Transactions on Computers, vol. 65, no. 2,
pp. 367–381, 2016.

[11] A. Aalsaud, R. Shafik, A. Rafiev, F. Xia, S. Yang, and A. Yakovlev,
“Power–aware performance adaptation of concurrent applications
in heterogeneous many-core systems,” in Proceedings of the Interna-
tional Symposium on Low Power Electronics and Design. ACM, 2016,
pp. 368–373.

[12] E. Del Sozzo, G. Durelli, E. Trainiti, A. Miele, M. Santambrogio,
and C. Bolchini, “Workload-aware power optimization strategy
for asymmetric multiprocessors,” in 2016 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 2016, pp. 531–534.

[13] B. Donyanavard, T. Mück, S. Sarma, and N. Dutt, “Sparta: runtime
task allocation for energy efficient heterogeneous many-cores,”
in Proceedings of the IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis. ACM, 2016,
p. 27.

[14] B. K. Reddy, A. Singh, D. Biswas, G. Merrett, and B. Al-Hashimi,
“Inter-cluster thread-to-core mapping and dvfs on heterogeneous
multi-cores,” IEEE Transactions on Multiscale Computing Systems,
pp. 1–14, 2017.

[15] A. K. Singh, A. Prakash, K. R. Basireddy, G. V. Merrett, and B. M.
Al-Hashimi, “Energy-efficient run-time mapping and thread par-
titioning of concurrent opencl applications on cpu-gpu mpsocs,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 16,
no. 5s, p. 147, 2017.

[16] “Odroid-XU3,” http://www.hardkernel.com/, 2016.
[17] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cava-

zos, “Auto-tuning a high-level language targeted to gpu codes,” in
Innovative Parallel Computing (InPar), 2012. IEEE, 2012, pp. 1–10.

[18] H. Wang, V. Sathish, R. Singh, M. J. Schulte, and N. S. Kim, “Work-
load and power budget partitioning for single-chip heterogeneous
processors,” in Proceedings of the 21st international conference on
Parallel architectures and compilation techniques. ACM, 2012, pp.
401–410.

[19] I. Paul, V. Ravi, S. Manne, M. Arora, and S. Yalamanchili, “Coordi-
nated energy management in heterogeneous processors,” Scientific
Programming, vol. 22, no. 2, pp. 93–108, 2014.

[20] H. Wang, R. Singh, M. J. Schulte, and N. S. Kim, “Memory
scheduling towards high-throughput cooperative heterogeneous
computing,” in Proceedings of the 23rd international conference on
Parallel architectures and compilation. ACM, 2014, pp. 331–342.

[21] R. Barik, N. Farooqui, B. T. Lewis, C. Hu, and T. Shpeisman,
“A black-box approach to energy-aware scheduling on integrated
cpu-gpu systems,” in Proceedings of the International Symposium on
Code Generation and Optimization. ACM, 2016, pp. 70–81.

SINGH et al.: COLLABORATIVE ADAPTATION FOR ENERGY-EFFICIENT HETEROGENEOUS MOBILE SOCS 13

[22] S. Rai and M. Chaudhuri, “Using criticality of gpu accesses
in memory management for cpu-gpu heterogeneous multi-core
processors,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 16, no. 5s, p. 133, 2017.

[23] P. Pandit and R. Govindarajan, “Fluidic kernels: Cooperative exe-
cution of opencl programs on multiple heterogeneous devices,” in
Proceedings of Annual IEEE/ACM International Symposium on Code
Generation and Optimization. ACM, 2014, p. 273.

[24] I. Grasso, P. Radojkovic, N. Rajovic, I. Gelado, and A. Ramirez,
“Energy efficient hpc on embedded socs: Optimization techniques
for mali gpu,” in Parallel and Distributed Processing Symposium, 2014
IEEE 28th International. IEEE, 2014, pp. 123–132.

[25] K. Chandramohan and M. F. O’Boyle, “Partitioning data-parallel
programs for heterogeneous mpsocs: time and energy design
space exploration,” in ACM SIGPLAN Notices, vol. 49, no. 5. ACM,
2014, pp. 73–82.

[26] G. Jo, W. J. Jeon, W. Jung, G. Taft, and J. Lee, “Opencl framework
for arm processors with neon support,” in Proceedings of the 2014
Workshop on Programming models for SIMD/Vector processing. ACM,
2014, pp. 33–40.

[27] (2017) FreeOCL: Multi-platform implementation of
OpenCL 1.2 targeting cpus. [Online]. Available:
https://github.com/zuzuf/freeocl

[28] B. Taylor, V. S. Marco, and Z. Wang, “Adaptive optimization
for opencl programs on embedded heterogeneous systems,” in
Proceedings of the ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems. ACM, 2017, pp. 11–20.

[29] W. Ahmed, M. Shafique, L. Bauer, and J. Henkel, “Adaptive
resource management for simultaneous multitasking in mixed-
grained reconfigurable multi-core processors,” in Proceedings of
the IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis. ACM, 2011, pp. 365–374.

[30] W. Quan and A. D. Pimentel, “A hierarchical run-time adaptive
resource allocation framework for large-scale mpsoc systems,”
Design Automation for Embedded Systems, vol. 20, no. 4, pp. 311–
339, 2016.

[31] H. Kim and H. Yang, “An online self-adaptive system manage-
ment technique for multi-core systems,” Procedia Computer Science,
vol. 83, pp. 417–424, 2016.

[32] K. R. Basireddy, A. K. Singh, B. M. Al-Hashimi, and G. V. Merrett,
“Adamd: Adaptive mapping and dvfs for energy-efficient hetero-
geneous multi-cores,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, pp. 1–1, 2019.

