
1

Combating Enhanced Thermal Covert Channel in
Multi-/Many-core Systems with Channel-aware

Jamming
Jiachen Wang, Xiaohang Wang, Yingtao Jiang, Amit Kumar Singh, Letian Huang and Mei Yang

Abstract—As a means to thwart thermal covert channel at-
tack in a multi-/many-core system, a strong heat noise whose
frequency band coincides with that occupied by the thermal
covert channel is injected to jam the channel. However, this
undiscriminating channel jamming based countermeasure will
fail if a thermal covert channel is allowed to change its trans-
mission frequency dynamically in response to the jamming. To
combat this enhanced thermal covert channel, a more advanced
countermeasure is needed and thus proposed that checks the
frequency spectrum and tracks any possible covert channel. Only
after a channel is detected to be susceptible, a thermal noise with
this channel frequency is then emitted to jam the covert channel.
The communication protocols and frequency changing scheme
pertaining to this enhanced thermal covert channel are described
in this paper. The experimental results confirm that, when
the proposed countermeasure is applied, the enhanced thermal
covert channel, much more resilient to jamming, suffers from
an extremely high packet error rate (PER), which makes any
meaningful data leakage practically impossible. As the proposed
countermeasure method is poised to contain dangerous thermal
covert channel attacks with an anti-jamming capability, it lends
itself well to secure multi-/many-core systems.

Index Terms—Thermal Covert Channel, Signal Detection,
Defense against Covert Channel Attack, Many-core Systems.

I. INTRODUCTION

EXISTENCE of covert channels in multi-/many-core chips
can cause catastrophic information breach. Of many

different communication media available for the construction
of covert channels [1]–[13], chip temperature (thermal) re-
mains the most widely used, as a thermal covert channel
can secretly, reliably transmit data in a “wireless” manner.
In [2], for instance, it was demonstrated over two hardware
platforms featuring quad-core Intel Core i7-4710MQ processor
and Samsung Exynos 5422 SoC that a thermal covert channel

Manuscript received April 18, 2020; revised June 12, 2020; accepted July 6,
2020. This article was presented in the International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems 2020 and appears as part
of the ESWEEK-TCAD special issue.

J. Wang is with the School of Software Engineering, South China University
of Technology, Guangzhou, Guangdong, 510006, China. E-mail: jiachen
wang3@gmail.com.

X. Wang is with the School of Software Engineering, South China Uni-
versity of Technology, Guangzhou, Guangdong, 510640, China. He is the
corresponding author. E-mail: xiaohangwang@scut.edu.cn.

Y. Jiang and M. Yang are with the Department of Electrical and Computer
Engineering, University of Nevada, Las Vegas, NV89557. E-mail: ying
tao.jiang@unlv.edu, mei.yang@unlv.edu.

A. K. Singh is with the University of Essex, UK. E-mail:
a.k.singh@essex.ac.uk

L. Huang is with the University of Electronic Science and Technology of
China, China. E-mail: huanglt@uestc.edu.cn

can transmit secret data, like passwords, at a rate of 5 bits per
second (bps). Actually, transmission rates of a covert channel
can go up to 20 bps and even higher, as indicated in [2], [3]. In
general, when the transmitter of a processor core tries to send
out supposedly secret data over a thermal covert channel, it
converts data streams to temperature signals for transmission.
The receiving processor on the other end reads the thermal
signal from its embedded thermal sensor and then converts
the signal back to data [1].

As a countermeasure against thermal covert channel attack,
a system can run specific programs with a sole purpose of
generating thermal noise that is strong enough to block any
possible communications over the said channel. Ideally, the
generated thermal noise spans the entire frequency spectrum
at all times to ensure a complete channel jam. This wide
spectrum, always-on jamming strategy, however, consumes
significant amount of energy to keep the thermal channel
jammed over even a modest duration of time. A more subtle
method requires jamming only at the same frequency band
occupied by the thermal covert channel, preferably at the time
when the channel is being used for data transmission.

Although targeted jamming can be an effective countermea-
sure against a thermal covert channel, one can see that this
scheme can become less effective, or nearly useless, should
the thermal covert channel be able to dynamically change
its transmission frequency, as illustrated in Fig. 1. Assume
the covert channel in this example (Fig. 1) occupies the
transmission frequency of 40Hz, and a program running on
another processor is dedicated to continuously monitor any
possible covert channel attacks by reading its own thermal
sensor. Once a signal is detected and determined to be part of
covert channel communication, strong thermal noise centered
at 40Hz is triggered (Fig. 1(a)). By injecting such a strong
thermal noise, the signal-to-noise-ratio (SNR) of the receiver
deteriorates and the packet error rate (PER) escalates to a
very high level (89%) at which any data communication is
essentially shut down. Since both the transmitter and the
receiver find their PERs exceed the level that makes them
believe channel jamming is taking place, the covert channel
switches to the transmission frequency of 60Hz in Fig. 1(b).
An immediate result is that the PER drops to just 4%. This
example (Fig. 1(b)) clearly indicates that a thermal covert
channel can become more resilient, and thus more harmful,
provided it is given the extra ability to dynamically change its
transmission frequency. In this paper, we first elaborate on an
anti-jamming thermal covert channel which is able to avoid

2

0 50 100 150 200
0

0.4

0.8

1.2

1.6

2

0 50 100 150 200
0

0.4

0.8

1.2

1.6

2

0 50 100 150 200
0

0.4

0.8

1.2

1.6

2

0 50 100 150 200
Frequency (Hz)

0

0.4

0.8

1.2

1.6

2
A

m
p
li

tu
d
e

(°
C

)

0 50 100 150 200
Frequency (Hz)

0

0.4

0.8

1.2

1.6

2
A

m
p
li

tu
d
e

(°
C

)

0 50 100 150 200
Frequency (Hz)

0

0.4

0.8

1.2

1.6

2
A

m
p
li

tu
d
e

(°
C

)

0 50 100 150 200
Frequency (Hz)

0

0.4

0.8

1.2

1.6

2

A
m

p
li

tu
d
e

(°
C

)

0 50 100 150 200
Frequency (Hz)

0

0.4

0.8

1.2

1.6

2

A
m

p
li

tu
d
e

(°
C

)

0 50 100 150 200
Frequency (Hz)

0

0.4

0.8

1.2

1.6

2

A
m

p
li

tu
d
e

(°
C

)

0 50 100 150 200
Frequency (Hz)

0

0.4

0.8

1.2

1.6

2

A
m

p
li

tu
d
e

(°
C

)

0 50 100 150 200
Frequency (Hz)

0

0.4

0.8

1.2

1.6

2

A
m

p
li

tu
d
e

(°
C

)

0 50 100 150 200
Frequency (Hz)

0

0.4

0.8

1.2

1.6

2

A
m

p
li

tu
d
e

(°
C

)

0 50 100 150 200
Frequency (Hz)

0

0.4

0.8

1.2

1.6

2

A
m

p
li

tu
d
e

(°
C

)

0 50 100 150 200
Frequency (Hz)

0

0.4

0.8

1.2

1.6

2

A
m

p
li

tu
d
e

(°
C

)

Transmission signal

at 40Hz Signal around

60Hz

Jamming noise Jamming noise

Dynamic

frequency

changing

(a) An example of

jamming

(b) An example of dynamic

frequency changing

0 50 100 150 200
Frequency (Hz)

0

0.4

0.8

1.2

1.6

2

A
m

p
li

tu
d
e

(°
C

)

0 50 100 150 200
Frequency (Hz)

0

0.4

0.8

1.2

1.6

2

A
m

p
li

tu
d
e

(°
C

)

Frequency (Hz)

A
m

p
li

tu
d
e

(°
C

)

Jamming noise

(c) The jammer tracks the transmission signal.

