
On Countermeasures against the Thermal
Covert Channel Attacks targeting Many-core

Systems

Abstract—Although it has been demonstrated in multiple
studies that serious data leaks could occur to many-core systems
thanks to the existence of the thermal covert channels (TCC),
little has been done to produce effective countermeasures that
are necessary to fight against such TCC attacks. In this paper,
we propose a three-step countermeasure to address this critical
defense issue. Specifically, the countermeasure includes detection
based on signal frequency scanning, positioning affected cores,
and blocking based on Dynamic Voltage Frequency Scaling
(DVFS) technique. Our experiments have confirmed that on
average 98% of the TCC attacks can be detected, and with the
proposed defense, the bit error rate of a TCC attack can soar to
92%, literally shutting down the attack in practical terms. The
performance penalty caused by the inclusion of the proposed
countermeasures is only 3% for an 8×8 system.

Index Terms—Manycore Systems, Thermal Covert Channel,
Defense against Covert Channel Attack, Signal Detection.

I. INTRODUCTION

Chip-level security can be compromised by covert channels
as they can help leak sensitive information while leaving
legitimate users in the dark. Of many communication media
seen in covert channels (e.g., heat transfer, timing, or inaudible
sound), thermal covert channels (TCC) [1], [2] by the means
of heat transfer can be particularly dangerous.

Like any other communication systems, a thermal covert
channel involves a pair of transmitter and receiver. In the eight-
core chip example illustrated in Fig. 1, assume that there is a
covert channel between core A and core B. Note that core A
sits in a secured zone where sensitive information is prohibited
from being shared with the cores outside this zone, and core
B is in a non-secured zone. A transmitter program running
on core A can create temperature signals from the sensitive
data (e.g., user passwords) by manipulating the activities and
correspondingly the power consumption of processor core. In
this example, bit ‘1’ is represented as a sequence of rise and
fall of temperature, while bit ‘0’ is represented as no change
in temperature. The temperature signals can travel through the
chip by heat transfer among processor cores, and eventually
the thermal signals reach the destination, core B, where they
can be picked up by the local thermal sensor of core B, and
subsequently, the original data can be recovered and sent to
the attacker through network.

Since a thermal covert channel is committed to transmit
thermal signals over a chip, it is prone to be disrupted/degraded
by the thermal noise and ambient temperature variations.
Recently, there have been new designs of thermal covert

0 1 0

Temperature / °C
A B

Secured zone Non-secured zone

Fig. 1. TCC communication in an 8 multi-core system. The arrow from core
A to core B indicates that the heat flow from core A to core B.

channels that show increase in both throughput and high
immunity to noise. In a study [2], it was shown that use of a
high transmission frequency, higher than the spectrum of the
thermal noise, can deliver a throughput up to 20 bps and BER
performance lower than 10% for an one-way transmission.

Apparently, the performance in thermal covert channels
poses great risks and danger to data/information security in to-
day’s ubiquitous multi-core/many-core systems. Unfortunately,
there is no effective countermeasure against this attack. In this
paper, for the first time, we attempt to address this problem
by proposing a countermeasure against thermal covert channel
attacks based on an observation illustrated in Fig. 2.

2
Time / s

T
em

p
er

at
u
re

 /
 °

C Without DVFS

0 1

70

72

74

(a)

2
Time / s

66

With DVFS

0 1

68

70

(b)

Frequency / Hz

0.02

0.06

Without DVFS

0 100 300 500

0.1

P
o

w
er

 s
p

ec
tr

u
m

(c)

500

Frequency / Hz

0.02

0.06

0.1
With DVFS

3001000

(d)

 Average BER

Without With DVFS
0

20
40
60
80

100

B
E

R
 /

 %

(e)
Fig. 2. Temperature timing diagrams and power spectrum diagrams of the
receiver core without and with DVFS control on the transmitter core. (a)
and (b) are temperature traces recorded by the receiver core. (c) and (d) are
the corresponding power spectrums of thermal signals. In (a) and (c), the
frequency level of the transmitter core is 2GHz. In (b) and (d), the frequency
level of the transmitter core is scaled down to 500MHz in the first 2 seconds.
(e) shows the comparison of the bit error rates of the receiver with and without
DVFS applied on the transmitter core.

