
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

On Runtime Communication- and
Thermal-aware Application Mapping and

Defragmentation in 3D NoC Systems
Bing Li, Xiaohang Wang, Member, IEEE, Amit Kumar Singh, Member, IEEE, Terrence Mak, Senior

Member, IEEE,

Abstract—Many-core systems connected by 3D Networks-on-Chip (NoC) are emerging as a promising computation engine for
systems like cloud computing servers, big data systems, etc. Mapping applications at runtime to 3D NoCs is the key to maintain high
throughput of the overall chip under a thermal/power constraint. However, the goals of optimizing both the communication latency and
chip peak temperature are contradicting due to several reasons. Firstly, exploiting the vertical TSV links can accelerate
communications, while low peak temperature prefers that the tasks to be mapped closer to the heat sink, instead of using the vertical
links. Secondly, mapping tasks in close proximity can reduce communication latency, but at the cost of poor heat dissipation. To
address these issues, in this paper, we propose an efficient runtime mapping algorithm to reduce both communication latency and
overall application running time under thermal constraint. In essence, this algorithm first selects a 3D cuboid core region of a specific
shape for each incoming application by setting the region’s number of occupied vertical layers and its distance to the heat sink, in order
to optimize its communication performance and peak temperature. Next, the exact locations of the core regions in the chip are
determined, followed by a task-to-core mapping. A defragmentation algorithm is also proposed to keep free core regions contiguous.
The experimental results have confirmed that, compared to two recently proposed runtime mapping algorithms, our proposed
approach can reduce the total running time by up to 48% and communication cost by up to 44%, with a low runtime overhead.

Index Terms—3D NoC, Application-based mapping, Thermal management, Run-time, Defragmentation

F

1 INTRODUCTION

MANY-CORE systems have been widely used as an
engine to provide sufficient computation power in

cloud computing servers, big data systems, etc. In these
systems, multiple applications with various workload char-
acteristics arrive and leave the system at runtime. Mapping
tasks to cores online is the key to improve system perfor-
mance.

Three dimensional (3D) integration can improve the
system integration and reduce global wire length. Through-
Silicon-Via (TSV) is one of the popular approaches among
various 3D integration techniques [1, 2]. 3D networks-on-
chip (NoC) adopting the TSV technique have lower network
latency and power consumption, and higher bandwidth
[3, 4]. However, as more dies stacked vertically, power
density (W/m2) increases, and the length of heat conduction
path increases, resulting in higher propagation delay and
higher leakage power [5].

The major challenge of runtime application mapping in
3D NoC is to achieve the contradicting goals of optimizing

• Bing Li and Xiaohang Wang are with the School of Software Engineering,
South China University of Technology, Guangzhou, China, 510006.

• Amit Kumar Singh is with the School of Computer Science and Electronic
Engineering, University of Essex, Colchester CO4 3SQ, United Kingdom.
E-mail: a.k.singh@essex.ac.uk .

• Terrence Mak is with the School of Electronics and Computer Science, Uni-
versity of Southampton, Southampton SO17 1BJ, United Kingdom, and
with the Guangzhou Institute of Advanced Technology, CAS, Guangzhou,
511458, China. E-mail: tmak@ecs.soton.ac.uk .

Manuscript received ; revised .

Fig. 1: (a) Mapping tasks to exploit vertical wires for higher
communication efficiency. (b) Mapping tasks close to heat
sink for lower temperature. (c) Free cores scattered. (d) Free
cores packed in close proximity.

communication and temperature, which requires to address
the following two aspects:

1) Whether to exploit the vertical links or not leads
to different communication and temperature behav-
iors. Lower communication latency requires that the
tasks of an application to exploit the TSV connec-
tions as much as possible. That is, the tasks with
high communication volume should be mapped
across multiple vertically adjacent layers in the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

same column, as TSVs provide high bandwidth
and shorter distance as in Fig. 1 (a). On the other
hand, lower temperature requires that the tasks to
be mapped to the layer close to the heat sink as in
Fig. 1 (b), instead of across multiple layers.

2) For a system with several running applications,
whether to map tasks in a scattered manner or close
proximity might lead to fragmentation or high tem-
perature. A phenomenon called “fragmentation” of-
ten occurs, causing free cores scattered (not forming
a contiguous region). Frequent application arrival
and departure lead to fragmentation, i.e., free cores
are scattered. As a result, incoming applications
might be either mapped to two disconnected core
regions with uncontiguous mapping, or wait until a
contiguous free core region is formed with contigu-
ous mapping. In the former case, communication la-
tency is increased, and in the latter case, the waiting
time is increased, both cause the system through-
put to degrade. Fragmentation increases communi-
cation distance and latency for tasks of incoming
applications as they are mapped to noncontiguous
free cores regions [6], as in Fig. 1 (c). Mapping tasks
in close proximity alleviates fragmentations. How-
ever, if thermal effect is taken into consideration,
mapping tasks in close proximity accumulates heat
faster and tends to have high peak temperature as in
Fig. 1 (d), where the peak temperature is 2°C higher
than that in Fig. 1 (c)1.

In this paper, we propose an algorithm to address the
above challenges, in order to optimize the communication
and computation performances under a thermal constraint
in 3D NoC systems. The algorithm has three steps. First,
a 3D cuboid core region of a specific shape is selected for
each application. Second, the exact locations of the core re-
gions in the chip are determined, followed by a task-to-core
mapping. Finally, during task running, the defragmentation
process is executed.

Our previous work [7] has been significantly extended
by making the following new contributions:

1) Related work is extended to cover the defragmenta-
tion and other mapping algorithms.

2) A thermal-aware defragmentation algorithm is pro-
posed to reduce system fragmentation and waiting
time (by bringing free cores into a near-convex
contiguous region) for incoming application under
thermal constraint.

3) Experiments are substantially extended, including
the new evaluation of the proposed defragmenta-
tion algorithm and fragmentation metric validation.

The rest of paper is organized as follows. Related work is
reviewed in Section 2. The problem is formulated in Section
3. The proposed runtime mapping and defragmentation
algorithms are detailed in Section 4. Experimental results
are evaluated in Section 5. Finally, Section 6 concludes the
paper.

1. The experimental setup is described in Section 5.1

2 RELATED WORK

Existing runtime application mapping algorithms in NoC
can be classified into 3 categories: 1) communication ori-
ented, 2) temperature oriented, and 3) both communication
and temperature oriented.

Mapping algorithms in the first category focus on com-
munication optimization, improving system throughput by
reducing network latency [8, 9]. Most of the algorithms
in this category target 2D NoC systems as in [8, 10, 11].
These approaches map communicating tasks to cores close
to each other so that communication latency and power
are reduced. For example, in [11], Fattah et al. proposed
a stochastic hill climbing algorithm that starts from a first
node and maps the tasks to a set of nodes forming a
contiguous region around it. A few mapping algorithms
target 3D NoC system as in [5, 9]. In [9], Ziaeeziabari et
al. proposed a latency-aware task mapping algorithm. It
divides communications of a given application’s task graph
into low volume and high volume communication sub-task-
graphs. Then it maps these sub-task-graphs one by one
based on their total communications considering where the
vertical channels are located in the network. However, these
approaches do not consider thermal aspects.

Mapping algorithms in the second category focus on
temperature optimization [12–16]. In [12], Cui et al. pro-
posed the B2T algorithm that maps all the tasks to the
bottom layer which is close to the heat sink, followed by
a second step which moves low-power tasks to the top
layer. In [15], Zhu et al. proposed the temperature-aware
partitioning and placement (TAPP) algorithm to avoid ther-
mal hotspots. TAPP spreads high-power cores and routers
across the chip by performing a hierarchical bi-partitioning
of the cores and concurrently conducting the placement of
the cores onto tiles, which achieves both high efficiency
and scalability. These algorithms ignore communication dis-
tance, which might lead to a higher network latency. In [16],
Hamedani et al. considered the temperature constraints for
thermal-aware mapping of 3D networks-on-chip, focusing
on the design of thermal management algorithm.

Mapping algorithms in the third category focus on
jointly optimizing communication latency and temperature
[17–22]. In [17], Mosayyebzadeh et al. proposed an algorithm
using fuzzy logic to adjust the impact of heat emission
capability, inter-task distance inside application, and dis-
tance from hotspots. It reduces the communication delay by
mapping tasks with large communication volumes to cores
close to each other. It also reduces power consumption and
peak temperature by mapping tasks to cores that are close to
the heat sink. However, this method does not fully exploit
the vertical links to optimize latency.

