
On Hardware-Trojan-Assisted Power Budgeting System Attack Targeting Many
Core Systems I

Yiming Zhaoa, Xiaohang Wanga,∗, Yingtao Jiangb, Liang Wangc, Mei Yangb, Amit Kumar Singhd, Terrence Make

aSchool of Software Engineering, South China University of Technology, Guangzhou, China
bDepartment of Electrical and Computer Engineering, University of Nevada, Las Vegas, USA

cInstitute of Microelectronics, Tsinghua University, Beijing, China
dSchool of Computer Science and Electronic Engineering, University of Essex, Colchester, UK
eSchool of Electronics and Computer Science, University of Southampton, Southampton, UK

Abstract

In a modern many-core chip, as all the cores are constantly competing for their shares of power out of the maximum
power available to the chip, a sound power budgeting scheme is needed to efficiently allocate power to achieve the
highest possible overall system performance. When a core is poised to run some applications, it has to request its power
budget by sending a series of data packets, routed typically through an on-chip communication network infrastructure,
to a specific core designated as the global manager that makes its power allocation decision based on all the budget
requests it receives and its assessment of each cores potential contribution to the overall system performance. This power
budgeting scheme is shown, in this paper, to be extremely vulnerable to stealthy false-data attacks, which can cause
catastrophic denial of service (DoS) effects. Essentially, when a power budget request packet is routed through a Trojan-
infected network-on-chip node, such as a router, the power budget request can be secretly modified by the Trojan. The
global manager then tends to make really bad power budget allocation decisions with all the tampered power requests
it received. That is, legitimate applications will be victimized with lower power budgets than what they initially asked
for, and thus, could suffer serious performance degradation; malicious applications, on the other hand, may be entitled
to high power budgets and thus see performance boost that they do not deserve. Our study has revealed that this new
type of DoS attack can be initiated and sustained by a simple hardware Trojan (HT) circuit that is extremely hard to be
detected due to its low silicon footprint and short activation time. The effects of this new DoS attack are simulated using
a network model, and all the major parameters and factors that impact the attack effects are identified and quantified.
Should the HTs can be intelligently turned ON/OFF following a scheme based on Q-learning, we further demonstrate
the attacks can undermine the best countermeasures against power budgeting system attack as suggested in this paper,
which gives rise to a need for further research in this regard.

Keywords: Network-on-chip, hardware Trojan, power budgeting

1. Introduction

Security of servers, data centers, mobile computing and
Internet of Things is largely dependent on the security

IThis research program is supported by the Natural Science
Foundation of China No. 61376024 and 61306024, Natural Sci-
ence Foundation of Guangdong Province 2015A030313743 and
2018A030313166, Special Program for Applied Research on Su-
per Computation of the NSFC-Guangdong Joint Fund (the second
phase), and the Science and Technology Research Grant of Guang-
dong Province No. 2016A010101011 and 2017A050501003, Pearl
River S&T Nova Program of Guangzhou No. 201806010038, and
Tip-top Scientific and Technical Innovative Youth Talents of Guang-
dong special support program (No. 2014TQ01X590).

∗Corresponding author
Email addresses: yimingzhao3@gmail.com (Yiming Zhao),

xiaohangwang@scut.edu.cn (Xiaohang Wang),
yingtao.jiang@unlv.edu (Yingtao Jiang),
lwang@link.cuhk.edu.hk (Liang Wang), mei.yang@unlv.edu (Mei
Yang), a.k.singh@essex.ac.uk (Amit Kumar Singh),
tmak@ecs.soton.ac.uk (Terrence Mak)

of the many-core chips that these facilities/systems have
adopted. Unfortunately, many-core chips are susceptible
to be attacked by hardware Trojans (HT) which can be
easily implanted to the chips at any stage from design to
manufacturing, as chip designing and manufacturing is go-
ing global, and licensing of third party IP cores is becom-
ing commonplace in many-core chip designs. In contrast to
a modern many-core chip with billions of transistors and
complex functionalities, an HT circuit has an extremely
low transistor count, making it hardly visible, and thus
difficult to be detected by most known offline HT detec-
tion methods [1, 2, 3, 4, 5, 6, 7]. If many-core devices
infected with HTs finally get deployed, they can create
catastrophic effects, including dangerous security breach
and severe performance degradation [8, 9, 10, 11]. HTs
have been designed to explore many different types of vul-
nerabilities of a many-core chip. In this paper, we show
one such vulnerability that roots in the power budgeting

Preprint submitted to Elsevier August 22, 2019

scheme adopted in the chip.
Power budgeting is necessary in many-core chips [12,

13], as the total power budget typically available to a
chip is not sufficient to allow all the cores to run at their
peak performance simultaneously, and a core designated
as the global manager then has to allocate power among
the cores that request power to run their applications [14,
15, 16]. To make a fair and optimized power budgeting
decision, the global manager needs to solicit budget re-
quests from all the threads/applications running at dif-
ferent cores. Each power budget request is packetized and
routed to the global manager through the chip’s networked
communication infrastructure, known as the network-on-
chip (NoC).