The jammer

changes

frequency

Jamming noise

around 60Hz

Fig. 1. (a) Jamming of a thermal covert channel (PER=89%). (b) Using
the dynamic frequency changing method to avoid the channel being jammed
(PER=4%). (c) The jammer changes its frequency dynamically to track the
thermal signal transmission (PER=86%).

being jammed.
However, if the jammer is able to track the transmitter’s

frequency and insert the jamming noise accordingly, as the
case shown in Fig. 1(c), it switches the noise frequency also
to be centered around 60Hz; this way, the covert channel attack
is blocked with a high PER of 86%. This example thus has
motivated us to propose a countermeasure scheme based on
periodically scanning the frequency spectrum to detect any
possible attack. Once a covert channel is detected and its
transmission frequency is determined, a strong noise source of
falling into the same transmission frequency band is applied
for targeted jamming. We demonstrate in this paper that such
jamming method can completely block any thermal covert
channel that otherwise can be exploited for data leakage.

The remainder of the paper is organized as follows. Sec-
tion II reviews the related work about covert channel and
challenges when the traditional frequency hopping technique
is mixed with thermal covert channel. Section III defines a
dynamic frequency changing protocol for thermal covert chan-
nel. Section IV details the countermeasure method. Section V
presents the experimental results. At last, Section VI concludes
this paper.

II. RELATED WORK

A thermal covert channel transmits sensitive data among
cores through thermal signal. In an experiment reported in
[1] on a real platform, a thermal covert channel was shown

to produce a throughput of 1.33 bits per second (bps) and a
bit error rate (BER) of 11%. Bartolini et al. [2] changed the
encoding scheme of thermal covert channels and achieved an
even lower bit error rate of 0.1% at 8 bps. Long et al. [3]
considered the influence of the noise generated by the other
applications running on the system. They used high signal
frequency thermal covert channel to avoid noise.

The thermal covert channel can be divided into three layers:
the physical layer, the link layer and application layer.

The physical layer in thermal covert channel is responsible
for the conversion between digital/electronic and temperature
signals. Digital signal bit streams ‘1’ s and ‘0’ s are con-
verted by temperature levels (e.g., high or low temperatures)
or variations. The temperature signals propagate from the
transmitter to the receiver by means of heat transfer, which
can be modelled by Hotspot [14]. On the receiver side, it reads
its thermal sensor to convert the thermal signal back to digital.

Note that temperature sensors are essential for dynamic
thermal management [15], [16] and they are widely deployed
in today’s chips. The number and accuracy of temperature
sensors are possible to be ever improved in the future [17].
For programs, instantaneous temperature can be retrieved by
software interfaces with a resolution of 1◦C [18], and the state-
of-the-art thermal sensor has a resolution close to 0.1◦C [19].
After retrieving temperature signal, it passes through filters,
after which only the frequency components of interest remain.

The link layer is responsible for connecting the transmitters
and receivers. At the link layer, digital signals taken from the
physical layer are decoded, and the bits are combined into
packets for transmission. [1] and [2] used a simple protocol
that transmit raw data without control packets, while [3] used
control packets to identify the beginning and the end of a
communication session.

In the application layer, a hacker designs how to encode
the sensitive data using the thermal covert channel. Popular
coding standards like UTF-8 and ASCII can be used for this
purpose.

Frequency-Hopping Spread Spectrum (FHSS) can improve
the anti-jamming ability of wireless communication [20]. In
FHSS, the transmission frequency changes from time to time
to avoid being jammed. Both the transmitter and receiver
maintain the same frequency hopping pattern. Several schemes
were proposed to synchronize the transmitter and receiver.
For example, in [21], a dedicated channel is used to transmit
synchronization information. After receiving the synchroniza-
tion information sent by the transmitter from this dedicated
channel, the frequency hopping pattern, frequency sequence,
and start and end times of the receiver are set according
to the instruction of the synchronization information. The
self-synchronizing method [22] relies on the synchronization
information extracted from the received frequency hopping
signal to achieve frequency hopping synchronization. The
synchronization-head method [21] selects one or more chan-
nels to transmit a special set of packets carrying synchroniza-
tion information before frequency-hopping communication.
After receiving the synchronization information packet, the
receiver performs clock calibration and frequency hopping ac-
cording to the instruction of the synchronization information.

3

Sensor

recording

FIR/Demo-

dulation

ECC

validating
Data output

Data input
ECC

calculating
Modulation

Temperature

signal

generation

Heat Transfer

Coding

Decoding

Protocol

processing

Protocol

processing

Digital Signal

Digital Signal
Temperature Signal

Temperature Signal

Transmitter

Receiver

(a)

(b)

Fig. 2. The flow of a baseline thermal covert channel transmission from the
(a) transmitter end to the (b) receiver end.

However, these FHSS systems cannot be applied directly to
the thermal covert channel due to their huge implementation
overhead. For the dedicated channel scheme, this dedicated
channel might also be jammed, leading to failure of the whole
FHSS system.

III. DYNAMIC FREQUENCY CHANGING PROTOCOL BASED
THERMAL COVERT CHANNEL

In this Section, we propose a lightweight scheme to dy-
namically change the transmission frequency with a very low
implementation overhead, and without involving any extra
channel. In essence, we use a polling based frequency chang-
ing protocol and the available transmission frequencies are
stored by both the transmitter and receiver in advance. In
the worst case that the channel is severely jammed, both the
transmitter and the receiver poll the next available frequency
iteratively and send a series of packets as an attempt to set up
their connection over that channel. Once they find a channel
available for connection, communication resumes in this new
channel.

A. Baseline Thermal Covert Channel Model

The baseline thermal covert channel [3] links a transmitter
and a receiver, as shown in Fig. 2. The transmitter and receiver
run on different cores or on different hardware threads of a
physical core if the processor supports multi-threading. The
transmitter sends the sensitive data via the thermal covert chan-
nel. The receiver records the temperature signal by reading its
thermal sensor, and decodes the signal to recover the original
data.

1) The Transmitter: It includes the following modules:
(1). The data input module that reads the data to be trans-

mitted. The sensitive data are binary streams. For example, a
password letter ‘A’ may be encoded as a bit stream of “0100
0001” in ASCII code.

(2). The protocol processing module that generates the
control bits of a packet, as required by the communication
protocol.

(3). The Error Correcting Code (ECC) calculating mod-
ule that gets the data stream with protocol information and
calculates the corresponding error correcting code. The ECC
code is tail-added to a packet.

P
o
w

e
r

P
o
w

e
r

T
em

p
er

at
u
re

T
em

p
er

at
u
re

Time (Cycle) Time (Cycle)

Time (Cycle) Time (Cycle)

Encode of bit ‘1’

Encode of bit ‘0’ Temperature of bit ‘0’

Temperature of bit ‘1’

0

0.5

1

0

0.5

1

26

27

28

26

27

28

°C

°C

Fig. 3. The encoding scheme used in the baseline thermal covert channel.

c(t)

s(t)

Switch

eOOK(t)

eOOK(t) Band-pass

Filter

Full-wave

rectification

Low-pass

Filter
Comparator

Output

Fig. 4. The generation of the OOK signal.

(4). The coding module that encodes the data to improve
the communication reliability. It uses the return-to-zero (RZ)
line coding scheme; that is, it encodes bit ‘1’ by a rise and fall
in temperature level, and ‘0’ by consecutive low temperature
level. The encoding scheme avoids the continuous buildup of
temperature. This encoding scheme is illustrated in Fig. 3.