Assume the 4-core system has a thermal covert channel with
a transmission frequency of 100Hz. The frequency level (CPU
working frequency) of the transmitter core is 2GHz, which is
a normal frequency level of modern many core systems. If
no countermeasure is applied, the temperature signal and its
power spectrum are shown in Figs. 2(a) and 2(c), respectively.
If the frequency level of the transmitter core is decreased to a
low level (e.g., 500MHz), the thermal signal has a significantly
different profile, as shown in Figs. 2(b) and 2(d). In this case,

no signal around the 100Hz can be detected, as the bit error
rate (BER) of the TCC reaches 98% (Fig. 2(e)).

Since a high BER is preferred to thwart a TCC attack,
the high BER in Fig. 2(e) indicates that DVFS control can
be exploited to defend against TCC attack. However, blindly
applying this technique may lead to significant performance
loss. In the worst case, when all the suspect cores run at their
lowest frequency levels (e.g., 500MHz), the performance can
be unacceptably low. This issue is thus addressed in this paper
also. Essentially, the proposed DVFS-based countermeasure
includes the following steps.

1. First, a detection scheme is applied to check if any
thermal covert channel attack exists in a many-core system.

2. Second, the exact locations of the transmitter and receiver
cores in the TCC are located.

3. Third, a countermeasure based on DVFS is applied to
suppress the TCC signal transmission.

The rest of this paper is organized as follows. Section II
presents the preliminaries and previous works that are related
to thermal covert channel attacks. Section III presents the
details regarding the defense against TCC. In section IV,
the proposed countermeasure is evaluated. Finally, section V
concludes this paper.

II. PRELIMINARIES AND RELATED WORK

A. Threat Model

Temperature sensors are essential for dynamic thermal man-
agement [4] and are widely deployed in chips. The number
and accuracy of temperature sensors are possible to be ever
improved in the future [5]. The attacker (being the thermal
covert channel transceiver) can read the local thermal sensor
data by calling the software interfaces (e.g., Intel’s processor
Model Specific Register, MSR) with a typical resolution of
1°C [6]. The accuracy of some latest digital thermal sensors
can be up to 0.1°C. The defender (being the global manager
core) can also read all cores’ temperatures and distribute the
detection and blocking programs to each core.

B. Communication Flow

Communication flow

T
ra

n
sm

it
te

r

R
ec

ei
v

er1. Send Request
2. Acknowledge

3. Send data

...

4. End

(a)

1 1 1 0 1Signal

Power

Temperature

(b)

1 1 1 0 1

(c)
Fig. 3. (a) Illustration of a communication session. (b) The waveform
of temperature variations without the NRZ scheme. (c) The waveform of
temperature variations with the NRZ scheme.

The transmitter and the receiver first need to reach an
agreement on the transmission frequency for the thermal
covert channel. Flow of a communication session in [2] is
shown in Fig. 3(a). First, to initiate a session, the transmitter
sends a request packet to the receiver and waits for a reply.
Second, when the receiver identifies that the received packet
is a request packet, it replies with an acknowledge packet
to the transmitter. Third, if the transmitter doesn’t receive an
acknowledge packet within a given amount of time, it resends

another request packet. Otherwise, it transmits data packets to
the receiver and sends a termination packet to mark the end
of this current session. Finally, the receiver keeps receiving
data packets sent by the transmitter until it gets a termination
packet that terminates a session.

C. Transmitter and Receiver

To finish a communication session, the transmitter reads the
sensitive data and packetizes them with a specific preamble
filed(e.g., 101010), which marks the beginning of a packet, and
an Error Correcting Code (ECC) field. Basically, the packet to
be transmitted dictates the transmitter core’s program to gen-
erate temperature signals by letting the core run computation-
intensive code to boost the temperature or insert idle CPU
cycles to cool down the chip.