All the above application mapping algorithms might
lead to a phenomenon called fragmentation [6], where free
cores are scattered. As a consequence, tasks of incoming
applications have to be mapped to these scattered cores,
leading to increased communication cost. To alleviate frag-
mentation, a few task migration based approaches were
proposed [6, 23, 24]. Moraes et al. [23] evaluated the cost of
the task migration, demonstrating that the cost to migrate a
given task has a small impact on the system performance,
enabling it use to improve the overall system performance.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

TABLE 1: Symbol Definition

Symbol Definition

G(C,L) A 3D mesh NoC system
C The set of cores in a 3D NoC system
L The set of links connecting the cores

in the 3D NoC system
Gw X dimension (width) of the 3D NoC
Gl Y dimension (length) of the 3D NoC
Gh Z dimension (height) of the 3D NoC
S The set of applications
Ai Application i
Ti The set of tasks of Ai

Ei The set of edges in the task graph of Ai

e(i, j) Edge e between two tasks i and j
M(t) = c A mapping function binding task t to core c
Tr(e) The transmission time of e

between two communicating tasks
V (i, j) The traffic volume between two

communicating tasks i and j
D(i, j) The Manhattan distance between two cores i and j
P (c) The power of the core c
PM (c) thermal power capacity of the core c
σ(S) The overall running time of

applications in the set S
Vi The average communication volume of

each task in Ai

RP The reference point
CIi The corner index for Ai

NOLi The number of occupied layers of an application
MDi The minimal distance to heat sink of an application
RTi The running time of an application
ERTi The estimated running time of an application
σ̂(S) The estimated overall running time

of a set of applications
σ̂∗(S) The minimum overall running time

of a set of applications
F The fragmentation metric

Fig. 2: An example of 3D mesh NoC architecture.

In [6], Ng. et al. proposed a defragmentation algorithm
to migrate isolated free cores toward one of the chip’s
corner to cluster them. As a result, the free cores can form
a contiguous region. In [24], Pathania et al. introduced a
concept of exponentially separable mapping (ESM), which
defines a set of task mapping constraints on a many-core.
They illustrated that an ESM-enforced many-core can be
defragmented optimally in polynomial time. In [25], Wang et
al. proposed a task migration-based adaptive tile (core) de-
fragmentation algorithm that relocates the applications tile
regions to consolidate running applications through online
task migration. However, these defragmentation approaches
do not consider thermal issues. In addition, most of them
target 2D NoCs instead of 3D NoCs.

3 PROBLEM FORMULATION

In this work, the 3D NoC system model as in [12] is adopted.
Fig. 2 shows the architecture of a 3D mesh NoC with TSVs as
the vertical links. As reported in [12, 22], TSV-based vertical
links can often provide faster and more energy-efficient
communication compared to horizontal links. The 3D NoC
is modeled as a directed graphG(C,L), whereC is the set of
cores and L is the set of links connecting the cores. The cores
of the system model can run at various voltage/frequency
(V/F) levels. The deterministic ZXY routing is used. The
layer which lies closest to the heat sink is referred to as
the bottom layer and the most distant one from the heat
sink is referred to as the top layer. A centralized resource
manager is designed to monitor the arrival of application,
manage resources and perform application mapping in the
NoC system. Table 1 summarizes the definitions of symbols
used in this paper.

3.1 Application Model
Each application is modeled as a directed graph Ai =
(Ti, Ei), where Ti is the set of tasks of the application andEi

is the set of directed edges representing data communication
amongst the tasks. Each task t ∈ Ti, has a weight equal
to its execution time. Each edge e ∈ Ei has a weight
corresponding to the data traffic volume between the two
communicating tasks.

A mapping function M(t) = c binds tasks to the cores
for each t ∈ Ti, and c ∈ C , such that task t is mapped
to core c. Each edge e ∈ Ei has a weight of transmission
time, after the two communicating tasks are mapped. The
transmission time between two tasks i and j depends on
(1) the communication distance between the cores to which
they are mapped and (2) their traffic volume. For each edge
e = (i, j), the transmission time can be modeled by equation
1.

Tr(e) = α · V (i, j) + β ·D(i, j) (1)

where V (i, j) is the traffic volume between the two tasks
i and j, and D(i, j) is the distance between the two
cores to which the two tasks are mapped. D(i, j) could
only be computed after the two communicating tasks
are mapped. α and β are regression coefficients of the
linear regression model, which can be computed using the
maximum likelihood method in [26]. The running time of
each application i is the makespan of application Ai’s task
graph, denoted as RTi.

3.2 Thermal Power Capacity Model
thermal power capacity model (TPC) of [27] is adopted. As
in [27], the TPC of a core is defined as the maximum power
the core can consume, given the power consumptions of
other cores. It is used at runtime to estimate the upper
bound power consumption of a core with low computing
cost, given the power consumptions of its neighboring eight
cores. The TPC of each core can be determined offline. In the
rest of the paper, PM (c) and PM (x, y, z) are used to denote
the power capacity of the core c at the location (x, y, z)
interchangeably. The TPC of a core is bounded by the
cooling capacity of the system, and the power consumptions

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

or temperatures of other cores, i.e., thermal correlation. The
TPC of a core c can be found as,

PM (x, y, z) = θ[P (x± l1, y ± l2, z′)] =
∑
q

αq · P (c) (2)

where P (x ± l1, y ± l2, z
′) is the power consumption of

the core c located at (x ± l1, y ± l2, z′), which is thermally
correlated with core c. The function θ(·) can also be found by
linear regression, using the lasso method [26]. In particular,
for each core at (x, y, z) the coefficients of the following two
types of cores are non-zero: (1) adjacent cores in the same
layer, that is, cores whose coordinates are (x± l1, y ± l2, z′)
with l1, l2 = 0, 1 and z′ = z and (2) those with the same X
and Y coordinates but in different layers, that is, cores whose
coordinates are (x, y, z′) with z′ = 0, 1, ..., Gh and z′ 6= z.
These cores have the highest thermal correlations with the
core (x, y, z). For core c, the coefficients of other cores are
set to be 0.

3.3 Problem Description
thermal- and communication-aware mapping problem is
defined as:

Given a set of n applications in the system, find a
task-to-core mapping M(Ai) for each application Ai in the
3D NoC system to minimize the overall running time of
these applications, such that the system peak temperature is
below a threshold.

Mathematically, the problem is formulated as:

min σ(S) = Alf −Afa (3)

subject to P (c) ≤ PM (c), ∀c ∈ C (4)

where σ(S) is the overall running time of the application
set S, Alf and Afa are the finish time of the last application
and the arrival time of the first application in the set,
respectively, P (c) is the power of a core, and PM (c) is the
maximum power a core can consume which is computed
from the TPC model.

4 THE PROPOSED THERMAL- AND
COMMUNICATION-AWARE MAPPING AND
DEFRAGMENTATION ALGORITHM

4.1 Overview
The proposed mapping algorithm has three steps:

1) Find a 3D cuboid core region of a specific shape for
every application.

2) Determine the exact location of each application’s
core region, only one task to one core mapping is
allowed.

3) Perform defragmentation to keep the free core re-
gion contiguous.

4.1.1 Characterizing the shape of a core region
Two metrics, the minimal distance to heat sink (MD) and the
number of occupied layers (NOL), are used to characterize
the shape of a core region. Layers closer to the heat sink have
a better cooling effect, which implies that cores in such lay-
ers can run with a higher V/F level and power consumption
without violating thermal constraint. Therefore, the distance

Fig. 3: An example of minimal distance to heat sink (MD)
and the number of occupied layers (NOL) values of a core
region.

to heat sink of a core region relates to the peak temperature
and computation performance. The minimal distance to heat
sink (MD) in definition 1 is used to characterize thermal
feature of a core region. As an example, the MD value of the
core region for the 8-task application in Fig. 3 is 1.

Definition 1. The minimal distance to heat sink (MD) is the
index of the lowest layer of Ai’s core region.

The number of occupied layers (NOL) of a core region,
defined in definition 2, relates to the number of TSV links in
a core region, corresponding to how many vertical links are
used in a core region to accelerate communication. For an
application whose number of tasks is fixed, a “taller” core
region has more TSV links than a “shorter” one. Thus, a
taller core region has lower network communication latency.
That is, a larger “NOL” indicates lower communication
latency. As an example, the NOL of the 8-task application
in Fig. 3 is 2.

Definition 2. The number of occupied layers value NOLi

of application Ai’s core region equals to its number of
layers.

4.1.2 Estimation of an application’s running time
The running time of an application depends on the com-
munication latency and the V/F levels of the cores running
its tasks. Cores near the heat sink can run at higher V/F
levels to reduce task running time. MD metric can be used
to reflect the computation performance of a core region. The
communication latency depends on the average inter-task
distance inside the region, as well as the number of vertical
links inside a core region. Therefore, the running time of an
application can be modeled by the NOL and MD metrics.

Consider the trade-off between model accuracy and al-
gorithm runtime overhead, the running time of a core region
can be estimated by a linear regression model of MD and
NOL as in equation 5,

ERTi = a0+a1×|Ai|+a2×Vi+a3×NOLi+a4×MDi

(5)

where |Ai| is the number of tasks in application Ai, Vi
is the average communication volume of each task in Ai,
NOLi is the number of occupied layers of the core region,
and MDi is the MD value of the core region. To compute
the coefficients a0, a1, a2, a3, a4, the maximum likelihood
methods can be used [26].

A search algorithm is proposed where a core region of
a specific shape is selected for each application, by tuning
its MD and NOL values according to its communication

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

and computation demands. For a set of applications, a
search tree is formed where each node in the search tree
is characterized by the MDi and NOLi values of each
application Ai.

The branch-and-bound algorithm is used to find the best
tree node, which corresponds to the best combination of
shapes of core region for this set of applications.