(5). The modulation module that uses OOK (On-Off
Keying) which is shown in Fig. 4 to modulate the binary
stream in the packet. The signal is non-zero when the bit is
‘1’ and becomes zero when the bit is ‘0’. The OOK signal
can be expressed as

eOOK = s(t)× c(t) (1)

s(t) = ang(t− nTB) (2)

where c(t) is the carrier signal, s(t) is the signal of packet after
ECC encoding, TB is the period of one bit (symbol width),
g(t) is the baseband pulse waveform with duration TB , and
an is the value of the n-th bit of the packet to be transmitted
(‘0’ or ‘1’).

(6). The temperature signal generation module that is
a program generating temperature signals by controlling the
power consumption of the core according to the modulated
data packets.

2) The Receiver: It includes the following modules:
(1). The sensor recording module that reads the temper-

ature information through the system APIs or calls rdmsr
instruction for data from model specific registers (MSR) in the
processor (contains instantaneous temperature information).
These APIs or instructions can be accessed in user space. This
module records temperature trace.

4

c(t)

s(t)

Switch

eOOK(t)

eOOK(t) Band-pass

Filter

Full-wave

rectification

Low-pass

Filter
Comparator

Output

Fig. 5. The demodulation of OOK modulated signal.

(2). The FIR module that uses a few finite impulse response
(FIR) filters with the center frequency tuned to the transmis-
sion frequency of the covert channel to filter the thermal signal.
This module has a band-pass filter, a full-wave rectification,
and a low-pass filter connected in series, as shown in Fig. 5.

(3). The decoding module that uses the result of FIR filter
and compares the amplitude of signal with a decision threshold
Tb to make a hard decision about the binary value. There are
two options for the decision threshold Tb. One is to use a fixed
threshold which is selected to be the maximum amplitude of
noise profiled at offline. Another is a dynamic threshold, which
is the half amplitude of the thermal covert channel’s thermal
signal. The output of this module is a binary bit stream.

(4). The ECC decoding module that decodes the ECC
code of the data and checks the data integrity, followed by
computing the error rate.

(5). The protocol processing module that reads the content
of the packet and interpret the protocol control and data bits.

(6). The data output module that writes the data to a buffer.
For example, password letter ‘A’ may be saved as a string.

3) The Communication Protocol of Transmitters and Re-
ceivers in the Baseline Thermal Covert Channel: The com-
munication protocol is defined as follows.

Step 1. The transmitter sends a request packet (REQ) to the
receiver and waits for its response.

Step 2. Once the receiver receives the REQ, it replies the
transmitter with an acknowledgement packet (ACK).

Step 3. The transmitter sends DATA packets to the receiver.
Step 4. The receiver receives each packet and decodes the

ECC code to check whether the packet is compromised or not.
If not, the receiver replies an ACK packet in the same channel.
Otherwise, it sends nothing back.

Step 5. The transmitter sends a terminate packet (TER) to
the receiver to terminate the transmission after all the packets
are sent.

B. Communication Protocol to Support Dynamic Frequency
Changing

Suppose the covert channel can use a set of transmission
frequencies F = {f1, f2, . . . , fm}. In the beginning, the trans-
mitter and receiver are initialized to use the same frequency
f1. They communicate in a regular manner, as described in
Section III-A.

There are three mechanisms to detect whether a channel is
being jammed or not.

The first one is referred as self-checking by the transmitter.
When the transmitter is sending, it receives packets from
its temperature sensor simultaneously. The packet received is
compared with the sent packet to compute the error rate. If
the bit error rate exceeds a threshold TBER, the channel is
considered being jammed. Comparing with the approach that
calculates the bit error rate in the receiver, self-checking in

fi fi-1 fi+1 fi+2fi-2

fi fi+2 fi+1fi-1 fi-2

Transmitter

Receiver

Current channel

Fig. 6. Polling of the transmitter and receiver in a round robin order.

the transmitter has a higher degree of accuracy because the
original packet is known to the transmitter.

The second mechanism requires the transmitter keep a
failure accumulation counter Cf to count the number of
accumulated failures observed by the transmitter. When a
packet is transmitted, the transmitter starts a timer Tp. If there
is no reply from the receiver before Tp expires (exceeds T1),
Cf increases by 1. If the reply arrives on time, Cf is reset to
0. Once the failure accumulation counter exceeds a threshold
of 3, the channel is considered being jammed.

Though the two mechanisms described above are able
to deal with most jamming situations, in some extreme
conditions, the dynamic frequency changing request packets
(DFCQ) from the transmitter cannot be correctly decoded by
the receiver. This can occur when the jamming noise is very
strong. Another possibility is when the transmitter and the
receiver are running at different frequencies, and they are not
able to communicate with each other. To solve this problem,
the third mechanism, polling, as shown in Fig. 6, is needed
(lines 30-32 in Algorithm 1 and lines 16-18 in Algorithm 2).
Both the transmitter and the receiver set a timer Ttcc when
last correctly received packet arrives at fi. If Ttcc expires
(exceeds threshold T2), both the transmitter and the receiver
switch their frequencies following a pre-agreed round robin
order {f1 → f2 → . . . → fm → f1 → f2, . . .} without
talking to each other. The transmitter changes its transmission
frequency to fi+1 and transmits its DATA packets. If no
ACK packets are received after some time, the transmitter
changes its transmission frequency to fi+2, fi+3, . . . iteratively
after a time interval of T3, until an ACK packet is received.
The receiver changes its receiving frequency to fi+1 and
prepares to receive packets at fi+1. If no correct packets are
received, the receiver changes its frequency to fi+2. Finally,
the transmitter and the receiver converge to a new frequency.

Once being jammed, dynamic frequency changing is trig-
gered. The communication protocol for dynamic frequency
changing works as follows. Assume now the covert channel
works at frequency fi.

1. The transmitter checks every frequency in the available
transmission frequency set F excluding fi which is
currently being used. For each selected frequency fj , the
transmitter tests whether that channel is being jammed
or not by computing the BER. If fj is not available, the
next frequency is selected and tested iteratively until an
available frequency is found. If fj is available, dynamic
frequency changing starts.

2. The transmitter sends a dynamic frequency changing

5

Algorithm 1 The transmitter process
Input:
Data: n bits of the data to be transmitted
F : the available frequencies of thermal covert channel F =
{f1, f2, ..., fm}
fi: the channel frequency that the transmitter uses at the
beginning

1: while Data is not empty do
2: /* Normal communication */
3: Fetch bits from Data and assemble them to form a

packet
4: Transmit the packet and self-checking at fi
5: Turn on the timer Tp
6: Wait for a reply from the receiver
7: if Tp expires then
8: Retransmit the packet
9: end if

10: /* Dynamic frequency changing(DFC) trigger */
11: /* Failure accumulation counter and self-checking

*/
12: if Cf>3 or self-checking error then
13: DFC is triggered
14: end if
15: /* Dynamic frequency changing */
16: if DFC is triggered then
17: while DFC is not finished do
18: Select an available frequency fj from F
19: Transmit DFCQ(fi,fj)
20: Wait for DFCA(fi,fj)
21: if DFCA(fi,fj) received then
22: fi ← fj
23: DFC finish
24: end if
25: if Tp expires then
26: Retransmit the packet
27: end if
28: end while
29: end if
30: if Ttcc expires then
31: Change the transmission frequency in the round

robin order of {f1,f2,...,fm,f1,f2,...} until a communi-
cation frequency is found

32: end if
33: end while

request DFCQ(fi, fj) to the receiver, indicating that this
packet will be sent at fi (which is the current thermal
covert channel working frequency) and requests to change
to fj . The transmitter then sets a packet timer Tp for the
DFCQ packet and waits for the reply from the receiver.
If the reply is received before Tp expires, the transmitter
goes to step 4 otherwise, DFCQ is retransmitted.