To make the temperature variations periodical, the non-
return-to-zero (NRZ) scheme is employed to avoid the ex-
cessive temperature ramp that otherwise may lead to overheat
caused by transmitting continuous ‘1’s, as shown in Fig. 3(b).
That is, a ‘1’ is represented as a rise in temperature followed
by a fall, as shown in Fig. 3(c). The duration to transmit a
single bit ‘1’ consists of two times, th and tl:

tb = th + tl, th ≤ tl (1)
where th is the duration of the thermal signal in a high
temperature, and tl is the duration of that in a low temperature.
Bit ‘0’ is represented as a low temperature with a duration of
tb.

At the receiver side, it picks up the temperature signal from
its local temperature sensor, and converts the thermal signal
into binary bit streams. Next, the receiver examines the ECC
code for packet integrity. If the received packet is determined
uncompromised and contains a specific preamble during the
transmission, the receiver extracts the data fields from the
packet; otherwise, the receiver discards the binary bit streams.
If the current packet doesn’t contain a preamble, it leads to a
bit error rate of 100%.

D. Related Work

Thermal covert channel attacks impose a major security
threat against computer systems. A thermal covert channel
doesn’t rely on any shared resources such as cache and
memory, which helps it circumvent modern system’s defense.
Masti et al. [1] showed a thermal covert channel could transmit
data with a bit error rate of 11% and a throughput of 1.33 bps.
Bartolini et al. [3] improved the efficiency of thermal covert
channel with a bit error rate less than 1% and a throughput of
more than 5bps over a 1-hop channel. Furthermore, the work
in [2] showed that a properly high transmission frequency can
significantly avoid the noise from the heat from other active
cores and result in an even higher transmission speed.

Although thermal covert channel attacks are perceived to
impose an increasingly big security threat to today’s multi-core
system, yet there has little work done to develop a defense or
countermeasure against it. In the next section, a frequency-
scanning-based detection and DVFS-based countermeasure is
thus introduced to close this gap.

TABLE I
NOTATIONS USED IN ALGORITHMS 1 AND 2

Ti The temperature trace of core i recorded in a detection cycle.

ρ The preset threshold for the signal amplitude in a detection cycle.

F The set of available frequencies of the thermal covert channels to
be scanned in a detection cycle.

4f Frequency increments.

nc Number of cores in the SoC.

mpi A variable recording the largest signal amplitude within Band B
of core i in a detection cycle and it is initialized to be 0.

mfi A variable recording the signal frequency of core i that matches
mpi and it is initialized to be 0.

L An initially empty list. It adds the position of a core that is
considered as the most suspicious one in every positioning process.

SFi An initially empty list. It adds a thermal signal frequency, which
matches the maximum amplitude within Band B of a core i in
every positioning process.

δt Error of transmission frequency.

III. COUNTERMEASURES AGAINST THERMAL
COVERT CHANNEL ATTACKS

To fight against the thermal covert channel attack, the
proposed countermeasure essentially consists of three major
steps: detection, positioning and blocking. A detection unit
time in the detection step, is hereinafter referred as a detection
cycle, and all three steps are initiated by a core called
global manager as shown in Fig. 4(a). The notations used in
Algorithms 1 and 2 are listed in Table I.

A. Detection

Detection of a thermal covert channel attack is managed
and coordinated by a core referred as the global manager, as
shown in Fig. 4(a). Essentially, the global manager assigns
the detection jobs to each core, and each core performs
the detection individually and reports to the global manager
whether there is a possible attack or not. In each detection

Global manager

Core 1 Core 2 ... Core n

Scan Scan ... Scan

results

 Sample all

cores’ temperatures

(a)

0 400
Frequency / Hz

0

0.02

0.04

0.06

0.08

1

P
o
w

er
 s

p
ec

tr
u
m

Power spectrum of blackscholes

50

A B C

A:noisy channels
B:suitable TCC channels
C:unavailable channels

(b)
Fig. 4. (a) Detection scheme. (b) The power spectrum of a core’s temperature
signal obtained when one typical application runs.

cycle, the global manager samples and records each core’s
temperature values for one second with a given sampling
frequency, followed by commanding each core to use its own
temperature trace to execute a frequency scanning process
to detect any existing TCC channels. After receiving the
command, if a core is running a task, the core will pause the
current task and run the frequency scanning based detection.
After the core finishes the detection and reports the results to
the global manager, it continues its original task.