4.1.3 Search tree

Assume n applications are to be mapped, a tree node is de-
fined asNm = 〈f(0), ..., f(n)〉, where each f(i) is composed
by NOLi and MDi of application Ai’s core region. At the
root node, the MD and NOL values of the applications’ core
regions are not set yet.

The tree is grown by branching new nodes from the
root down to the leaves level by level, corresponding to
setting the MDi and NOLi values for each application’s
core region. Once the next level tree node is branched,
the MD and NOL values of one of the applications’ core
region is set. Each non-leaf tree node Nj is associated with
σ̂(S)MIN

j , indicating the minimal estimated running time of
Nj . Each leaf node is associated with σ̂(S), that is, the time
when the last application in set S finishes execution.

The basic operations for the search tree include branch-
ing and cutting.

4.1.3.1 Branching of new tree nodes: If a tree node is a
leaf node, all the applications have found their core regions.
The σ̂(S) of this tree node is compared with σ̂∗(S), a value
keeps the minimum overall running time over all the tree
nodes searched so far. If this tree node is not a leaf node, a
new tree node should be created corresponding to finding
a core region for a next application. The MDi and NOLi

of the next application Ai are bounded by the following
parameters.

NOLMIN
i =

⌈ |Ai|
Gw×Gl

⌉
(6)

NOLMAX
i = min {Gh, |Ai|} (7)

MDMIN
i = min{c.z,∀c ∈ Γ} (8)

MDMAX
i = Gh −NOLMIN

i (9)

where |Ai| is the number of tasks in Ai, Γ is the free core
set, c.z is the layer index of core c and Gw, Gl and Gh

are the width, length and height of the 3D NoC system,
respectively.NOLMIN

i is the minimum number of occupied
layers of a 3D cuboid core region for an application such that
the application’s tasks can be accommodated in the core
region. NOLMAX

i is the upper limit of the core region’s
number of occupied layers, which is bounded by the maxi-
mum number of vertical layers in the 3D NoC.MDMIN

i and
MDMAX

i are the minimum and maximum MD values of a
core region, respectively. Once NOLMIN

i and NOLMAX
i

are determined, they can be computed to make sure the
core region can fit inside the 3D NoC. The NOL and MD
values of the next application’s core region is bounded by
[NOLMIN

i , NOLMAX
i] and [MDMIN

i ,MDMAX
i], respec-

tively. In total, for each non-leaf tree node, a maximum
of (NOLMAX

i −NOLMIN
i)× (MDMAX

i −MDMIN
i) tree

nodes in the next level can be created.

Fig. 4: (a) An example of infeasible core region. (b)An
example of feasible core region.

4.1.3.2 Cutting: To reduce the search space and
speed up the tree search process, some tree branches should
be cut. For each of the newly created tree nodes, whether
they should be discarded or not is checked according to the
following two cut rules.

Rule 1) Cut infeasible nodes. An infeasible tree node refers
to a setting of MDs and NOLs of the core regions that they
do not fit into the 3D NoC, e.g.,

1) The number of cores of a region in a layer is larger
than the total available cores in that layer. The num-
ber of available cores in each layer is maintained
and updated at runtime to test the feasibility. Once
some applications are mapped to run, the number
of available cores in each layer is subtracted by the
number of the cores occupied by the applications
in that layer. The number of tasks in each layer
of an application is set to be the number of tasks
divided by NOL. For example, for a core region with
an NOL of 2 and a 6-task application, the number
of tasks in each layer in that core region is 3. If it
exceeds the free core number limit in each layer, the
corresponding tree node is infeasible.

2) For the vertical direction, it is feasible if MDi +
NOLi ≤ Gh, i.e., the core region selected for the
application fits inside the 3D NoC. For example,
the core region in Fig. 4 (a) is infeasible because
NOL0 is larger than NoC height, causing two tasks
exceeding the NoC. Meanwhile, the core region of
A0 in Fig. 4 (b) is feasible because all tasks of A0

could be mapped inside the NoC.

The tree nodes not meeting these requirements are
deemed as infeasible and discarded.

Rule 2) Cut by node dominance. Once a new tree nodeNj is
created, its σ̂(S)MIN

j is compared with the global minimum
overall running time σ̂∗(S). If its σ̂(S)MIN

j is larger than
σ̂∗(S), indicating the minimum overall application running
time of Nj is longer than the best overall running time
found so far among all the tree nodes, the new tree node
is discarded.

Algorithm 1 shows how the search algorithm works.
The tree nodes are stored in a working queue. Initially, a
dummy root node is pushed to the queue. In each iteration,
new tree nodes are created by assigning different MD and
NOL values to a new application’s core region. In total,
(NOLMAX

i −NOLMIN
i)×(MDMAX

i −MDMIN
i) new tree

nodes are created. For each of these tree nodes, if they do
not meet the above two cutting rules, they are pushed to the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

Algorithm 1 Finding the Shape of Core Region for Each
Application
Input: S: the set of unmapped applications;
Output: MDi and NOLi: MD and NOL values of each

application Ai;
Var: WQ: A working queue, initialized to be empty;

NBN : The newly branched node;
BN : The best node during search;
σ̂∗(S): A value keeps the minimum overall running

time over all the tree nodes searched so far;
while WQ is not empty do

pop the top node Nq out of WQ;
if Nq is not a leaf node then

branch new tree nodes;
for each newly branched nodes NBN do

if NBN do not meet the cutting rules then
push NBN in WQ;

end
else

if σ̂(S)q < σ̂∗(S) then
σ̂∗(S) = σ̂(S)q ;
BN = Nq ;

end

queue. The length of the queue can be tuned to trade off the
running speed and result optimality of the search algorithm.
In the search process, applications with more traffic are pos-
sibly assigned with core regions with larger NOL values to
speed up communication, while the computation intensive
applications are possibly assigned with regions with smaller
MD values to speed up computation.

4.2 Finding the Locations for the 3D Cuboid Core Re-
gions

Algorithm 2 Finding the Exact Locations of Core Regions

Input: S: the set of unmapped applications;
Output: M(Ai): the mapping core region for application

Ai;
Function: Find the location of the core region for each
application Ai;

Var: Ai: an application in S, where i = 1, 2, ..., m;
sort the applications in S according to their number of
tasks in a descending order;

set CIi to be 0;
for each Ai ∈ S do

select the search starting core and search direction
based on CIi;

search from the starting core along the corresponding
direction, find an available core region;

perform task-to-core mapping;
CIi = (CIi+ 1) % 4 ;

end

In this step, the exact location of each core region in
the chip is found. The goals in this step are to 1) keep
the applications scattered to reduce peak temperature, and
2) reduce fragmentation. To achieve these goals, free core
regions are placed at one of the four corners of the chip in

Fig. 5: (a) The mapping core region and other variables of
A0. (b) The four corners of example NoC and the mapping
of A0.

a round-robin manner. Algorithm 2 shows how the location
finding step works.

First, the applications are sorted according to their num-
ber of tasks in a descending order, i.e., applications with
more tasks are treated earlier. Next, the applications’ core
regions are placed in a round-robin manner to one of the
four corners as in Fig. 5.b at each iteration. CIi is used as
the corner index for applicationAi. Each corner is associated
with a start point. M(Ai)w and M(Ai)l, denoting the width

and length of M(Ai), are set to d
√
|Ai|

NOLi
e. Given a corner,

start from its start point, scan along the X and Y directions
to find a free 3D core region for Ai. The starting core and
search direction of the 4 corners are determined as:

1) corner 0: Initialize its starting point as (0, 0,MDi),
then search toward X+ direction until a free core
region whose size is M(Ai)w ×M(Ai)l ×MDi is
found. Otherwise, increase it’s Y coordinate by 1
followed by scanning along X+ direction in search
of such a free core region. This procedure continues
until the desired core region is found or corner 3 is
touched.

2) corner 1: Initialize its starting point as
(Gw, Gl,MDi), then search toward X-
direction until a free core region whose size is
M(Ai)w × M(Ai)l × MDi is found. Otherwise,
decrease it’s Y coordinate by 1 followed by
scanning along X- direction in search of such a
free core region. This procedure continues until the
desired core region is found or corner 2 is touched.

3) corner 2: Initialize its starting point as
(Gw, 0,MDi), then search toward Y+ direction
until a free core region whose size is
M(Ai)w × M(Ai)l × MDi is found. Otherwise,
decrease it’s X coordinate by 1 followed by scanning
along Y+ direction in search of such a free core
region. This procedure continues until the desired
core region is found or corner 1 is touched.

4) corner 3: Initialize its starting point as
(Gw, 0,MDi), then search toward Y+ direction
until a free core region whose size is
M(Ai)w × M(Ai)l × MDi is found. Otherwise,
decrease it’s X coordinate by 1 followed by scanning
along Y+ direction in search of such a free core
region. This procedure continues until the desired
core region is found or corner 0 is touched.