Provided the hacker’s agents can gain access to the
global manager through a simple hardware Trojan embed-
ded in an NoC router, the power budgeting system can be
then attacked where power requests initiated by various
cores are deliberately modified for harm. That is, power
requests from the malicious applications (legitimate appli-
cations) will be increased (or decreased) to be higher (or
lower) value than what were actually requested. Upon re-
ceiving the manipulated power budget requests, the global
manager, irrespective of the power budgeting algorithms
[17, 18, 19, 20] it runs, always allocates power budgets
to favor the malicious applications, but penalize the legiti-
mate applications. As a result of such stealth (a.k.a. false-
data) attack against the power-budgeting scheme, a new
many-core chip may experience significant performance
degradation and even complete malfunctioning.

In [21], we identified the major contributors to the at-
tack effects and subsequently adopted a linear model to
quantify the attack effect.

Our previous work [21] has been significantly extended
by making the following new contributions:

1) A new variable application’s likelihood to be tampered
is introduced to the attack effect regression model to
improve the model’s accuracy.

2) The attack effect regression model is modified to be a
non-linear regression to reduce the regression error.

3) The attack is enhanced by a reinforcement learning al-
gorithm, such that the activation status of each HT
(ON or OFF) can be controlled at run time. In this
manner, the countermeasure has a high probability of
failing to detect the attack. The experimental results
confirm that with the enhanced attack, the attack ef-
fect is much improved even when a countermeasure is
there.

The rest of this paper is organized as follows. Section
2 introduces the background information and surveys the
relevant previous studies. Section 3 provides a design of
hardware Trojan that enables a DoS attack that hackers
tamper and steal power budgets from other threads. Sec-
tion 4 defines the related system parameters of the attack

model. A defense method against the proposed DoS at-
tack is discussed in Section 5, and Section 6 shows an anti-
detection method with reinforcement learning. Section 7
reports the simulation results under different attack sce-
narios using the proposed attack model. Finally, Section
8 concludes the paper.

2. Background and Previous Studies

In this section, we will first review the power budget-
ing schemes that have been applied to many core systems.
We then categorize various hardware Trojan enabled DoS
attacks seen in many-core systems. Detection and coun-
termeasures against hardware Trojans are also surveyed in
this section.

2.1. Power Budgeting in Many-Core Systems

We assume a many-core system of interest follows a
tiled architecture where each tile consists of a core, an
L1 cache, an L2 cache bank, and a router. Each core
can operate at any of the preset frequencies, and a higher
frequency leads to higher performance at a cost of higher
power consumption. As the total power budget in a many-
core system is lower than the power needs for all the cores
to run at their peak performance simultaneously, power
budgeting is necessary with an aim to optimize the overall
performance by choosing an appropriate frequency for each
core. The decisions on frequency selection, or equivalently
power allocation, are made by a special core designated as
the global manager [14, 15, 16, 22, 23]. To make an opti-
mized power budgeting decision, the global manager needs
to solicit budget requests from all the threads/applications
running at different cores. Power budgeting systems [17,
18, 19, 20, 24, 21] are the target or victim of the proposed
hardware Trojan. Then the power allocation problem can
be solved by heuristics [17, 18], control theory [19] or dy-
namic programming [20, 24], etc.

2.2. DoS Attack

DoS attacks on a many-core chip can target different
components of the chip, including the memory system [25],
and the network-on-chip (NoC) [7, 26, 27]. When a DoS at-
tack is launched, the malicious agents can either generate
a large volume of traffic to saturate the target components
(e.g., the memory controller as in [28], or a particular net-
work node in [29]) or silently drop packets. Apparently,
DoS attacks can cause many-core chips to malfunction, or
completely fail.