1) Spectrum of TCC Signals: Fig. 4(b) shows the power
spectrum of the temperature signals of a core when a typical
application (e.g., Blackscholes from PARSEC) runs. From
Fig. 4(b), the spectrum of a thermal covert channel can be
divided into three bands: Band A that spans DC to 50Hz,
Band B from 50 to 400Hz, and Band C that is higher than
400Hz (cut-off frequency) and considered unavailable for data
transmission. A typical TCC channel, with signal amplitude
higher than 0.01dB, will select transmission frequency from
Band B rather from Band A to reduce noise interference, since
TCC signal in Band A can be easily disrupted by the thermal
signal generated by a normal application. Therefore, in the
aspect of defense against TCC attack, we only detect possible
TCC channels within Band B.

2) Frequency-scanning-based Detection of TCC Channels:
Over a detection cycle, the system checks which signal fre-
quencies that are available for TCC channels. Essentially, at
the beginning of a detection cycle, the global manager sends a
command to each core. Upon receiving the command, a core
uses its own tunable bandpass filter, with its center frequency
tunable within Band B and a fixed bandwidth, to process the
thermal signals, and each core makes a decision based on the
amplitudes of the output signal from the bandpass filter.

Algorithm 1 Frequency scanning based detection at core
i(1 ≤ i ≤ nc).
Input: Ti, ρ, F , and 4f .
Output: mpi and mfi.

1: Initialize mpi and mfi to be 0.
2: for f ∈ F do
3: Run signal Ti through a bandpass filter with center

(resonant) frequency of f , and bandwidth of 4f , and
get the signal amplitude p(f).

4: if p(f) > mpi then
5: mpi = p(f) and mfi = f
6: end if
7: f = f +4f
8: end for
9: if mpi ≤ ρ then

10: mpi = 0,mfi = 0, and send a message to the global
manager that no TCC channel is found.

11: end if
12: Report mpi and mfi to the global manager.

As listed in Alg. 1, the frequency scanning based detection
algorithm works as follows.

Step 1. The global manager initiates a detection cycle that
tries to find if there is any possible TCC channel; upon
receiving the command from the global manager to start a
new detection cycle, each core uses a bandpass filter to scan
the entire spectrum of Band B in a linear sweeping fashion
with an increment of 4f (see line 2 and line 7 in Alg. 1). The
best 4f is experimentally set to be 4Hz. Tuning to a center
frequency f , this bandpass filter processes the thermal signals
and outputs a signal with amplitude of p(f), as defined in line
3 in Alg. 1.

Step 2. Each core determines the maximum amplitude of
the signal from the frequency scanning process (see lines 4
to 6 in Alg. 1), and feeds it into a decision-making module.
The decision-making module decides whether a signal is from
a covert channel or not by comparing the signal’s amplitude
against a threshold ρ. If the signal amplitude is higher than ρ,
an attack is deemed as present; otherwise, no attack is present.
Statistically, the threshold ρ is chosen experimentally to be
0.02dB.

Step 3. At the end of a detection cycle (lines 9 to 12 in
Alg. 1), if a core confirms that a TCC attack is present, it
reports its findings, including the signal frequency and signal
amplitude, to the global manager. Otherwise, it advises to the
global manager that no TCC attack has been found in current
detection cycle.

Step 4. If the global manager finds no TCC channel exists
in any of the cores, it will hold back for a short time interval
(e.g., 2 seconds) before initiating the next detection cycle that
will start from Step 1 again.

If the global manager receives a notification of the existence
of a TCC channel, it begins a process to locate the cores that
have been affected by this TCC, as described in Section III-B.