An example mapping location searching procedure is

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

Fig. 6: (a) Two applications (A0, A1) to be mapped. (b) The
ranges of MD and NOL values of the two applications. (c)
Search tree in step 1. (d) An infeasible tree node. (e) System
after mapping.

shown in Fig.5. A0 is an 8-task application which NOL0 is 2
and MD0 is 0. The width and length of A0’s mapping core

region shape, M(A0)w and M(A0)l, are set to d
√
|A0|

NOL0
e

and d
√

|A0|
(NOL0×M(A0)w)e, which are 2. The height of A0’s

mapping core region shape is equal to NOL0, which is 2.
Assumed that the mapping location searching procedure
starts from corner 0, the CI of A0, CI0 is 0, and the searching
started from corner 0. As Fig.5 (b) shows, corner 0 starts
from Initialize its starting point as (0,0,0), then search toward
along X+ direction, the searching direction is mentioned
in section 4.2. The core (0, 0, 0) is occupied, a mapping
available core region of A0 could not be found here. Then
the searching procedure move one core ahead along X+
direction, and a mapping available core region of A0 is
found as in Fig.5.b.

In the last step, tasks of the application are mapped to
the cores inside the free core region using existing mapping
algorithms, for example, the one in [19]. This algorithm
results in a contiguous free core region in the center of the
chip. Therefore, fragmentation is alleviated. Besides, since
the applications are mapped such that they are separated in
the four corners, the peak temperature is also reduced.

4.3 An Example of the Mapping Algorithm
There are 2 applications A0 and A1 in a 2×2×2 3D NoC
system to be mapped as shown in Fig. 6 (a). A0 is a 3-task
application and A1 is a 2-task application. Fig. 6 (b) lists
the MD and NOL ranges of each applications. Fig. 6 (c) is
a snapshot of the search tree for finding the shapes of core
regions for A0 and A1. Each tree node is represented by a 4-
element vector < NOL0,MD0, NOL1,MD1 >. A dummy
root node is first created. ForA0, a new tree nodeN0 in level

1 is created from the root with MD0 = 0 and NOL0 = 1.
Since A0 has 3 tasks, it has 3 cores in layer 0. Next, a new
node N1 in level 2 is created for A1 from N0, with MD1 = 0
and NOL1 = 2. Since A1 has 2 tasks, it has 1 core in both
layers 0 and 1. Since the system has 4 cores in each layer,
A0 and A1 fit into the system. Fig. 6 (d) shows an infeasible
tree node N2 in level 2. It requires 5 cores in layer 0 which
exceeds the maximum number of available cores in layer 0.
In Fig. 6(c), the ERT of N1, σ̂(S)MIN

1 , is kept as the global
minimum overall running time σ̂∗(S). We assumed that the
ERT of A0 with tree node N3-N7 are larger than ∗(S). Under
this assumption, the corresponding nodes in layer 1 are cut
by cut rule 2. In level 2, the nodes are cut because their
ERT s are larger than N1’s. Thus, N1 is kept as the result of
search.

Next, the locations of the applications’ core regions are
found with the MD0, NOL0,MD1, NOL1 values shown in
N1. Since A0 has one more task than A1, A0 is mapped first.
Since MD0 = 0 and NOL0 = 1, layer 0 needs 3 free cores
for A0. Starting from corner 1, scan along X+ direction and
a cuboid of 3 available cores is found for A0’s core region.
Now, for A1, it needs 1 available core in both layers 0 and 1
for A1. Start from corner 2, a cuboid of two available cores
is found in each of the two layers for A1. The locations of
the two core regions are shown in Fig. 6 (e).

4.4 Thermal-aware Defragmentation

The arrival and departure of applications lead to fragmen-
tation which leads to increased communication latency or
waiting time. This causes degraded system throughput. To
reduce fragmentation, a few defragmentation algorithms
were proposed [6, 23, 24]. However, these algorithms ig-
nore thermal constraint and might lead to overheating by
clustering running cores into close proximity.

In this subsection, a thermal-aware defragmentation al-
gorithm is proposed. Upon being triggered, this defrag-
mentation algorithm tries to migrate the applications to the
chip corners, keeping free cores clustered in the chip center
as much as possible. As a result, a contiguous free core
region can be formed in the center of the chip, which can
accommodate subsequent incoming applications. In addi-
tion, the applications, which are scattered toward the four
corners after defragmentation, tend to enjoy better cooling
and lower temperature.

The defragmentation algorithm works as follows. A
fragmentation metric is defined to measure the system
fragmentation level. The defragmentation algorithm is
triggered only when the fragmentation metric F is under a
preset threshold FTH . During the defragmentation process,
a migration destination is found for each application,
followed by the migration of the applications to the
destination.

4.4.1 Fragmentation metric
The goal of the proposed defragmentation method is to
move free cores to the center of the chip and form a contigu-
ous region, by relocating the running applications to corners
and edges of the chip. Therefore, the fragmentation metric
is defined as the ratio of non-center free core region’s size to

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

Fig. 7: Calculation of the number of free cores in center free
core region in layer j.

the system’s total number of free cores. A free core region’s
size is the number of free cores inside it. The fragmentation
metric is defined as follows:

F = 1−Nc/Nt (10)

where Nc denotes the number of free cores in the center free
core region and Nt denotes the total free core numbers in
the system. Nc is calculated by algorithm 4. For each layer,
the algorithm first finds the free cores in X direction, and
then expand each found free core to find other free cores
in Y direction. Fig. 7 illustrates the procedure in one layer.
For each layer j, Ccj denotes the center core of that layer. In
step 1, the cores in the east and west directions of Ccj are
scanned to test if they are free. In step 2, for each found free
core, cores in the south and north directions are scanned to
test if they are free.

Algorithm 3 LINEFREECORECOUNT(Ccurrent, Corrdi)

Input: Ccurrent: the current core;
Corrdi: the dimension to search, X or Y;
Output: lineFreeCoreArray: the number of free cores in

the dimension to search;
Function: Calculate the number of free cores in the
dimension to search;

Var: lineFreeCoreArray: a stack storing the free cores in the
dimension to search;

initialize lineFreeCoreArray to be empty;
Ci = Ccurrent

while Ci is inside NoC and free do
move Ci one core ahead along dimension Corrdi;
push Ci into lineFreeCoreArray;

end
Ci = Ccurrent

while Ci is inside NoC and free do
move Ci one core backward along dimension Corrdi;
push Ci into lineFreeCoreArray;

end
return lineFreeCoreArray;

This fragmentation metric measures the percentage of
free cores scattered outside the center free core region. If
the system has a fragmentation metric larger than FTH , a
defragmentation process needs to be performed until it is
under FTH .

Algorithm 4 Calculating the Number of Free Cores in the
Center Free Core Region

Input: S: the set of running applications;
Ccj : the center core of layer j;
Output: Nc: the number of free cores in the center free core

region;
Function: Calculate the number of free cores in the center
free core region;

Var: XfreeCoreArray: the stack storing the free cores in X
dimension;
YfreeCoreArray: the stack storing the free cores in Y

dimension;
freeCoreArray: the stack storing the free cores in the

whole system;
initialize XfreeCoreArray to be empty;
for each layer j in the system do

//Step 1
XfreeCoreArray = LINEFREECORECOUNT(Ccj , X)
//Step 2
Initialize freeCoreArray and YFreeCoreArray to be
empty;

while XfreeCoreArray is not empty do
pop a free core Cfa from XfreeCoreArray;//denote
it as Cfa

YFreeCoreArray = LINEFREECORECOUNT(Cfa, Y)
push the elements of YFreeCoreArray into
freeCoreArray

end
return the number of elements in freeCoreArray;

end

4.4.2 The defragmentation procedure

When the fragmentation metric F is larger than FTH , there
are a few fragments in the system. During the defragmen-
tation process, in each iteration, only the application that
is migrated are stopped execution. The other applications
are unaffected, i.e., keep execution, until it is stopped and
migrated in the next iteration. In this manner, the defrag-
mentation has the minimal impact on the system execu-
tion, i.e., in each iteration only application is stopped and
migrated. Therefore, the migration path has an impact on
the destination selection of the migrating application. If the
applications core region is blocked by another application
during the migration, it has to stop, since the other applica-
tion is still running. The intuition behind defragmentation
is that, we maintained the center free core area by moving
the applications running in the center to edges or corners to
reduce fragmentation. Defragmentation would be triggered
when the system has high fragmentation level. We used
the fragmentation metric F to measure fragmentation level.
Once it is over the threshold, the system start to calculate the
migration destination and path, then moving the applica-
tions to edges and corners. The trigger condition is defined
as follow:

F > FTH (11)

where F is the fragmentation metric of the running sys-
tem and FTH is the fragmentation threshold. Once the
defragmentation is triggered, a destination is found for each

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

Fig. 8: The distances of A1’s core region toward the four
edges of the chip in layer 0.

application to migrate, followed by finding a migration path
to each destination.

Applications are sorted by their number of tasks in a de-
scending order. Applications with more tasks are migrated
earlier. The defragmentation procedure works iteratively
application by application until F is equal or smaller than
FTH , where each iteration includes two major steps for an
application:

1) Determine the migration destination.
2) Find the migration path to the destination.