3. The receiver performs the following steps after receiving
the DFCQ(fi, fj) packet:

3.1. It sets the center frequency of the FIR filter to be fj

Algorithm 2 The receiver process
Input:
F : the available frequencies of thermal covert channel F =
{f1, f2, ..., fm}
fi: the channel frequency that the receiver uses at the
beginning

Output: OutputData: the data received from the transmitter

1: while transmission is in session do
2: if a new packet is received then
3: if the packet is a data packet then
4: /* Normal communication */
5: /* Save the data */
6: Add the payload of packet into OutputData
7: Reply ACK to the transmitter
8: end if
9: if the packet is DFCQ(fi,fj) then

10: /* DFC is triggered */
11: Reply DFCA(fi,fj) to the transmitter
12: Change the receiving frequency to fj
13: end if
14: end if
15:
16: if Ttcc expires or Tfh expires then
17: Change the receiving frequency in the round

robin order of {f1,f2,...,fm,f1,f2,...} until a commu-
nication frequency is found

18: end if
19: end while

Return OutputData

after receiving the request packets.
3.2. It sends a dynamic frequency changing acknowledge-

ment DFCA(fi, fj) to the transmitter at fi, indicating
that the covert channel now works at fi and agrees
to change to fj .

3.3. The receiver sets a dynamic frequency changing
timer Tfh. Tfh expires if it exceeds a threshold T4.
If the receiver receives packets at the new frequency
fj , which means the transmitter also changes to fj
successfully, this timer is reset. If Tfh expires, the
receiver starts up the polling mechanism.

4. If the transmitter receives the DFCA(fi, fj) packet, it
changes its transmission frequency to be fj and self-
checks frequency fj . It starts to send the data packets
at the new frequency fj . If no packet is received before
Tp expires, the transmitter goes back to step 2.

1) The Transmitter: The transmitter includes a transmitting
module, an ACK/NACK analyzing module for error rate
computation, a dynamic frequency changing trigger, and a
dynamic frequency changing module, as shown in Fig. 7.

• The transmitting module that sends sensitive data via a
thermal covert channel.

• The ACK/NACK analyzing module that records the
temperature signal by reading its thermal sensor, and
decodes the signal to be ACK or NACK.

6

ACK/NACK

analyzing module

Transmitting

module

Transmitter

Receiver

Dynamic frequency changing trigger

Dynamic frequency

changing

Receiving

module

ACK/NACK

generating module

Dynamic frequency

changing

Fig. 7. Workflow of dynamic frequency changing in a thermal covert channel.

Failure

counter

check

Self-

checking

(a)

(b)

Trigger

Frequency

selecting

Transmitting

dynamic frequency

changing request

Waiting for

reply

Changing

frequency
Finish

Ttcc times

out

Fig. 8. (a) The dynamic frequency changing trigger. (b) The dynamic
frequency changing module.

• The dynamic frequency changing trigger module,
shown in Fig. 8(a), is used to detect jamming. There
are three mechanisms to detect jamming, self-checking,
failure accumulation counter, and polling. The transmitter
uses all the three detection mechanisms at the same
time. Any one of them can trigger dynamic frequency
changing.

• The dynamic frequency changing module that is shown
in Fig. 8(b). It is used to change to a new frequency
to avoid being jammed. First it selects an available
frequency to change to (corresponding to line 18 in Algo-
rithm 1). Then the transmitter transmits DFCA (fi, fj)
and waits for the reply from the receiver (corresponding
to lines 19-24 in Algorithm 1). If there is no reply before
Tp expires, the DFCQ (fi, fj) should be retransmitted.
If a DFCA (fi, fj) packet is received from the receiver,
the transmitter changes its transmission frequency to be
fj and communicates at fj .

2) The Receiver: As shown in Fig. 7, the receiver includes
a receiving module, an ACK/NACK generating module, and
a dynamic frequency changing module.

• The ACK/NACK generating module that sends the

Preamble
ACK

Flag

DFC

Flag

Preamble
ACK

Flag

DFC

Flag

Preamble
ACK

Flag

DFC

Flag

(a)

(b)

(c)

ECC Code (n1-bit)

ECC Code (n1-bit)

Payload (n2-bit)

DFC Code (n3-bit)

ECC Code (n1-bit)

Fig. 9. Formats of (a) DATA, (b) DFCA and ACK, and (c) DFCQ packets
that are in the dynamic frequency changing protocol.

ACK/NACK packets via the thermal covert channel.
• The receiving module that records the temperature signal

by reading its thermal sensor, and decodes the signal.
• The dynamic frequency changing module that sets the

center frequency of the FIR filter to be fj and replies a
DFCA packet to the transmitter (corresponding to lines
9-13 in Algorithm 2).

C. Implementation of Thermal Covert Channel

1) Packet Format: Each type of packets has the following
data fields: a preamble, an ECC code, an ACK and DFC flag.
The preamble data field is a bit steam of “101010”, which
marks the beginning of a packet. A 1-bit ACK Flag is ‘1’
if the packet type is ACK, and ‘0’ otherwise. The 1-bit DFC
Flag is set to be ‘1’ if it is a DFCQ or a DFCA packet, and ‘0’
otherwise. An n1-bit ECC code is used for error correction.
An n3-bit DFC code is used for indicating a transmission
frequency.

In our protocol, there are four types of packets, DATA,
ACK, DFCQ and DFCA.

A DATA packet has a preamble, an ACK flag (set to be ‘0’),
a DFC flag (set to be ‘0’), an n2-bit payload, and an n1-bit
ECC code, as shown in Fig. 9(a).

An ACK packet has a preamble, an ACK flag (set to be
‘1’), a DFC flag (set to be ‘0’), and an n1-bit ECC code, as
shown in Fig. 9(b).

A DFCA packet has a preamble, an ACK flag (set to be
‘1’), a DFC flag (set to be ‘1’), and an n1-bit ECC code, as
shown in Fig. 9(b).

A DFCQ packet has a preamble, an ACK flag (set to be
‘0’), a DFC flag (set to be ‘1’), an n3-bit DFC code, and an
n1-bit ECC code, as shown in Fig. 9(c).

2) Generation of the Temperature Signal: To generate
the thermal signals, programs with CPU-intensive and CPU-
idle codes are used to generate high and low temperatures.
Temperature variation is modulated by controlling the power
consumption of the processor. For the transmission frequency
f1, the period of signal variation is 1/f1. To transmit a bit
‘1’, a CPU-intensive program is run in the first 1/2f1 period,

7

Algorithm 3 Generate temperature signal
Input:
Bit: 0 or 1
Period: the time that this process will run
Frequency: the frequency this process runs at

if Bit is 0 then
Sleep for Period

else
while Not exceed Period do

Run for half of a Period at Frequency
Sleep for half of a Period at Frequency

end while
end if

followed by a CPU-idle program run in the next 1/2f1 period.
To transmit a bit ‘0’, the CPU-idle program is run for the
whole 1/f1 period.

The code of temperature signal generation is showed in
Algorithm 3.

D. Comparison with FHSS

The difference between the conventional FHSS and the
proposed method are as follows. The proposed method detects
the occurrence of jamming and then changes the transmission
frequency, while the conventional FHSS needs additional
communication for synchronization. When the additional sig-
nals/channels are jammed, the whole FHSS system does not
work. In contrast, the attack in our approach can still work
when the channel is jammed, as it periodically polls for the
next available frequency channel. In addition, the conventional
FHSS needs high computation effort for signal synchroniza-
tion, which is not suitable for an on-chip covert channel.