B. Positioning Cores Affected by A Thermal Covert Channel
Attack

When a core is transmitting, the core has the maximum
signal amplitude within Band B among all the cores. Cor-
respondingly, after each detection cycle, the global manager
can get the position of the most suspicious core that has
the highest signal amplitude. Note that there is a very low
probability that a legitimate application may generate the same
thermal signals as a TCC attack. As so, the global manager
cannot immediately prescribe DVFS control to the suspicious
core until it is confirmed to have a pairing core running on
the same transmission frequency. To check if a suspicious
core has a pairing core running on the same transmission
frequency, the global manager initiates several detection cycles
and each detection cycle is followed by one positioning phase
that attempts to locate the core. This positioning phase (listed
as Alg. 2) involves 3 major steps given below.

Step 1. The core that has the largest value among all the
mpi(1 ≤ i ≤ nc) is located (line 1), where mpi is the
maximum signal amplitude within Band B of core i, and nc
is the number of cores in the system. This core, referred as
core mc, is considered as the most suspicious core that is
transmitting TCC thermal signals, with a signal amplitude
of mpmc and the transmission frequency of mfmc, when
mpmc > ρ. Here ρ is the preset threshold for the signal
amplitude, mfmc is the signal frequency that matches mpmc

of core mc in a detection cycle.
Step 2. The position of a suspicious core is decided,

following the rules defined in lines 2 through 5. If the
signal amplitude is strong enough, that is, mpmc is higher
than the preset threshold, and there is another core l ∈ L
which is listed in the most suspicious cores list L in the
history positioning phases and meets the following conditions,

Algorithm 2 Locate the positions of the TCC transmitter core
and receiver core.
Input: L, SFi, δt, mpi, and mfi.
Output: The positions of transmitter (l1) and receiver (l2)

cores, and transmission frequency (ft).
1: mc = argmaximpi.
2: if mpmc > ρ then
3: if ∃l ∈ L and ∃f ∈ SFl and mc 6= l and |mfmc − f | <

δt then
4: l1 = l, l2 = mc, ft = (f +mfmc)/2
5: end if
6: Add mfmc to SFmc and add mc to L.
7: end if
8: if l1 6= NULL ,and l2 6= NULL then
9: return l1, l2, and ft

10: else
11: Initiate a new detection cycle.
12: end if
13: return

∃f ∈ SFl and |mfmc − f | < δt
then the transceiver cores, l and mc, are considered as being
found. Here L is a list that stores the most suspicious cores
in the history positioning phases; SFl is a list that adds
a thermal signal frequency, which matches the maximum
amplitude within Band B, of the core l in every positioning
phase; δt is the estimation error of the transmission frequency.
The transmission frequency ft is set as the average of f and
mfmc (line 4).

Step 3. At the end of each detection cycle, the most suspi-
cious core position mc is added to list L and the transmission
frequency mfmc is added to SFmc (line 6 in Alg. 2). If the
global manager manages to locate the transmitter core and the
receiver core as well as the transmission frequency, it stops the
positioning process (lines 8 through 9), and starts the blocking
phase, as described in Section III-C.

The positioning process is suitable for all communication
protocols since a transmitter and the pairing receiver must use
the same transmission frequency to communicate.

C. Blocking the Thermal Covert Channel Attack

Once a core is identified to be part of a TCC, a coun-
termeasure shall be implemented to block any future TCC
transmission. Note that a countermeasure that completely
shuts down the cores participating in a TCC attack is not
always a viable solution. In today’s multi-core processors that
multi-threading is becoming commonplace, more than likely,
both the transmitter core and the receiver core in a TCC
may also run legitimate threads besides the TCC threads. In
this case, turning off these cores indiscriminately also kill
those legitimate threads, and thus lead to an unacceptable
performance loss when all the computing resources are so
much needed to handle heavy workload.