4.4.2.1 Determine the migration destination: We
start by determining the order of doing defragmentation
for every application. In the proposed algorithm, we serve
the application with most tasks first, then serve other task
number descending applications. In this way, the location
of relatively big applications are determined earlier, the
small one can be used to fill the gaps between them. After
sorting the applications and put them in queue, the GM
finds migration path for every running application. For each
application, a nearest corner is selected as the destination.
As shown in Fig. 8, each application has four parameters
RE

ij , RS
ij , RW

ij and RN
ij , indicating the distances of Ai’s

core region toward the four edges of the chip in layer j,
respectively. As in Fig. 8, xMAX

j , xMIN
j , yMAX

j and yMIN
j

are the maximum x, minimum x, maximum y, minimum y
coordinates of Ai’s core region in layer j. RE

ij , RS
ij , RW

ij and
RN

ij in layer j can be computed as equations 12, 13, 14, 15,
respectively.

RE
ij = Gw − xMAX

j (12)

RW
ij = xMIN

j (13)

RN
ij = Gl − yMAX

j (14)

RS
ij = yMIN

j (15)

where Gw is the width (X dimension) of the NoC in each
layer, and Gl is the length (Y dimension) of the NoC. The
corner can be selected by the following rules.

1) If RN
ij > RS

ij and RE
ij > RW

ij , select the south west
corner as the destination.

2) If RN
ij < RS

ij and RE
ij > RW

ij , select the north west
corner as the destination.

3) If RN
ij > RS

ij and RE
ij < RW

ij , select the south east
corner as the destination.

4) If RN
ij < RS

ij and RE
ij < RW

ij , select the north east
corner as the destination.

4.4.2.2 Find the migration path: Once the desti-
nation corner for each application Ai is determined, the
application can be moved towards it. For each application

Fig. 9: The four frontiers of the application’s core region.

Ai in S, their destination corners are determined in order
of corners 1, 2, 3, and 4 iteratively. The task closest to the
destination corner is selected as reference task. Ai can mi-
grate along one of the two virtual migration paths MPXY

i

and MPY X
i , whereas in the former path, Ai moves along

X direction first and then Y direction, while in the latter
path moves along Y direction first and then X direction. For
MPXY

i , it checks the east (west) frontier (shown in Fig. 9)
in the X+ (X-) direction. If the east (west) frontier is free, all
the tasks of Ai can be virtually moved toward east (west)
one hop further until no further virtual migration along the
X direction is available. Next, it virtually moves toward the
destination along the Y direction. it checks the north (south)
frontier in the Y+ (Y-) direction. If the north (south) frontier
is free, all the tasks of Ai can be virtually moved toward
north (south) one hop further until it reaches the destination.
For MPY X

i , the tasks are virtually migrated in the same
manner except that, it is first migrated along the Y direction
and then X. Note that tasks are not really migrated along
these two virtual paths at this time. The lengths of the two
virtual paths MPXY

i and MPY X
i are denoted as |MPXY

i |
and |MPY X

i |, respectively. For one direction, the testing
region Rtesing is first initialized to be the corresponding
frontier of Ai as shown in Fig.9. Then it moves towards the
direction one step at a time and pushes the core in the path
into corresponding path until it hits non-free cores.

The lengths of the two virtual paths, |MPXY
i | and

|MPY X
i | might differ, due to the fact that the application

might be “blocked” by other applications on the way to
the destination. For example, in Fig. 10, application A1’s
destination is the south east corner. Along the MPY X

i path,
it can reach the destination (core 63). Its path length is 5. In
contrast, along the MPXY

i path, it cannot reach the destina-
tion due to occupied core 39 and the path length is 3. The
defragmentation algorithm selects the longer path as the real
migration path MPi and all the tasks of the application are
migrated along it. In this manner, the application can be
migrated closer to a corner, leaving more free cores in the
chip center.

Algorithm 6 shows how the defragmentation procedure
works. For each Ai running in the system, the destination
corner Ci is found first. Then the migration path MPi is
claculated by algorithm 5. Finally, the migration is per-
formed along the selected migration path MPi. All the tasks
in its core region are moved simultaneously so that the
shape of its core region is kept unchanged.

4.4.3 An example of the defragmentation process
Fig. 10 shows an example of how the defragmentation
process works. Assume there are 2 applications, A0 and A1,
and A1 is to be migrated. RN

10, RE
10, RS

10, RW
10 in layer 1 are

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

Algorithm 5 Finding Virtual Migration Paths for an Appli-
cation

Input: M(tj): the core running the reference task tj ;
Output: MPXY

i , MPY X
i : the two virtual migration paths

of Ai;
Function: Find virtual migrations path for Ai;
Var: Ccurrent: the reference core to start the search process;
initialize MPXY

i and MPY X
i to be empty;

//find MPXY
i

set Ccurrent to be M(tj);
while the corresponding frontier of Ai is within the NoC system
and cores inside this frontier are free do

move the core region of Ai and Ccurrent one hop ahead
along X dimension, toward the direction selected by
the rules in section 4.4.2.1;

push Ccurrent into MPXY
i ;

end
while the corresponding frontier of Ai is within the NoC system

and cores inside this frontier are free do
move the core region of Ai and Ccurrent one hop ahead

along Y dimension, toward the direction selected by
the rules in section 4.4.2.1;

push Ccurrent into MPXY
i ;

end
// find MPY X

i

set Ccurrent to be M(tj);
while the corresponding frontier of Ai is within the NoC system
and cores inside this frontier are free do

move the core region of Ai and Ccurrent one hop ahead
along Y dimension, toward the direction selected by
the rules in section 4.4.2.1;

push Ccurrent into MPY X
i ;

end
while the corresponding frontier of Ai is within the NoC system

and cores inside this frontier are free do
move the core region of Ai and Ccurrent one hop ahead

along X dimension, toward the direction selected by
the rules in section 4.4.2.1;

push Ccurrent into MPY X
i ;

end
return MPXY

i , MPY X
i

Algorithm 6 Defragmentation
Input: S: the set of running applications;
Output: migration path of each application Ai in S;
Var: F : Fragmentation metric value of system;

Ci: Destination corner of Ai;
FTH : Fragmentation metric threshold;

if F > FTH then
sort the applications in S ny task number in a

descending order;
while S is not empty do

pop Ai from S;
find the destination corner Ci for Ai;
find the migration path for Ai toward Ci, and
migrate Ai along this path;

end

Fig. 10: Defragmentation of A1. Only layer 1 is shown. The
other layers resembles layer 1.

TABLE 2: Complexity Comparison

Mapping Algorithm Complexity

Worst Case Complexity

B2T[12] O(|C| × |Ai|2 × |E|)
FL[17] O(|C| × |Ai|)

Proposed O(|WQ| × |Ai| × |E| × |C|)
Defragmentation Algorithm Complexity

Worst Case Complexity

[6] O(|C|2)
[25] O(max(|WQ| × |Ai| × |C|, N3))

Proposed O(|Ai| × |C|)

3, 2, 2 and 4, respectively. Thus, the south east corner (core
63) is selected as migration destination.

4.5 Complexity Analysis
Let |C| denote the size of NoC, |Ai| denote the number
of tasks of application Ai, and |WQ| denote the maximum
length of the working queue WQ. The complexities of dif-
ferent mapping algorithms and defragmentation algorithms
are listed in table 2.

5 EXPERIMENTAL RESULTS

5.1 Experimental Setup
Experiments were performed on an event-driven C++ NoC
simulator, with DSENT integrated as the power model. The
simulator models the packet latency of the communications
in a cycle accurate manner. In the experiments, two kinds
of benchmarks are used: benchmarks whose task graphs
are randomly generated and real benchmarks. The task
graphs of the real applications are generated from the traces
of SPLASH-2 [28] and PARSEC [29], which are collected
by executing these applications in a 8×8 NoC-based cycle
accurate many-core simulator [30]. The configuration of
random benchmarks, real benchmarks, and the 3D NoC
system are listed in Table 3. The temperature threshold is
60 °C. HotSpot [31] is used as the temperature simulator.
The Hotspot parameters are shown in Table 3.

Our approach is compared with the following two run-
time mapping approaches, the Bottom-2-Top (B2T) method
[12] and the fuzzy logic (FL) method [17]. The B2T scheme
first maps all the tasks to the bottom layer in a 3D NoC to

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

TABLE 3: Configurations of the Simulation

Network Parameters

Flit size 128 bits
Latency Router 2 cycles, link 1 cycle

Buffer depth 4 flits
Routing algorithm ZXY routing
Baseline topology 8 × 8 × 4

Random Benchmark Parameters

Number of tasks [15, 45]
Communication volume [10, 200] (Kbits)

Degree of tasks [1, 15]
Task number distribution Bimodal, uniform

Configuration of the Many-core Simulator for Extracting Traces

Core architecture 64 bit Alpha 21264
Baseline frequency 3GHz

Fetch/decode/commit size 4/4/4
ROB size 64

L1 D cache (private) 16KB, 2-way, 32B line
2 cycles, 2 ports, dual tags

L1 I cache (private) 32KB, 2-way
64B line, 2 cycles

L2 cache (shared) MESI protocol 64KB slice/core, 64B line
6 cycles, 2 ports

Main memory size 2GB

Task Graphs of Real Applications

Barnes, Canneal, Raytrace, Dedup, Ferret, Freqmine
Streamcluster, Fluidanimate, Swaptions, Blackscholes

Hotspot Parameters

Die size [mm] 0.5 × 0.5
Specific heat capacity [J/(m3 × K)] 1.75e6

Resistivity [(K · m)/W] 0.01
Layer 0 thickness [mm] 0.10
Layer 1 thickness [mm] 0.12
Layer 2 thickness [mm] 0.14
Layer 3 thickness [mm] 0.16

make the power consumption of cores in each vertical stack
(cores with the same Z coordinate) identical as possible,
and then moves low power tasks to the top layer to reduce
the execution time [12]. FL defines three variables, i.e., heat
transfer, distance from source core, and distance from hot
spot. It uses rules to set the priorities of them. “Distance
from source core” represents the inter-task distance within
the application. “Heat transfer” is the heat transfer capabil-
ity of a specific core. “Distance from hot spot” is the distance
from the hottest core. During the experiment, the order of
the three variables are: (1) “distance from source core”, (2)
“heat transfer”, and (3) “distance from hot spot”. That is,
FL maps communicating tasks to cores of shorter distance
first. If such cores are not available, then the cores near the
heat sink are used. If both of them are not available, cores
far from the hot spot are used.