Xiao et al. [30] studied the researches on HTs from the
last decade and proposed an adversarial model taxonomy
(e.g. untrusted 3PIP Trojan model, untrusted fab or fa-
bless design house Trojan model, etc.) to classify various
HTs and countermeasures. The offline pre-silicon HT de-
tection methods (e.g. functional validation, code/structural
analysis) are used to validate third-party IP cores. Com-
pared to these offline HT detection methods, we propose

2

an online detection method since HTs can bypass the of-
fline detection schemes due to the reason that they can be
conditionally-triggered. With the help of hardware Tro-
jans (HTs) [8, 9, 10, 31, 32, 33, 34] DoS attacks can be clas-
sified as the following categories, 1) flooding attack [35, 36],
where a large volume of useless packets floods a victim
node and saturates it; 2) packet drop attack, where some
packets are dropped or directed to the malicious nodes so
that the victim node can never receive a single packet des-
ignated to it [36]; 3) privilege escalation attack [37], where
an average user process is granted the privileges of a su-
pervisor so that it can steal passwords; and 4) routing loop
attack [4], where packets that pass the malicious node will
be routed back to the source node, effectively blocking the
source core from communicating with any other cores.

2.3. Detection and Countermeasures against Hardware Tro-
jans

Various circuit level HT detection techniques have been
proposed, based on logic testing and side channel analysis
during the post-silicon test/validation process [2, 3, 38].
Logic testing approaches attempt to develop directed test
patterns to activate Trojans, should they ever exist, and
then propagate their effects to the output ports for analy-
sis. However, these approaches are likely to fail to activate
Trojans consisting of a large number of trigger inputs, or
those that are triggered by sophisticated conditions. In
the side-channel analysis approaches, a system parameter
(e.g., supply current or path delay), which can be affected
due to unintended design modifications, needs to be mea-
sured. However, the effectiveness of side-channel analysis
is limited by large intrinsic device parameter variations in
modern nanometer technologies.

In the literatures, a number of countermeasures against
HTs were proposed. In [6], a method concerning how to
detour the malicious nodes was suggested. Another coun-
termeasure to HT was through obfuscating the network
states [35, 39]. In [40, 41], the countermeasure involved
partitioning the network in a time-multiplexed manner.

3. HT-Enabled DoS Attacks Targeting the Power
Budgeting System

In this section, we show that a DoS attack can be
launched targeting the power budgeting scheme of a many-
core chip. This new type of attack is made possible by
implanting a hardware Trojan into the NoC’s router. This
section is thus dedicated to present a detailed design of
such hardware Trojan.

3.1. Threat Model

The target system consists of trusted IP cores includ-
ing processors, memories, network interfaces, and an un-
trusted third-party designed NoC IP core. The trusted
processors communicate through the untrusted networks-
on-chip. In this paper, the NoC topology is assumed to

be 2D mesh with XY or adaptive routing algorithms (e.g.,
west-first routing, etc.)

The malicious IP vendors can implant various HTs in
the NoC and run the hacker program on a processor to turn
ON or OFF those implanted HTs. In the baseline attack,
the HTs are always-on in the runtime, that is, the HTs are
always active once the chip is powered on. In the enhanced
attack, the HTs are activated by configuration packets,
sent from the hacker program running on a compromised
processor. The configuration packets have some special
data fields in the packet payload. When they pass the
routers infected by HTs, the HTs are activated by them. In
this manner, the hacker program can control the ON/OFF
status of the HTs.

3.2. Packet Frames

Generally speaking, a data packet arriving at a network
node or a router has 4 fields: the source address (16 bits in
this study), the destination address (16 bits), packet type
(32 bits) and payload field (32 bits). Additional informa-
tion, if needed, can be included in an optional field that is
named so.

As shown in Fig. 1(a), a packet will be recognized as a
power request packet if its packet type field is POWER REQ.
In this case, the payload of the packet is the power request
value.

A packet will be recognized as a Trojan configuration
packet if its packet type is CONFIG CMD as shown in
Fig. 1(b). For a configuration packet, its source address
is actually the attacker’s ID and the packet type field in-
cludes the CONFIG CMD, global manager and activation
signal. The attacker is a malicious program running on a
compromised core. A configuration packet is meant to be
sent to an implanted HT core by the attacker to set up the
HTs.

0 8 16 3124

Source address Destination address
POWER_REQ

Payload (Power request value)
OPTIONS (OPTIONAL)

(a)

(b)

0 8 16 3124

Attacker ID Destination address
CONFIG_CMD

#EMPTY#
OPTIONS (OPTIONAL)

Global manager Activation signal

Figure 1: (a) Normal power request packet. (b) Attacker’s configu-
ration packet.