IV. COUNTERMEASURE WITH SCANNING AND
CHANNEL-AWARE JAMMING

To countermeasure the above thermal covert channel, an
intuitive approach is to use a full-band jamming, meaning that
thermal noise will flood the entire band [fl, fh] occupied by
the thermal covert channel. However, such a naive approach
causes excessive power consumption, which might even lead to
thermal overheating. Instead, a lightweight countermeasure as
shown in Fig. 10 is proposed in this Section which periodically
scans the frequency spectrum to check if there exists a poten-
tial thermal covert channel attack or not. If such a channel is
identified, a noise is emitted with the same frequency of the
covert channel. With a high scanning speed, all the thermal
covert channels shall be able to be detected and jammed. The
detection process is first introduced, followed by the jamming
process.

A. The Detection Schemes

Two schemes can be used for the detection of a thermal
covert channel. The temperature data are collected from the
local temperature sensors.

Sensor

recoding

Scanning based

approach

Decision

making

Modulation

Random noise

jamming

Temperature

signal

generation

Jamming

Single-tone

jamming

Detection

Recording

based approach

Fig. 10. Workflow of the proposed countermeasure.

C
e
n

te
r

fr
e
q

u
en

c
y

o
f

th
e

F
IR

 f
il

te
r

fh

fl
∆𝑓

t

Fig. 11. Linearly scans the frequency band of [fl, fh].

(1) Scanning-based approach. In this approach, the jam-
mer changes the center frequency of the FIR filter to scan the
entire frequency spectrum of interest. There are two different
ways to scan the frequency spectrum.

A linear scan method changes the center frequency sequen-
tially from the lowest frequency fl to the highest frequency
fh. The difference between two adjacent center frequencies is
referred as the frequency increment ∆f . A larger ∆f results in
fewer scanning steps and higher probability of failing to detect
the covert channel, but with a lower runtime cost. Fig. 11
shows the linear scanning method, and the algorithm is listed
in Algorithm 4. For each core i, an FIR with center frequency
fcenter and bandwith of ∆f is used to filter the thermal signal.
If the maximum amplitude of the filtered signal is higher than
threshold Tr, it is deemed as a malicious core involved in the
thermal covert channel attack. The center frequency of FIR
sweeps from fl to fh with an incremental of ∆f .

The second scanning method scans the frequency spectrum
by randomly selecting the center frequency, in the range of
[fl, fh], of the FIR filter.

(2) Recording-based approach. The above approaches
need to run at a fast speed to “track” the thermal covert channel
and sometimes might fail to detect an attack. In this approach,
the temporal temperature signal is recorded for 1 second,
and transformed into frequency domain using fast Fourier
transform (FFT) (corresponding to line 2 in Algorithm 5).
The frequency spectrum of the signal is checked whether there
is a potential attack or not. The advantage of this approach is
that it can check the full spectrum. However, since recording a

8

Algorithm 4 The scanning-based approach
Input:
fstart: The minimum frequency of detection
fend: The maximum frequency of detection
∆f : The frequency increment of linear scan
fcenter: The center frequency of the FIR filter

Output:
fdetect: The detected thermal signal frequency
L: The cores that transmit the thermal signal

1: for Each core i do
2: fcenter = fstart
3: while fcenter 6= fend do
4: Filter thermal signal of core i with an FIR with
fcenter, and bandwidth of ∆f

5: if The maximum of the filtered signal amplitude
>Tr then

6: fdetect = fcenter
7: Record i as malicious and add i into L
8: end if
9: fcenter+ = ∆f

10: end while
11: end for
Return fdetect, L

long temperature sequence takes time, the attack might already
transmit sensitive data before being detected.

Given the output of the FIR filter (approach 1) or the spec-
trum (approach 2), a decision should be made by comparing
the signal amplitude with a given threshold Tr (corresponding
to line 5 in Algorithm 4, and line 3 in Algorithm 5). If the
amplitude exceeds the threshold, it can conclude that an attack
has been discovered, and the signal frequency and core number
(fdetect and L), are passed to the jamming process for action.

B. The Jamming Process

Once the thermal covert channel is detected, a random bit
sequence of ‘1’s and ‘0’s is generated as noise at the random
noise generation module. This random sequence s(t) can be
expressed as

sjam(t) = rngjam(t− nTjam) (3)

where Tjam is the period of one bit (symbol width), gjam(t)
is the baseband pulse waveform with duration of Tjam, and
rn is the value of the n-th bit of the random sequence which
is defined as follows:

rn =

{
1 with a probability of 0.5

0 with a probability of 0.5
(4)

The single-tone noise generation module, unlike random
noise, continuously sends bit sequence of ‘1’s, i.e., rn = 1.

At the modulation module, the sequence generated by
the noise generation module is modulated by the carrier that
has the same frequency as the transmission frequency fdetect

Algorithm 5 The recording-based approach
Input:
fstart: The minimum frequency of detection
fend: The maximum frequency of detection

Output:
fdetect: The detected thermal signal frequency
L: The cores that transmit the thermal signal

1: for Each core i do
2: Compute the frequency spectrum of core i’s thermal

signal
3: if The maximum value of the spectrum in

[fstart, fend] >Tr then
4: fdetect=The frequency with the maximum value
5: Record i as malicious and add i into L
6: end if
7: end for

Return fdetect, L

occupied by the detected covert channel. The output of the
modulation module, ejam(t), is thus

ejam(t) = sjam(t)× c(t) (5)

where sjam(t) is the noise generated by the noise generation
module, and c(t) is the carrier with a frequency of fdetect.

Finally, the thermal signal is generated following the same
temperature signal generation approach as described in Section
III-C.

C. Time Overhead

For the thermal covert channel that can change its frequency,
the jammer will need to track the frequency of the thermal
covert channel and learn all the frequencies used by the
thermal covert channel. Denote Ta as the time for the detection
unit to find a thermal covert channel signal, and Tb as the time
for the transmitter to find itself is being jammed. After Tb, the
transmitter starts to change its communication frequency, and
the time required for the transmitter to successfully change the
frequency is Tc. For the frequency list with M frequencies,
the time overhead for the jammer to complete the learning
of its entire frequency list is (Ta + Tb + Tc) ×M . A longer
detection time increases the probability that the attacker can
leak more information before the countermeasure unit detects
all the possible frequencies and blocks them.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

Our experiments are performed on two different platforms.
The first is a many-core simulator with an integrated power
model [23], and hereinafter, this platform is referred as the
simulation platform. We simulate both 2D and 3D many-core
chips with different levels of power consumption pertaining
to the processor cores. All the parameter values for different
configurations are listed in Table I. The floorplan of the
processor cores follows the one reported in [24]. In these

9

TABLE I
THE CONFIGURATIONS FOR THE SIMULATION.

Core Architecture Alpha 21264
Number of Cores 3× 3× 3
CPU Frequency 2000MHz

Fetch/Decode/Commit size 4 / 4 / 4
L1 D cache 16KB, 2-way, 32B line,

2 cycles, 2 ports
L1 I cache 32KB, 2-way, 64B line,

2 cycles
L2 cache 64KB, 64B line, 6 cycles, 2 ports

Main memory size 2GB
Chip thickness 0.00015m

Silicon thermal conductivity 100W/(m ·K)
Silicon specific heat 1.75× 106J/(m3 ·K)

Temperature threshold for DTM 373.15K
Heat sink side 0.06m

Heat sink thickness 0.0069m
Heat sink thermal conductivity 400W/(m ·K)

Transmission frequency list [40Hz,50Hz,60Hz,70Hz,80Hz,90Hz]

TABLE II
THE CONFIGURATIONS FOR THE EXPERIMENT ON A REAL MACHINE.