5.2 Testing Thermal Violation of TPC Model

We perform a set of experiments to test the probability of
thermal violations (i.e., the peak temperature is over the
temperature threshold). The experiments are performed as
follows. N experiments are performed using TPC models
in with each cores power consumption set randomly. We
count the number of cases that the peak temperature is over

the threshold. We define the probability of thermal violation
PV T as,

ε =
VT
N
× 100% (16)

where VT is the times of thermal violation, and N is the
total experiment times. We run 100,000 experiments, where
in each experiment, the power consumptions of the cores
are randomly set except a particular core ci. The maximum
allowed power (TPC) of core ci, PM (i), is computed by
TPC model. The maximum power consumption of core ci
together with the power consumptions of other cores are
feed into Hotspot as input power trace to calculate the
temperature. After performing experiments for TPC models,
we find that using TPC model leads to no thermal violation
in our experiments.

5.3 Validating the Transmitting Time Model
The error of the transmitting time estimation model is
defined as follow,

ε =
Tr(e)− ˆTr(e)

Tr(e)
× 100% (17)

where Tr(e) and ˆTr(e) are the transmission times obtained
from NoC simulator and the transmission time model, re-
spectively. We perform 10000 experiments to test the error of
the transmission time model. The error of transmission time
is 1.3% on average. Thus, the estimation is fairly accurate.

5.4 Validating the Application Running Time Model
The error of the application running time estimation model
is defined as follow,

ε =
|RT − ERT |

RT
× 100% (18)

where RT and ERT are the running times obtained from
the simulator and the estimation model in Equation 5 for
each application, respectively. The error of this estimation
model is 4.82% on average, for the applications used in the
experiments. Thus, the estimation is fairly accurate.

5.5 Performance Comparison
5.5.1 Experiments with random benchmarks

5.5.1.1 Experiments with different sizes of the 3D
NoC: To evaluate the proposed algorithm, the size of
the 3D NoC is changed to evaluate the overall running
time and communication latency of the three algorithms.
Fig. 11 shows that our proposed algorithm outperforms
the other two when the network size increases while
running 100 applications. On average, the overall running
times of B2T and FL are 1.39× and 1.42× over our
proposed approach, respectively. Fig. 11 also shows that
the communication latencies of B2T and FL are 1.55× and
1.24× over our proposed approach, respectively. The reason
is that our algorithm can optimize the communication and
computation performances for each application by selecting
the appropriate MD and NOL values of its core region,
according to its communication and computation demands.
It can also reduce fragmentation and peak temperature by
the core region location finding step. For every application,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

Normalized Running Time

8
x
8
x
4

1
2
x
1
2
x
4

1
6
x
1
6
x
4

2
0
x
2
0
x
4

Network Size

0

0.5

1

1.5

Normalized Commu-

nication Latency

8
x
8
x
4

1
2
x
1
2
x
4

1
6
x
1
6
x
4

2
0
x
2
0
x
4

Network Size

0

1

2
B2T

Amin

Proposed

(a) (b)

Fig. 11: (a) Normalized running time comparison with dif-
ferent sizes of the 3D NoC. (b) Normalized communication
latency comparison with different sizes of the 3D NoC.

Normalized Running Time

16 32 64 128

Average Task Number

0

0.5

1

1.5

Normalized Commu-

nication Latency

16 32 64 128

Average Task Number

0

0.5

1

1.5
B2T

Amin

Proposed

(a) (b)

Fig. 12: (a) Normalized running time comparison with
different task numbers of the applications. (b) Normal-
ized communication latency comparison with different task
numbers of the applications.

the B2T method makes the maximum use of the layer that
is close to the heat sink and thus all the cores close to
the heat sink are occupied and the incoming applications
have to be mapped to other layers. Furthermore, B2T maps
applications in close proximity, resulting in more heat
accumulation and higher temperature.

5.5.1.2 Experiments with different numbers of tasks:
In this set of experiments, the average number of tasks
of the applications is changed. Fig. 12 shows that, when
the average number of tasks is large, e.g. 128, the overall
running times of B2T and FL are 1.29× and 1.39× over our
proposed approach, respectively. Fig. 11 also shows that the
communication latencies of B2T and FL are 1.42× and 1.38×
over our proposed approach, respectively.

5.5.1.3 Experiments with different communication vol-
umes: In this set of experiments, the average communication
volume among the tasks of the applications is changed. Fig.
13 shows that, when the communication volume is high,
e.g. 200 Kb, the overall running time of B2T and FL are
1.38× and 1.25× over our proposed approach, respectively.
Fig. 11 also shows that the communication latencies of B2T
and FL are 1.47× and 1.13× over our proposed approach,
respectively.

5.5.2 Experiments with real benchmarks
To evaluate the proposed mapping algorithm, the perfor-
mances on real benchmarks with 4 different network sizes
are compared by running 10 applications. For each experi-
ment, a mix of 100 applications were used as input where

Normalized Running Time

50 100 150 200

Average Communication Volume

0

0.5

1

1.5

Normalized Commu-

nication Latency

50 100 150 200

Average Communication Volume

0

0.5

1

1.5
B2T

Amin

Proposed

(a) (b)

Fig. 13: (a) Normalized running time comparison with dif-
ferent communication volumes of the applications. (b) Nor-
malized communication latency comparison with different
communication volumes of the applications.

Normalized Running Time

8
x
8
x
4

1
2
x
1
2
x
4

1
6
x
1
6
x
4

2
0
x
2
0
x
4

Network Size

0

0.5

1

1.5

Normalized Commu-

nication Latency

8
x
8
x
4

1
2
x
1
2
x
4

1
6
x
1
6
x
4

2
0
x
2
0
x
4

Network Size

0

0.5

1

1.5

Peak Temperature

8
x
8
x
4

1
2
x
1
2
x
4

1
6
x
1
6
x
4

2
0
x
2
0
x
4

Network Size

0

20

40

60

B2T Amin Proposed

(c)(b)(a)

Fig. 14: (a) Normalized running time comparison with dif-
ferent sizes of the 3D NoC. (b) Normalized communication
latency comparison with different sizes of the 3D NoC. (c)
Peak temperature comparison with different sizes of the 3D
NoC.

the applications are repeatedly picked from the 10 real
benchmarks. Fig. 14 (a) shows that, when the network size
is large, e.g. 20 × 20 × 4, the overall running times of B2T
and FL are 1.38× and 1.48× over our proposed approach,
respectively. Fig. 14 also shows that the communication
latencies of B2T and FL are 1.44× and 1.24× over our
proposed approach, respectively. Fig. 14 also compares the
peak temperatures of different algorithms, showing that our
algorithm reduces the peak temperatures of B2T and FL by
3°C and 7°C. All of the three mapping algorithms are below
the 60°C thermal threshold. The normalized communica-
tion latency and running time of each real benchmark ap-
plication are compared, as shown in Fig. 15. Our proposed
algorithm reduces the communication latency by 32% and

Normalized Running Time

b
a

rn
e

s

b
la

c
k
s
c
h

o
le

s

c
a

n
n

e
a

l

d
e

d
u

p

fe
rr

e
t

fl
u

id
a

n
im

a
te

fr
e

q
m

in

ra
y
tr

a
c
e

s
tr

e
a

m
c
lu

s
te

r

s
w

a
p

ti
o

n
s

Application Name

0

2

4

6
Normalized Communication Latency

b
a

rn
e

s

b
la

c
k
s
c
h

o
le

s

c
a

n
n

e
a

l

d
e

d
u

p

fe
rr

e
t

fl
u

id
a

n
im

a
te

fr
e

q
m

in

ra
y
tr

a
c
e

s
tr

e
a

m
c
lu

s
te

r

s
w

a
p

ti
o

n
s

Application Name

0

2

4

6

B2T Amin Proposed (b)(a)

Fig. 15: (a) Normalized running time comparison with
each real benchmark. (b)Normalized communication la-
tency comparison with each real benchmark.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

Normalized Running Time

80% 50% 20%

Defragmentation threshold

0

0.5

1

With defragmentation Without defragmentation

Fig. 16: Normalized running time comparison with and
without defragmentation by varying the fragmentation
threshold.