Here we adopt a different countermeasure strategy that
takes into account of both security requirements and system

1 0 1 0
t

t

t

signal

temperature under normal CPU frequency

normal frequency

low frequency t

temperature under varying CPU frequency
t

t
down

t
up

Fig. 5. An example showing the blocking scheme.

performance issues. Specifically, the thermal covert channel
transmission is blocked by altering the frequency level of the
transmitter core and also that of the receiver core. Scaling
down the frequency level can effectively change the temper-
ature pattern so that the bit error rate (BER) of the receiver
will jump to an extremely high level, say over 90%, so that
no meaningful TCC communication is possible (no correct
data is possibly received). Lowering down frequency level of
a core certainly has a negative implication on the chip’s per-
formance. As a tradeoff, we experimentally choose 500MHz
as the lowest level since the TCC communication sees a high
BER (e.g., more than 60%) when the frequency level of the
transmitter core is lower than or equals to 500MHz. Then,
two blocking methods are proposed: 1) A simple method that
lowers down the frequency level of the TCC core at 500MHz
all the time. 2) An advanced method that further reduces
performance loss. As for the advanced method, a variable
down-up rate, β, is introduced, and it is defined as the ratio of
the temporal duration tdown of the lowest frequency level to
temporal duration tup of the normal frequency level. That is,

β = tdown/tup
As shown in Fig. 5, when the frequency level of the

transmitter core is running at its typical frequency level (e.g.,
2GHz), the temperature signal may see a sharp rise and
fall transition when encoding signal ‘1’; however, the signal
amplitude is much lower than before when the frequency of
the transmitter core drops to a lower level (e.g., 500MHz) for
a duration of tdown and then returns to its typical value for a
duration of tup. By enforcing the down-up rate, the frequency
level goes down (to 500 MHz in Fig. 5) and then up (back to
2 GHz) periodically.

To first ensure the security, the frequency level of the
transmitter core should be scaled down at most of the time
when the transmitter generates high temperatures to transmit
signal ‘1’. According to the NRZ scheme and Eqn. 1, which
is mentioned in section II-C and shown in Fig. 3(c), one can
see that the duration th to generate high temperatures when
transmitting signal ‘1’ is less than 0.5tb, thus we can ensure
that the DVFS control is applied at every interval when the
transmitter generates high temperatures by limiting the sum of
tdown and tup to 0.5tb.

The blocking process has the following major steps.
Step 1. The global manager calculates the duration tb of

one signal duty cycle according to the dectected transmission
frequency ft. (i.e., tb = 1/ft)

Step 2. During each time 0.5tb, the global manager first
scales down the frequency level of the transmitter core and
receiver core for a duration of tdown, and then lets the

TABLE II
CONFIGURATIONS OF THE EXPERIMENTS

Sniper configuration

Instruction set architecture x86-64

Number of cores 3×3 / 4×4 / 8×8

Number of SMT threads per core 2

Technology node (nm) 22

Frequency and voltage levels of CPUs
(MHz/V)

2000/1.0, 1000/0.7,
700/0.68, 600/0.66,
500/0.64, 250/0.6

Configuration for integrated Hotspot

Chip thickness 0.15mm

Silicon thermal conductivity 100W/(m ·K)

Silicon specific heat capacity 1.75× 106J/(m3 ·K)

Heat sink thickness 6.9mm

Heat sink thermal conductivity 400W/(m ·K)

Specific heat capacity of heat sink 3.55× 106J/(m3 ·K)

Configuration for TCC programs

Transmission frequency 100 Hz, 150 Hz, 200Hz, etc.

Number of bits per packet 20

Preamble of a packet 101010

Preset transmission bit rate 10 bps

Distance between transmitter and receiver 1 hop

frequency level of that core back to its normal level.
Step 3. The global manager initiates a detection process

every t seconds (e.g., 2 seconds), to check whether there is
another TCC channel or not. If it finds another TCC channel, it
goes back to the positioning process while keeping the current
TCC transmission to remain blocked.