Processor Intel i7-6700k @4.0GHz
Memory 16 Gbytes

DRAM Frequency 1200MHz
Mainboard MSI Z170-A PRO

Physical Cores 4
Logical Cores 8

Fan Speed 1200rpm
Operate System Ubuntu 16.04.5 LTS

Dynamic Fan Speed OFF

experiments, a transmitter is set to be 1 hop away from
the receiver, and both transmitter and receiver are vertically
adjacent to each other. The chip temperature is simulated using
HotSpot [14], an accurate temperature simulator. The power
trace of each core is fed as the input into the HotSpot to get
the temperature.

The second sets of experiments are performed in a real
computer, whose configurations are listed in Table II. The
CPU is Intel i7-6700k @4.0GHz with the operation systems of
Ubuntu 16.04.5 LTS. We run the modprobe msr instruction to
load the msr module for the temperature sensor reading and set
the CPU frequency governor to the performance mode with the
cpufreq-set –g performance instruction. In this case, the CPU
frequency is fixed to be 4.0GHz. In these experiments, two
hardware threads in a core are dedicated to operate as a thermal
covert channel, while other cores are loaded with various
applications, including user applications (e.g., browsing the
web), AES [25], and those from PARSEC [26]. The AES is
one of the computationally intensive applications. All these
applications running at different cores pose as noise to the
thermal covert channel.

In the experiment we test the performance of a thermal
covert channels based on the measure of PER (packet error
rate), defined as

PER =
Ne

N
× 100% (6)

where N is the total number of packets transmitted, Ne

is the number of erroneous packets (those failed the cyclic
redundancy check) and lost packets combined.

0

0.2

0.4

0.6

0.8

1
0.92590.9614 0.9441

0

0.2

0.4

0.6

0.8

1
0.92590.9614 0.9441

0

0.2

0.4

0.6

0.8

1
0.92590.9614 0.9441

Fig. 12. The R-squares for different noises in Gaussian fitting.

0 0.25 0.5 0.6 0.7 0.8 0.9 1.0
Normalized jamming noise power

0

20

40

60

80

100

P
E

R
%

Existing TCC

FHSS TCC A

FHSS TCC B

Proposed TCC

0 0.25 0.5 0.6 0.7 0.8 0.9 1.0
Normalized jamming noise power

0

20

40

60

80

100

P
E

R
%

Existing TCC

FHSS TCC A

FHSS TCC B

Proposed TCC

0 0.25 0.5 0.6 0.7 0.8 0.9 1.0
Normalized jamming noise power

0

20

40

60

80

100

P
E

R
%

Existing TCC

FHSS TCC A

FHSS TCC B

Proposed TCC

Fig. 13. The PERs by varying the jamming noise power.

B. Evaluating the Enhanced Attack and Countermeasure

1) Evaluating the Channel Noise: In the first set of ex-
periments, the thermal noise is evaluated by running three
applications: the user applications, the AES and the PARSEC.
Here the thermal noise is treated as white noise with zero
mean and finite variance. The experiment is performed on the
real machine. The temperature is recorded every 10 ms under
three different system loads (treated as noises sources).

We use the following Gaussian function to fit the probability
distribution function (pdf) of the noises,

f(x) = ae−(x−b
c)2 (7)

where b is the expectation, c is the standard deviation, and
a is the height of function curve peak. Fig. 12 shows the R-
squares of the pdf of the noises. The closer the R-square to 1,
the closer the system noise to Gaussian noise.

As shown in Fig. 12 the R-squares are 0.9614, 0.9259 and
0.9441 for the user applications, the AES, and the PARSEC,
respectively. As all R-square values are reasonably close to 1,
it is safe to treat the noise follows the Gaussian distribution.

2) Evaluating the Proposed Thermal Covert Channel:
Fixed-frequency jamming noise is inserted in this set of
experiments. Fig. 13 compares the PERs of our dynamic
frequency changing thermal covert channel with those of a
conventional FHSS using an independent channel (100 Hz)
for synchronization (herein referred as FHSS TCC A), another
conventional FHSS using the same communication channel

10

5 10 15 20 25 30 35 40

Scan speed(channels/detection cycle)

0

10

20

30

40
D

et
ec

ti
o
n

 e
rr

o
r(

H
z)

5 10 15 20 25 30 35 40

Scan speed(channels/detection cycle)

0

10

20

30

40
D

et
ec

ti
o
n

 e
rr

o
r(

H
z)

5 10 15 20 25 30 35 40

Scan speed(channels/detection cycle)

0

10

20

30

40
D

et
ec

ti
o
n

 e
rr

o
r(

H
z)

100 500 1000 1500 2000 2500 3000
Samples

0

5

10

15

20

D
et

ec
ti

o
n

 e
rr

o
r(

H
z)

100 500 1000 1500 2000 2500 3000
Samples

0

5

10

15

20

D
et

ec
ti

o
n

 e
rr

o
r(

H
z)

100 500 1000 1500 2000 2500 3000
Samples

0

5

10

15

20

D
et

ec
ti

o
n

 e
rr

o
r(

H
z)

(a) (b)

Fig. 14. (a) Detection errors of the scanning-based approach with varying
scan speeds. (b) Detection errors of the recording-based approach with varying
sample numbers.

for synchronization (herein referred as FHSS TCC B) [27],
and the existing thermal covert channel in [3] with different
jamming noise powers. The normalized jamming noise power
is defined as the ratio of the jammer’s jamming power to the
thermal covert channel’s signal power. The power overhead
of a thermal covert channel is 23.43W . One can see from
Fig. 13 that the conventional FHSS TCC A has a very high
PER, because when an independent channel used for synchro-
nization is jammed, no communication can occur between the
transmitter and the receiver. FHSS TCC B uses the thermal
covert channel also for synchronization purpose; the jammer
with a fixed jamming frequency blocks the transmission of
the synchronization information when the jamming frequency
matches the communication channel frequency. Therefore,
FHSS TCC B has a higher PER than the proposed TCC. In
addition, its frequency hopping synchronization information
consumes extra communication bandwidth. One can see from
Fig. 13 that when the jamming noise power equals to the
thermal covert channel signal power, the PER of the existing
thermal covert channel [3] is over 85%, while the PER of
the proposed covert channel is 5%. The reason is that the
jammer detects the thermal covert channel and emits the noise
signal with the same transmission frequency as the thermal
covert channel. The receiver of the existing thermal covert
channel [3] reads both the noise and the packets from the
transmitter, which results in decoding errors. However, our
dynamic frequency changing protocol can detect the jamming
and changes the transmission frequency dynamically to avoid
being jammed. Once the transmission frequency moves to a
new frequency, the fixed-frequency jammer loses its target to
jam. This is the main reason that the PER of the proposed
thermal covert channel is lower than the existing thermal
covert channel.

3) Evaluating the Detection Scheme: Fig. 14 compares the
detection error of the two detection methods described in
Section IV-A under different setups and parameters.