15% over B2T and FL on average, respectively.

5.5.3 Evaluation of fragmentation metric threshold

In section 4.4, the proposed defragmentation algorithm is
triggered when F is larger than FTH . In other words,
the threshold controls the defragmentation frequency. The
impact of FTH on the system performance is evaluated in
Fig. 16. Fig. 16 shows that, the proposed defragmentation
process reduces the running time by as much as 19% when
the FTH is set to be 50%. Therefore, the threshold is set to
be 50%.

5.5.4 Evaluation of the defragmentation algorithm

5.5.4.1 Experiments with evaluating defragmentation
with random benchmarks: An experiment measuring the av-
erage waiting time by running 100 applications (each with
16 tasks on average) with different sizes of the NoC was
conducted and the results are presented in Fig. 17. Waiting
time of an application is measured as the time elapsed
between the time it arrives at the system and the time when
it can run on the cores. The result shows that the average
waiting time of each application can be saved up to 29%
with the proposed defragmentation process.

To evaluate the performance of the defragmentation pro-
cess, we compare the performances of the previously pro-
posed Defrag [6] algorithm, our proposed defragmentation
algorithm, and the original system without performing any
defragmentation algorithm. Using Defrag [6], the shapes of
the applications’ core regions might be irregular or even
scattered far away, leading to higher communication cost.
Also Defrag gathers running cores together which causes
higher temperature. Fig. 18 (a) shows the normalized run-
ning time comparison with different defragmentation meth-
ods by varying the size of the 3D NoC. With the proposed
defragmentation process, the running time is reduced by as
much as 21% compared to the original mapping algorithm
without defragmentation, and the running time of Defrag is
increased by as much as 14% over the original mapping al-
gorithm due to higher communication cost. Fig. 18 (b) shows
the normalized running time comparison with different de-
fragmentation methods by varying the average task number
of applications. With the proposed defragmentation process,
the running time is reduced by as much as 25% compared
to the original mapping algorithm without defragmentation,
and the running time of Defrag is increased by 7% over the
original mapping algorithm.

Normalized Waiting time

8
x
8

x
4

1
2

x
1

2
x
4

1
6

x
1

6
x
4

2
0

x
2

0
x
4

Network Size

0

0.5

1

With defragmentation Without defragmentation

Fig. 17: Normailzed waiting time comparison with and
without defragmentation by varying the size of the 3D NoC.

Normalized Running Time

8
x
8

x
4

1
2

x
1

2
x
4

1
6

x
1

6
x
4

2
0

x
2

0
x
4

Network Size

0

0.5

1

1.5
Normalized Running Time

16 32 64 128

Average Task Number

0

0.5

1

1.5

Proposed defragmentation Defrag No defragmentation

Fig. 18: (a) Normalized running time comparison with
different defragmentation methods by varying the size of
3D NoC. (b) Normalized running time comparison with
different defragmentation methods by varying the average
task number of applications.

5.5.4.2 Experiments evaluating defragmentation with
real benchmarks: This experiment evaluates the performances
of Defrag [6], the proposal defragmentation algorithm, and
the original mapping without performing any defragmen-
tation algorithm. Fig. 19 (a) shows that, with the proposed
defragmentation, the running time can be reduced by as
much as 32% compared to the original mapping algorithm
without defragmentation, and the running time of Defrag
is increased by as much as 50% over the original mapping
algorithm. Fig. 19 (b) shows that, the peak temperature with
the proposed defragmentation is around 2°C higher than
that without defragmentation due to the higher utilization
of system cores and shorter running time. The peak tem-
perature of Defrag is 2.5°C higher than the case without
defragmentation as Fig. 19 shows. However, no thermal
threshold violation is observed in the experiments. The peak
temperature is under the 60°C threshold.

Normalized Running Time

8
x
8

x
4

1
2

x
1

2
x
4

1
6

x
1

6
x
4

2
0

x
2

0
x
4

Network Size

0

1

2
Peak Temperature

8
x
8

x
4

1
2

x
1

2
x
4

1
6

x
1

6
x
4

2
0

x
2

0
x
4

Network Size

0

20

40

60

Proposed defragmentation Defrag No defragmentation

Fig. 19: (a) Normalized running time comparison with real
benchmarks. (b) Peak temperature comparison with real
benchmarks.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

Normalized Running Time

8x8x4 12x12x4 16x16x4 20x20x4

Network Size

0

0.5

1

With defragmentation overhead Without defragmentation overhead

Fig. 20: Normalized running time comparison with and
without defragmentation overhead

5.5.5 Runtime overhead of the proposed algorithm
The runtime overhead includes the overhead of the map-
ping algorithm and defragmentation algorithm.

The average runtime overheads of B2T, FL and our map-
ping algorithm are in the order of 3.5M, 5M and 4M cycles
for one real benchmark on average, which are averaged by
running each of the algorithms for fifty times with differ-
ent real benchmark applications. Experimental results have
shown that the execution time of each application is about
50M-100M cycles which is much longer than 4M cycles. We
perform experiments to compare the normalized running
time comparison with and without defragmentation over-
head. The results in Fig.20 showed that, defragmentation
overhead has little influence on system performance and is
acceptable.

The defragmentation overhead includes the algorithm
running time and the time spent in task migration. Ex-
perimental results show that the average running time is
about 0.9M cycles for one defragmentation process and the
average migration overhead is around 0.06M cycles. In the
experiments, the fragmentation process is triggered once
per 1000M cycles on average. Comparing with the average
application execution time, the overhead of the proposed
defragmentation algorithm is acceptable.

6 CONCLUSION

In this paper, we proposed a runtime communication- and
thermal-aware mapping and defragmentation algorithm to
optimize performance under thermal constraint in 3D NoCs.
This algorithm has three steps. First, the shape of the core
regions are selected by setting the MD and NOL parameters
for each of the application, according to its communication
and computation demands. Second, the locations of the
core regions in the chip are found, followed by a task-to-
core mapping process. In addition, a thermal-aware defrag-
mentation algorithm is further proposed to reduce system
fragmentation and waiting time for incoming application
under thermal constraint. Experimental results show that
our proposed approach can reduce up to 48% overall run-
ning time compared to existing mapping algorithms. The
defragmentation procedure can saved application running
time by up to 32% overall running time without defragmen-
tation. Thus the proposed algorithm is suitable for future
many core systems performance optimization.

ACKNOWLEDGMENTS

This research program is supported by the Natural Sci-
ence Foundation of China No. 61376024 and 61306024,

Natural Science Foundation of Guangdong Province
2015A030313743 and 2018A030313166, Special Program for
Applied Research on Super Computation of the NSFC-
Guangdong Joint Fund (the second phase), and the Science
and Technology Research Grant of Guangdong Province
No. 2016A010101011 and 2017A050501003, Pearl River S&T
Nova Program of Guangzhou No. 201806010038, and Tip-
top Scientific and Technical Innovative Youth Talents of
Guangdong special support program (No. 2014TQ01X590).

REFERENCES

[1] M. Motoyoshi, “Through silicon via (TSV),” Proc. the
IEEE, vol. 97, no. 1, pp. 43–48, 2009.

[2] G. Katti, M. Stucchi, K. De Meyer, and W. Dehaene,
“Electrical modeling and characterization of through
silicon via for three-dimensional ICs,” IEEE Trans. Elec-
tron Devices, vol. 57, no. 1, pp. 256–262, 2010.

[3] V. F. Pavlidis and E. G. Friedman, “3D topologies for
networks-on-chip,” IEEE Trans. Very Large Scale Integra-
tion Systems, vol. 15, no. 10, pp. 1081–1090, 2007.

[4] D. Park, S. Eachempati, R. Das, A. K. Mishra, Y. Xie,
N. Vijaykrishnan, and C. R. Das, “Mira: a multi-
layered on-chip interconnect router architecture,” in
ACM SIGARCH Computer Architecture News, vol. 36,
no. 3, 2008, pp. 251–261.

[5] C.-H. Chao, K.-Y. Jheng, H.-Y. Wang, J.-C. Wu, and A.-
Y. Wu, “Traffic-and thermal-aware run-time thermal
management scheme for 3D NoC systems,” in Proc.
ACM/IEEE Int’l Symp. Networks-on-Chip, 2010, pp. 223–
230.

[6] J. Ng, X. Wang, A. K. Singh, and T. Mak, “DeFrag: de-
fragmentation for efficient runtime resource allocation
in NoC-based many-core systems,” in Proc. Int’l Conf.
Parallel, Distributed and Network-Based Processing, 2015,
pp. 345–352.

[7] B. Li, X. Wang, A. K. Singh, and T. Mak, “On run-
time communication-and thermal-aware application
mapping in 3D NoC,” in Proc. IEEE/ACM Int’l Symp.
Networks-on-Chip, 2017, pp. 16:1–16:8.

[8] I. Anagnostopoulos, V. Tsoutsouras, A. Bartzas, and
D. Soudris, “Distributed run-time resource manage-
ment for malleable applications on many-core plat-
forms,” in Proc. Design Automation Conf., 2013, pp.
168:1–6.