IV. EXPERIMENTAL EVALUATION
Our experiments are performed on a many-core simulator,

Sniper [7], with McPAT [8] integrated as the power model. We
also integrate Hotspot [9] as the thermal model to dynamically
generate temperatures for all the cores. We choose 10 bench-
marks from PARSEC [10] and SPLASH2 [11] and they will
be treated as the thermal noise that may interfere a TCC. Two
separated cores are set to be part of a TCC, while all the other
cores run the legitimate threads of the selected benchmarks.
Specifically, each core runs two simultaneous-multithreading
(SMT) threads, and both the transmitter core and the receiver
core run a TCC thread and a thread of the benchmarks. The
detailed configuration of Sniper, Hotspot and TCC programs
are tabulated in Table II. The floorplan of the processor cores
follows the one reported in [12].

A. Experimental Results
From Fig. 6(a), one can see that the average BERs of a TCC

communication, with a transmission frequency of 100Hz and
CPU frequency level of 2000MHz, are below 7% for all the
system sizes when the DVFS control is not applied to the
TCC cores. In this case, the TCC poses a major threat to the
many-core systems.

From Fig. 6(b), one can see that, the average accuracy
of positioning transceiver (Pacc) is 100% and the average
accuracy of estimating detection transmission frequency (facc)
is 98%. The accuracy of estimating the transmission frequency
is denoted as facc, and the positioning accuracy is denoted as
Pacc,

facc = (1− |(ft − fdetected)/ft|)× 100% (2)

 BER without DVFS

3X
3
4X

4
m

ix
4
m

ix
8

System size

2

4

6

8

B
E

R
 %

(a)

Detection accuracy

3X3 4X4 mix4 mix8
System size

95

98

100

A
cc

u
ra

cy
 /

 %

P
acc

f
acc

(b)

BER with the proposed

 method

3X
3

4X
4
m

ix
4
m

ix
8

System size

80

90

95

100

B
E

R
 %

85

(c)
BER with the proposed method

bl
ac

ks
ch

ol
es

bo
dy

tra
ck

st
re

am
cl

us
te

r

R
ay

tra
ce

sw
ap

tio
ns

x-
26

4

fa
ce

si
m

R
ay

tra
ce

w
at

er
.sp

oc
ea

n.
co

nt
60

70

80

90

100

B
E

R
 %

(d)

Average PL

3X
3

4X
4

m
ix

4
m

ix
8

System size

2

4

6

P
L

 /
 %

simple method
advanced method

(e)
Fig. 6. (a) The average BERs of a TCC communication with different system
sizes. Mix4 (Mix8) is the case that the thermal noise seen by a TCC in an 8×8
system is from a mixture of 4 (8) multi-threaded benchmarks. (b) Detection
accuracy, including the accuracy of positioning the transmitter core (Pacc) and
estimating transmission frequency (facc), of the TCC communication under
different system sizes. (c) The average BER results with the proposed method
under different system sizes. (d) The average BER results with the proposed
method under different benchmarks’ noise in a 4×4 system. The former seven
benchmarks are from PARSEC and the latter three are from SPLASH2. (e)
The average performance loss (PL) results with different system sizes. The
setting of transmission (signal) frequency of TCC programs is 100Hz.

Pacc =

{
100% Pdetected = Ptransmitter|receiver

0 otherwise
(3)

where ft is the real transmission frequency of TCC signals and
fdetected is our detected signal frequency; Pdetected is our de-
tected position (core id) of TCC core and Ptransmitter|receiver
is the actual position (core id) of transmitter core or receiver
core. By using the proposed detection strategy, we can always
figure out whether there is a TCC attack or not in a many-
core system and precisely detect its position and transmission
frequency.

With the proposed countermeasure, once a TCC attack is
detected, the TCC transmitter core’s frequency level is changed
with a down-up rate β of 9. From Fig. 6(c), the average BER
of the TCC attacks across systems with different sizes is higher
than 92%. Specifically, from Fig. 6(d), one can see that, in a
4×4 system, the average BER of TCC increases to 60%, and,
in most cases, it even reaches 100%. With such high BER,
no meaningful communications can be sustained; that is, our
defense strategy can effectively shut down TCC attacks. In
this experiment, the global manager confirms that it can no
longer find any TCC channel. Fig. 6(e) shows the average
performance loss (PL) of normal applications. Our proposed
advanced blocking method (in section III-C) with a down-up
rate β of 9 (β=9) is compared against our simple blocking
method (in section III-C) that keeps the transmitter core at the
lowest frequency level (i.e., 500MHz) all the time once a TCC
attack is detected. The performance loss (PL) is defined as:

PL =
πavg − π0
πavg

× 100% (4)

where πavg is the average performance (instruction per cycle)
of an application when no DVFS control is applied, and π0 is
the average performance of an application when DVFS control
is in effect. One can see that the average PL results of our two
blocking methods are all below 6% for different system sizes.
Further, the advanced method reduces PL of 15% on average
than that of the simple method. In a large many core system

(e.g., 8×8), the average performance loss of our proposed
countermeasure is at a low level (below 3%, for example)
and it is acceptable.

The main runtime overhead is incurred by the detection
phase. In our experiments, the average runtime overhead of a
detection cycle is below 0.05 second, which is several orders
of magnitude lower than the break interval (e.g., 2 seconds)
between two detection cycles. Therefore, the runtime overhead
of our proposed countermeasure is acceptable.

V. CONCLUSION
In this paper, a countermeasure was proposed to defend

against TCC attacks that may impose severe security threats
to many-core systems. The proposed countermeasure scheme
includes three major steps: 1) A frequency scanning method
is applied to examine the temperature traces to identify any
possible TCC attack by comparing the signal amplitudes with
the thresholds. 2) The TCC cores are located as these cores
need to communicate using the same transmission frequency.
3) DVFS is applied to the cores participating in a TCC to block
its communications. Experimental results have confirmed that
the proposed countermeasures could cause TCC attacks to
suffer extremely high BER (> 92%), while the multi-core
system only experienced a very modest loss (< 3%) in an
8×8 many-core system. The proposed countermeasure is thus
a suitable scheme that can be deployed in many-core systems
facing possible TCC attacks.

REFERENCES

[1] R. J. Masti, D. Rai, A. Ranganathan, C. Müller, L. Thiele, and S. Cap-
kun, “Thermal covert channels on multi-core platforms,” in USENIX
Security Symposium, pp. 865–880, 2015.

[2] Z. Long, X. Wang, Y. Jiang, G. Cui, L. Zhang, and T. S. T. Mak,
“Improving the efficiency of thermal covert channels in multi-/many-
core systems,” in DATE, pp. 1459–1464, 2018.

[3] D. B. Bartolini, P. Miedl, and L. Thiele, “On the capacity of thermal
covert channels in multicores,” in EuroSys, pp. 24:1–24:16, 2016.

[4] J. Shor, K. Luria, and D. Zilberman, “Ratiometric bjt-based thermal
sensor in 32nm and 22nm technologies,” in ISSCC, pp. 210–212, 2012.

[5] S. Paek, W. Shin, J. Lee, H.-E. Kim, J.-S. Park, and L.-S. Kim, “All-
digital hybrid temperature sensor network for dense thermal monitoring,”
in ISSCC, pp. 260–261, 2013.

[6] “8th gen intel core processor family datasheet.”
https://www.intel.com/content/www/us/en/products/docs/processors/core/8th-
gen-core-datasheet-vol-1.html.

[7] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: exploring the level
of abstraction for scalable and accurate parallel multi-core simulation,”
in SC, pp. 52:1–52:12, 2011.

[8] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO, pp.
469–480, 2009.

[9] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,
and D. Tarjan, “Temperature-aware microarchitecture,” in ISCA, pp. 2–
13, 2003.

[10] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: characterization and architectural implications,” in PACT, pp. 72–
81, 2008.

[11] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: characterization and methodological considera-
tions,” in ISCA, pp. 24–36, 1995.

[12] X. Wang, P. Liu, M. Yang, M. Palesi, Y. Jiang, and M. C. Huang,
“Energy efficient run-time increment mapping for 3-d networks-on-
chip,” J. Comput. Sci. Technol., vol. 28, no. 1, pp. 54–71, 2013.