The scanning-based approach is performed over the entire
frequency band from 30Hz to 150Hz. Scan speed is defined
as the number of channels processed for a complete scan
of the entire frequency band. Scanning through the entire
frequency band completes one detection cycle. Detection error
is defined as the absolute value of the difference between the
true transmission frequency and the detected frequency of the

0

20

40

60

80

100

P
E

R
%

0

20

40

60

80

100

P
E

R
%

0

20

40

60

80

100

P
E

R
%

Fixed threshold

Dynamic threshold

0

20

40

60

80

100

P
E

R
%

0

20

40

60

80

100

P
E

R
%

0

20

40

60

80

100

P
E

R
%

Fixed threshold

Dynamic threshold

0

20

40

60

80

100

P
E

R
%

0

20

40

60

80

100

P
E

R
%

0

20

40

60

80

100

P
E

R
%

Fixed threshold

Dynamic threshold

(a) (b) (c)

Fig. 15. (a) PER comparison by varying the threshold and jamming method
in the 0-hop simulation. (b) PER comparison by varying the threshold and
jamming method in the 1-hop simulation. (c) PER comparison by varying the
threshold and jamming method in the real machine.

thermal covert channel. Fig. 14(a) shows that the detection
error decreases with the increase in the scan speed. When the
speed is greater than 30 per detection cycle, the detection error
is as small as 3Hz.

In the recording-based approach, we use different numbers
of samples (defined as the number of data points collected
from the sensor to perform FFT). Fig. 14(b) shows that more
samples lead to smaller detection errors. When the number
of samples is greater than 1500, the detection error is 3Hz.
In the following experiments, the recording approach will be
used due to its lower overhead.

4) Evaluating the Countermeasure Schemes: The effects
of the two proposed countermeasure approaches against the
enhanced covert channel attack in Section III with the two
decision thresholds (in Section III-A) are evaluated in Fig.
15. When a fixed decision threshold is used in the covert
channel, both single-tone and random noises jam the enhanced
covert channel effectively. In the 0-hop (the transmitter and
the receiver are two hardware threads in a real machine multi-
threading processor) and 1-hop (the transmitter and receiver
are two adjacent cores in vertical direction) experiments, the
PERs of the proposed thermal covert channel increase to
over 85%. The PER of the proposed thermal covert channel
in the real machine even reaches 90%, literally making any
information leaking impossible. One can see from Fig. 15 that
the PER under the single-tone noise jamming is higher than
that of the random noise against the covert channel using a
fixed threshold. When a dynamic decision threshold is used in
the covert channel, the single-tone noise jamming cannot block
it. The thermal covert channel still maintains a very low PER,
less than 5%. The reason is as follows. From Equations (1)
and (2), the modulated covert channel signal can be expressed
as

signal(t) = ang(t− nTB)× c(t) (8)

From Equations (3) and (5), the modulated single-tone noise
jamming signal can be expressed as

noise(t) = gjam(t− nTjam)× c(t) (9)

11

To simplify analysis, we assume that the jamming noise has
the same phase, symbol width (TB , Tjam), and baseband pulse
waveform (g(t), gjam(t)) as the covert channel signal. The
signal received by the receiver is the superposition of the
jamming noise and the covert channel signal, which is

receive(t) =

{
2g(t− nTB)× c(t) + n(t) ai = 1

g(t− nTB)× c(t) + n(t) ai = 0
(10)

where c(t) is the carrier signal, and n(t) is the white noise
generated by the system. If the amplitude of the transmission
signal, the jamming signal, and the white noise are φ, σ, and τ ,
respectively, with the single-tone noise jamming, the amplitude
of the received signal is φ+σ+τ when the transmitter sends a
‘1’, and σ+τ when a ‘0’ is transmitted. The dynamic decision
threshold in the covert channel is set to be (φ+ σ + τ)/2. If
φ > σ, (φ+σ+τ)/2 > (σ+τ), i.e., the receiver of the covert
channel shall make the correct decision. Therefore, the single-
tone noise jamming cannot block the covert channel when it
uses the dynamic decision threshold. However, when a fixed
decision threshold of τ is adopted in deciding the received
signal symbols from the thermal covert channel, the symbols
would be wrongfully taken as logic ‘1’ (as the amplitude at
the receiver is over the threshold), resulting in a high PER for
the single-tone noise jamming.

In contrast, the random noise jamming still can effectively
block the thermal covert channel, whose PER rises to over
85% in both simulations and the real machine.

Table III further compares the PERs of FHSS TCC A,
FHSS TCC B, and the proposed TCC when our proposed
countermeasure is applied. One can see that our proposed
countermeasure can effectively block information leak caused
by FHSS TCC A, FHSS TCC B, and our proposed TCC with
very high PERs.

C. Runtime and Power Overheads of the Countermeasure
The scanning-based approach with a scan speed of 30

samples per detection cycle takes a total of 50 milliseconds to
complete a scan of the entire frequency band to detect a covert
channel. The recording-based approach needs to compute
1500-point FFT, which takes less than 8 milliseconds. When
the frequency of possible attacks is detected, the defender gen-
erates jamming noise with a duration of up to tens of seconds.
Therefore, the total time of running the countermeasure takes
less than 50 milliseconds. For the recording-based approach,
the time overhead is even less than 10 milliseconds and the
average power consumption due to jamming is 22.27W .

For the thermal covert channels whose frequency can be
changed, from the simulation, one can see Ta is 50 millisec-
onds, Tb is 10 milliseconds, and Tc is 2 seconds in the best
scenario (the receiver can receive DFCQ packets directly) and
6.8 seconds in the worst (using polling) scenario (see Section
III-B). As the length of the frequency list in the experiment is
6, the jammer can span the entire frequency list within 12.36
and 41.16 seconds in the best and worst scenarios, respectively.

VI. CONCLUSION

It was shown in the paper that a thermal covert channel
could acquire strong anti-jamming capability by following a

TABLE III
THE PERS OF FHSS TCC A,FHSS TCC B, AND THE PROPOSED TCC

WITH THE PROPOSED COUNTERMEASURE APPLIED.

FHSS TCC A FHSS TCC B Proposed TCC
PER 90.2% 87.8% 87.6%

communication protocol that enables the thermal covert chan-
nel to reliably change its communication frequency. In order
to combat this enhanced covert channel, a countermeasure
was proposed, which detects an attack by scrutinizing the
frequency spectrum periodically. It then reactively emits a
jamming noise with the same frequency of the covert channel.
Experimental results confirmed that the PER of the enhanced
covert channel reduces to as low as 5%. However, when the
proposed countermeasure is applied, its PER jumps to 85%,
effectively shut down thermal covert channel attacks even with
enhanced capabilities.

ACKNOWLEDGMENT

This research program is supported by the Natural Sci-
ence Foundation of Guangdong Province No. 2018A030313
166, Pearl River S&T Nova Program of Guangzhou No.
201806010038, the Fundamental Research Funds for the Cen-
tral Universities No. 2019MS087, Open Research Grant of
State Key Laboratory of Computer Architecture Institute of
Computing Technology Chinese Academy of Sciences No.
CARCH201916, Key Laboratory of Big Data and Intelligent
Robot (South China University of Technology), Ministry of
Education, and the Natural Science Foundation of China No.
61971200.

REFERENCES

[1] R. J. Masti, D. Rai, A. Ranganathan, C. Müller, L. Thiele, and S. Cap-
kun, “Thermal covert channels on multi-core platforms,” in Usenix
Conference on Security Symposium, 2015, pp. 865–880.

[2] D. B. Bartolini, P. Miedl, and L. Thiele, “On the capacity of thermal
covert channels in multicores,” in European Conference on Computer
Systems, 2016, p. 24.

[3] Z. Long, X. Wang, Y. Jiang, G. Cui, L. Zhang, and T. Mak, “Improving
the efficiency of thermal covert channels in multi-/many-core systems,”
in Design, Automation & Test in Europe Conference & Exhibition, 2018,
pp. 1459–1464.

[4] M. Guri, M. Monitz, and Y. Elovici, “Usbee: air-gap covert-channel via
electromagnetic emission from usb,” in Conference on Privacy, Security
and Trust, 2016, pp. 264–268.