[9] H. Ziaeeziabari and A. Patooghy, “3D-AMAP: a
latency-aware task mapping onto 3D mesh-based NoCs
with partially-filled TSVs,” in Proc. Int’l Conf. Parallel,
Distributed and Network-based Processing, 2017, pp. 593–
597.

[10] E. L. de Souza Carvalho, N. L. V. Calazans, and F. G.
Moraes, “Dynamic task mapping for MPSoCs,” IEEE
Design & Test of Computers, vol. 27, no. 5, pp. 26–35,
2010.

[11] M. Fattah, M. Daneshtalab, P. Liljeberg, and J. Plosila,
“Smart hill climbing for agile dynamic mapping in
many-core systems,” in Proc. Design Automation Conf.,
2013, pp. 1–6.

[12] Y. Cui, W. Zhang, V. Chaturvedi, W. Liu, and B. He,
“Thermal-aware task scheduling for 3D network-on-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 15

chip: a bottom to top scheme,” J. Circuits, Systems and
Computers, vol. 25, no. 1, pp. 224–227, 2016.

[13] C. Sun, L. Shang, and R. P. Dick, “Three-dimensional
multiprocessor system-on-chip thermal optimization,”
in Proc. IEEE/ACM Int’l Conf. Hardware/software Code-
sign and System Synthesis, 2007, pp. 117–122.

[14] C. Zhu, Z. Gu, L. Shang, R. P. Dick, and R. Joseph,
“Three-dimensional chip-multiprocessor run-time ther-
mal management,” IEEE Trans. Computer-Aided Design
of Integrated Circuits and Systems, vol. 27, no. 8, pp. 1479–
1492, 2008.

[15] D. Zhu, L. Chen, T. M. Pinkston, and M. Pedram,
“Tapp: temperature-aware application mapping for
noc-based many-core processors,” in Proc. Design, Au-
tomation & Test in Europe Conf. & Exhibition, 2015, pp.
1241–1244.

[16] P. K. Hamedani, S. Hessabi, H. Sarbazi-Azad, and N. E.
Jerger, “Exploration of temperature constraints for ther-
mal aware mapping of 3D networks on chip,” in Proc.
Euromicro Int’l Conf. Parallel, Distributed and Network-
Based Processing (PDP), 2012, pp. 499–506.

[17] A. Mosayyebzadeh, M. M. Amiraski, and S. Hess-
abi, “Thermal and power aware task mapping on 3D
network on chip,” Computers & Electrical Engineering,
vol. 51, pp. 157–167, 2016.

[18] J. Li, M. Qiu, J.-W. Niu, L. T. Yang, Y. Zhu, and
Z. Ming, “Thermal-aware task scheduling in 3D chip
multiprocessor with real-time constrained workloads,”
ACM Trans. Embedded Computing Systems, vol. 12, no. 2,
p. 24:122, 2013.

[19] X.-H. Wang, P. Liu, M. Yang, M. Palesi, Y.-T. Jiang, and
M. C. Huang, “Energy efficient run-time incremental
mapping for 3D networks-on-chip,” J. Computer Science
and Technology, vol. 28, no. 1, pp. 54–71, 2013.

[20] Z. Zhu, V. Chaturvedi, A. K. Singh, W. Zhang, and
Y. Cui, “Two-stage thermal-aware scheduling of task
graphs on 3D multi-cores exploiting application and
architecture characteristics,” in Proc. Asia and South
Pacific Design Automation Conf., 2017, pp. 324–329.

[21] C. Addo-Quaye, “Thermal-aware mapping and place-
ment for 3D NoC designs,” in Proc. IEEE Int’l SoC Conf.,
2005, pp. 25–28.

[22] M. Cox, A. K. Singh, A. Kumar, and H. Corporaal,
“Thermal-aware mapping of streaming applications on
3D multi-processor systems,” in Proc. Symp. Embedded
Systems for Real-time Multimedia, 2013, pp. 11–20.

[23] F. G. Moraes, G. A. Madalozzo, G. M. Castilhos, and
E. A. Carara, “Proposal and evaluation of a task mi-
gration protocol for noc-based mpsocs,” in Int’l Symp.
Circuits and Systems (ISCAS), 2012, pp. 644–647.

[24] A. Pathania, V. Venkataramani, M. Shafique, T. Mitra,
and J. Henkel, “Defragmentation of tasks in many-
core architecture,” ACM Trans. Architecture and Code
Optimization (TACO), vol. 14, no. 1, pp. 2:1–21, 2017.

[25] X. Wang, T. Fei, B. Zhang, and T. Mak, “On runtime
adaptive tile defragmentation for resource manage-
ment in many-core systems,” Microprocessors and Mi-
crosystems, vol. 46, pp. 161–174, 2016.

[26] J. Friedman, T. Hastie, and R. Tibshirani, The elements
of statistical learning. Springer series in statistics New
York, 2001, vol. 1.

[27] X. Wang, A. K. Singh, B. Li, Y. Yang, T. Mak, and
H. Li, “Bubble budgeting: Throughput optimization for
dynamic workloads by exploiting dark cores in many
core systems,” in Proc. IEEE/ACM Int’l Symp. Networks-
on-Chip, 2016, pp. 1–8.

[28] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta,
“The splash-2 programs: Characterization and method-
ological considerations,” in Proc. Int’l Symp. Computer
Architecture, 1995, pp. 24–36.

[29] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec
benchmark suite: Characterization and architectural
implications,” in Proc. Int’l Conf. Parallel architectures
and compilation techniques, 2008, pp. 72–81.

[30] X. Wang, M. Yang, Y. Jiang, P. Liu, M. Daneshtalab,
M. Palesi, and T. Mak, “On self-tuning networks-on-
chip for dynamic network flow dominance adapta-
tion,” ACM Trans. Embedded Computing Systems, vol. 13,
no. 2, pp. 1–8, 2014.

[31] W. Huang, S. Ghosh, S. Velusamy, K. Sankara-
narayanan, K. Skadron, and M. R. Stan, “HotSpot:
a compact thermal modeling methodology for early-
stage VLSI design,” IEEE Trans. Very Large Scale Integra-
tion Systems, vol. 14, no. 5, pp. 501–513, 2006.

Bing Li received the bachelor degree in Soft-
ware Engineering from South China University of
Technology, Guangzhou, China. She is pursuing
her master degree in the School of Software En-
gineering, South China University of Technology
. Her research interest is task mapping for NoC-
based systems.

Xiaohang Wang received the B.Eng. and Ph.D
degree in communication and electronic engi-
neering from Zhejiang University, in 2006 and
2011. He is currently an associate professor at
South China University of Technology. He was
the receipt of PDP 2015 and VLSI-SoC 2014
Best Paper Awards. His research interests in-
clude many-core architecture, power efficient ar-
chitectures, optimal control, and NoC-based sys-
tems.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 16

Amit Kumar Singh received the B. Tech. degree
in Electronics Engineering from Indian Institute
of Technology (Indian School of Mines), Dhan-
bad, India, in 2006, and the Ph.D. degree from
the School of Computer Engineering, Nanyang
Technological University (NTU), Singapore, in
2013. He was with HCL Technologies, India
for year and half before starting his PhD at
NTU, Singapore, in 2008. He worked as a post-
doctoral researcher at National University of Sin-
gapore (NUS) from 2012 to 2014, at University of

York, UK from 2014 to 2016 and at University of Southampton, UK from
2016 to 2017. Currently, he is a Lecturer at University of Essex, UK.
His current research interests include system level design-time and run-
time optimizations of 2D and 3D multi-core systems with focus on per-
formance, energy, temperature, and reliability. He has published over 60
papers in the above areas in leading international journals/conferences.
Dr. Singh was the receipt of ICCES 2017 Best Paper Award, ISORC
2016 Best Paper Award, PDP 2015 Best Paper Award, HiPEAC Paper
Award, and GLSVLSI 2014 Best Paper Candidate. He has served on the
TPC of IEEE/ACM conferences like ISED, MES, NoCArc, ESTIMedia,
ICESS, and DATE.

Terrence Mak is an Associate Professor at
Electronics and Computer Science, University of
Southampton. Supported by the Royal Society,
he was a Visiting Scientist at Massachusetts
Institute of Technology during 2010, and also,
affiliated with the Chinese Academy of Sci-
ences as a Visiting Professor since 2013. Pre-
viously, He worked with Turing Award holder
Prof. Ivan Sutherland, at Sun Lab in California
and has awarded Croucher Foundation scholar.
His newly proposed approaches, using runtime

optimisation and adaptation, strengthened network reliability, reduced
power dissipations and significantly improved overall on-chip commu-
nication performances. Throughout a spectrum of novel methodolo-
gies, including regulating traffic dynamics using network-on-chips, en-
abling unprecedented MTBF and to provide better on-chip efficiencies,
and proposed a novel garbage collections methods, defragmentation,
together led to three prestigious best paper awards at DATE 2011,
IEEE/ACM VLSI-SoC 2014 and IEEE PDP 2015, respectively. More
recently, his newly published journal based on 3D adaptation and
deadlock-free routing has awarded the prestigious 2015 IET Computers
& Digital Techniques Premium Award. He has published more than 100
papers in both conferences and journals and jointly published 4 books.