[33] A. Pathania, Q. Jiao, A. Prakash, and T. Mitra, “Integrated cpu-gpu
power management for 3d mobile games,” in ACM/EDAC/IEEE
Design Automation Conference (DAC). IEEE, 2014, pp. 1–6.

[34] W.-M. Chen, S.-W. Cheng, P.-C. Hsiu, and T.-W. Kuo, “A user-
centric cpu-gpu governing framework for 3d games on mobile
devices,” in Computer-Aided Design (ICCAD), 2015 IEEE/ACM In-
ternational Conference on. IEEE, 2015, pp. 224–231.

[35] D. Kadjo, R. Ayoub, M. Kishinevsky, and P. V. Gratz, “A control-
theoretic approach for energy efficient cpu-gpu subsystem in mo-
bile platforms,” in ACM/EDAC/IEEE Design Automation Conference
(DAC). ACM, 2015, p. 62.

[36] U. Gupta, R. Ayoub, M. Kishinevsky, D. Kadjo, N. Soundararajan,
U. Tursun, and U. Ogras, “Dynamic power budgeting for mobile
systems running graphics workloads,” IEEE Trans. on Multi-Scale
Comp. Sys, 2017.

[37] J.-G. Park, C.-Y. Hsieh, N. Dutt, and S.-S. Lim, “Synergistic cpu-
gpu frequency capping for energy-efficient mobile games,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 17, no. 2,
p. 45, 2018.

[38] A. K. Singh, C. Leech, B. K. Reddy, B. M. Al-Hashimi, and G. V.
Merrett, “Learning-based run-time power and energy manage-
ment of multi/many-core systems: current and future trends,”
Journal of Low Power Electronics, vol. 13, no. 3, pp. 310–325, 2017.

[39] “ARM big.LITTLE Technology,” http://www.arm.com/, 2014.
[40] Y.-P. You, H.-J. Wu, Y.-N. Tsai, and Y.-T. Chao, “Virtcl: a frame-

work for opencl device abstraction and management,” in ACM
SIGPLAN Notices, vol. 50, no. 8. ACM, 2015, pp. 161–172.

[41] A. Karami, F. Khunjush, and S. A. Mirsoleimani, “A statistical
performance analyzer framework for opencl kernels on nvidia
gpus,” The Journal of Supercomputing, vol. 71, no. 8, pp. 2900–2921,
2015.

[42] C. Im, S. Ha, and H. Kim, “Dynamic voltage scheduling with
buffers in low-power multimedia applications,” ACM Transactions

on Embedded Computing Systems (TECS), vol. 3, no. 4, pp. 686–705,
2004.

[43] “FFmpeg,” https://github.com/FFmpeg/FFmpeg, 2018.
[44] “VLC media player,” https://github.com/videolan/vlc, 2018.
[45] M. Pricopi, T. S. Muthukaruppan, V. Venkataramani, T. Mitra, and

S. Vishin, “Power-performance modeling on asymmetric multi-
cores,” in Compilers, Architecture and Synthesis for Embedded Systems
(CASES), 2013 International Conference on. IEEE, 2013, pp. 1–10.

Amit Kumar Singh (M’09) is a Lecturer at Uni-
versity of Essex, UK. He received the B.Tech.
degree in Electronics Engineering from Indian
Institute of Technology (Indian School of Mines),
Dhanbad, India, in 2006, and the Ph.D. de-
gree from the School of Computer Engineering,
Nanyang Technological University (NTU), Singa-
pore, in 2013. He was with HCL Technologies,
India for year and half until 2008. He has a post-
doctoral research experience for over five years
at several reputed universities. His current re-

search interests are system level design-time and runtime optimizations
of 2D and 3D multi-core systems for performance, energy, temperature,
reliability and security. He has published over 80 papers in reputed
journals/conferences, and received several best paper awards.

Basireddy Karunakar Reddy received his
M.Tech. degree in Microelectronics and VLSI
from Indian Institute of Technology (IIT), Hy-
derabad, India in 2015. He is a Ph.D. student
in Electronic and Electrical Engineering at the
University of Southampton, UK. His current re-
search interests include design-time and run-
time optimization of performance and energy in
multi-core heterogeneous systems.

Alok Prakash received his Ph.D. degree in 2014
from Nanyang Technological University (NTU),
Singapore. He is currently a Senior Research
Fellow in the School of Computer Science and
Engineering, NTU, where he leads a team of re-
searchers and Ph.D. students in developing low
cost camera-based traffic law enforcement sen-
sors under the TUMCreate project. His research
interests include Intelligent Transportation Sys-
tems, especially focused on solving the first mile
last mile issues as well as low-cost and low-

power embedded systems design with particular emphasis in mapping
complex computer vision applications on modern heterogeneous mobile
SoCs. His papers have been nominated for best paper award in DAC
2016 and HEART 2018.

Geoff Merrett (GSM’06-M’09) is an Associate
Professor in the School of Electronics and Com-
puter Science at the University of Southamp-
ton, UK, and Head of its Centre for IoT and
Pervasive systems. He received the B.Eng. and
Ph.D. degrees from Southampton in 2004 and
2009, respectively. His research interests are in
energy management of mobile and embedded
systems, and has published over 175 articles in
journals/conferences in these areas.

Bashir M. Al-Hashimi (M’99-SM’01-F’09) is an
ARM Professor of Computer Engineering, Dean
of the Faculty of Physical Sciences and Engi-
neering, and the Co-Director of the ARM-ECS
Research Centre, University of Southampton,
Southampton, U.K. He has published over 380
technical papers. His current research interests
include methods, algorithms, and design au-
tomation tools for low-power design and test of
embedded computing systems. He has authored
or co-authored five books and has graduated 35

Ph.D. students.