[5] X. Zhang, Y.-A. Tan, C. Liang, Y. Li, and J. Li, “A covert channel over
volte via adjusting silence periods,” IEEE Access, vol. 6, pp. 9292–9302,
2018.

[6] M. Guri, O. Hasson, G. Kedma, and Y. Elovici, “An optical covert-
channel to leak data through an air-gap,” in Conference on Privacy,
Security and Trust, 2016, pp. 642–649.

[7] N. Matyunin, J. Szefer, S. Biedermann, and S. Katzenbeisser, “Covert
channels using mobile device’s magnetic field sensors,” in Asia and
South Pacific Design Automation Conference, 2016, pp. 525–532.

[8] L. Deshotels, “Inaudible sound as a covert channel in mobile devices,”
in Usenix Conference on Offensive Technologies, 2014.

[9] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache attacks on
AES, and countermeasures,” Journal of Cryptology, vol. 23, no. 1, pp.
37–71, 2010.

[10] S. Cabuk, C. E. Brodley, and C. Shields, “IP covert timing channels:
design and detection,” in Conference on Computer and communications
security, 2004, pp. 178–187.

[11] J. Chen and G. Venkataramani, “Cc-hunter: uncovering covert timing
channels on shared processor hardware,” in International Symposium on
Microarchitecture, 2014, pp. 216–228.

12

[12] S. Chen, W. Xiong, Y. Xu, B. Li, and J. Szefer, “Thermal covert
channels leveraging package-on-package DRAM,” in International Con-
ference on Trust, Security and Privacy in Computing and Communica-
tions/International Conference on Big Data Science and Engineering,
2019, pp. 319–326.

[13] H. Huang, X. Wang, Y. Jiang, A. K. Singh, M. Yang, and L. Huang, “On
countermeasures against the thermal covert channel attacks targeting
many-core systems,” 2020, unpublished.

[14] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,
and D. Tarjan, “Temperature-aware microarchitecture,” in International
Symposium on Computer Architecture, 2003, pp. 2–13.

[15] Y. W. Li and H. Lakdawala, “Smart integrated temperature sensor-
mixed-signal circuits and systems in 32-nm and beyond,” in Custom
Integrated Circuits Conference, 2011, pp. 1–8.

[16] J. Shor, K. Luria, and D. Zilberman, “Ratiometric BJT-based thermal
sensor in 32nm and 22nm technologies,” in International Solid-State
Circuits Conference, 2012, pp. 210–212.

[17] S. Paek, W. Shin, J. Lee, H.-E. Kim, J.-S. Park, and L.-S. Kim, “All-
digital hybrid temperature sensor network for dense thermal monitoring,”
in International Solid-State Circuits Conference, 2013, pp. 260–261.

[18] “8th gen intel R© coreTM processor family datasheet,”
https://www.intel.com/content/www/us/en/products/docs/processors/
core/8th-gen-core-datasheet-vol-1.html.

[19] S. Pan, C. Gürleyük, M. F. Pimenta, and K. A. A. Makinwa, “A
0.12mm2 wien-bridge temperature sensor with 0.1◦C (3σ) inaccuracy
from -40◦C to 180◦C,” in International Solid-State Circuits Conference,
2019, pp. 184–186.

[20] M. Strasser, C. Pöpper, and S. Capkun, “Efficient uncoordinated FHSS
anti-jamming communication,” in International Symposium on Mobile
Ad Hoc Networking and Computing, 2009, pp. 207–218.

[21] Y. Li, M. Feng, and W. Xie, “Frequency hopping synchronization
strategy,” in International Conference on Systems and Informatics, 2016,
pp. 716–720.

[22] M. Wang, Z. Li, and J. Shi, “Design of TOD self-synchronization
method in frequency hopping system,” in International Conference on
Communications and Networking in China, 2015, pp. 343–348.

[23] X. Wang, M. Yang, Y. Jiang, P. Liu, M. Daneshtalab, M. Palesi, and
T. Mak, “On self-tuning networks-on-chip for dynamic network-flow
dominance adaptation,” ACM Transactions on Embedded Computing
Systems, vol. 13, no. 2s, 2014.

[24] X. Wang, P. Liu, M. Yang, M. Palesi, Y. Jiang, and M. Huang,
“Energy efficient run-time incremental mapping for 3-D networks-on-
chip,” Journal of Computer Science and Technology, vol. 28, no. 1, pp.
54–71, 2013.

[25] Y. S. Yang, J. H. Bahn, S. E. Lee, and N. Bagherzadeh, “Parallel
and pipeline processing for block cipher algorithms on a network-on-
chip,” in International Conference on Information Technology: New
Generations, 2009, pp. 849–854.

[26] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” in International
Conference on Parallel Architectures and Compilation Techniques, 2008,
pp. 72–81.

[27] F. Li, Z. Li, D. Lou, and J. Jiang, “Analysis and research of synchro-
nization technique for frequency-hopping communication systems,” in
International Conference on Computer Science and Network Technology,
2011, pp. 1968–1972.

Jiachen Wang received the bachelor’s degree in
software engineering from South China University
of Technology, Guangzhou, China. He is working
toward the master’s degree in the school of software
engineering, South China University of Technology.
His research interests include hardware security, and
covert channel.

Xiaohang Wang received the B.Eng. and Ph.D
degree in communication and electronic engineering
from Zhejiang University, in 2006 and 2011. He
is currently an associate professor at South China
University of Technology. He was the receipt of PDP
2015 and VLSI-SoC 2014 Best Paper Awards. His
research interests include many-core architecture,
power efficient architectures, optimal control, and
NoC-based systems.

Yingtao Jiang joined the Department of Electrical
and Computer Engineering, University of Nevada,
Las Vegas in Aug. 2001, upon obtaining his Ph.D
degree in Computer Science from the University of
Texas at Dallas. He has been a full professor since
July 2013 at the same university, and now assumes
the associate dean of the College of Engineering.
His research interests include algorithms, computer
architectures, VLSI, networking, nano-technologies,
etc.

Amit Kumar Singh is a Lecturer (Assistant Pro-
fessor) at University of Essex, UK. He received
the B.Tech. degree in Electronics Engineering from
Indian Institute of Technology (Indian School of
Mines), Dhanbad, India, in 2006, and the Ph.D.
degree from the School of Computer Engineering,
Nanyang Technological University (NTU), Singa-
pore, in 2013. He was with HCL Technologies, India
for a year and half until 2008. He has a post-doctoral
research experience for over five years at several
reputed universities. His current research interests

are system level design-time and runtime optimization of 2D/3D multi-core
systems for performance, energy, temperature, reliability and security. He has
published over 90 papers in reputed journals/conferences, and received several
best paper awards, e.g. IEEE TC February 2018 Featured Paper, ICCES 2017,
ISORC 2016, PDP 2015, HiPEAC 2013 and GLSVLSI 2014 runner up. He
has served on the TPC of IEEE/ACM conferences like DAC, DATE, CASES
and CODES+ISSS.

Mei Yang received her Ph. D. in Computer Science
from the University of Texas at Dallas in Aug. 2003.
She has been a full professor in the Department
of Electrical and Computer Engineering, University
of Nevada, Las Vegas since 2016. Her research
interests include computer architectures, networking,
and embedded systems.

Letian Huang received the MS and PhD degrees
in communication and information system from the
University of Electronic Science and Technology
of China (UESTC), Chengdu, China in 2009 and
2016, respectively. He is an associate professor with
UESTC. His scientific work contains more than 40
publications including book chapters, journal arti-
cles and conference papers. His research interests
include heterogeneous multi-core system-on-chips,
and network-on-chips.