3.3. HT Attack Process

Fig. 2(a) shows a normal case where core B sends a
power request of 1.2W to the global manager, core A, and
this core decides to let core B have the requested amount

3

Figure 2: An example of the DoS attack targeting power budgeting
system. (a) A many-core chip without HTs. (b) An attack scenario
where an HT is implanted into the router of node C.

of power, and thus the global manager sets core B to op-
erate at 2GHz. But if an HT implanted in node C gets
activated, as shown in Fig. 2(b), node B’s power request
changes from 1.2W to 0.1W. As a result, the global man-
ager wrongfully sets core B’s frequency to 1GHz based
on the power budget algorithm and the modified power
budget it received. With a low power budget, core B is
victimized as its performance will certainly degrade.

Before malicious nodes tampered the power requests,
the attacker needs to locate the node which is implanted
HT so that he can send the configuration packets to those
HTs. When the cores communicated through MPI, the at-
tacker program can parse the cache address to get specific
node’s id [42]. With knowledge of the node ID, topology
and routing, the attacker can locate where the HTs are.
Then the attacker program can be sneak in as a customer
that has the privilege to run on a many-core server com-
promised by HTs. After finishing those preparations, the
attacker can send configuration packets by MPI calls which
specifying the target node or accessing a special memory
address which translating the address to a cache bank ID,
corresponding to the target node’s ID [42]. The attacker
program can also multicast (making multiple MPI calls
or accessing memory addresses corresponding to multiple
cache banks) configuration packets to set up the HTs.

When an attacker is about to attack, the configura-
tion packet that includes the global manager’s ID, its own
core ID and the activation signal is sent to the malicious
nodes. When the configuration packet arrives at the in-
fected nodes, the HT stores the global manager’s ID and
the attacker’s ID in its local registers, if it has not done so.
The HT’s activation state is set by the activation signal in
the configuration packet. The hacker can launch different
attack modes by setting the right activation signal, and the
configuration packets may be sent out periodically for the
control of attack strategies. For example, if the attacker
agents want the HTs to be active in specific cycle time, a

series of configuration packets can be sent with activation
signals alternated to be ON and OFF.

After configuration, when a victim’s data packet passes
through those routers with implanted HT, if the HT is
not activated, the packet is forwarded normally (i.e., no
modification to the packet will ever be made). Otherwise,
the HT checks whether the data packet’s destination is
the global manager and the source is not hacker’s agent.
If so, the triggering module triggers the functional module
to modify the value of the power request field.

3.4. HT Circuits Implementation

To launch a DoS attack that is enabled by stealing
power budget from victim threads, an HT circuit includes
some registers to store the configuration parameters from
the hackers’ agents. The triggering module scans data
packets, and if a packet is found to match the configuration
parameters stored in the HT’s local register, the functional
module is then enabled if HT is activated. The functional
module basically manipulates the payload of the packet
that the power request is changed to a smaller value. As
Fig. 3 shows, an HT has 3 comparators and 2 registers
that sit between the router’s input buffer and the routing
computation module.

n1 bits n2 bits n3 bits n5 bitsn4 bits

=
Modified
payload

=Config
command

ŏ CONFIG
CMD

Attacker
agent’s

ID

Global
manager

ID
Payload ŏ

Configuration packet from input buffer

Activation
signal

src dst

�=

Global
manager

Payload

Activation
signal

Attacker
ID

Hardware Trojan

0…0

Power request packet
from input buffer

= Comparator
!= Inverse of comparator

Legend

(a) Internal design of an HT.

Input channel

VC flit buffer

Input port

VC ID Reg

Valid

Newly allocated VC IDs

Switch control signals

HT Crossbar

Input channel

Routing
computation

Input buffer

(b) The location of the HT inside a router.

Figure 3: Hardware Trojan Design

4

4. Evaluating the DoS Attack Effect

A DoS attack targeting the power budgeting scheme
as described in Section 3 tends to cause victim applica-
tions/threads to suffer from serious performance degrada-
tion while the attacker’s malicious application may see a
considerable performance gain. The effectiveness of the
proposed DoS attack can be attributed to a number of
factors listed below:

• The number of hardware Trojans in the NoC.

• Locations of the hardware Trojans and the global
manager. When an HT is close to the global man-
ager, since more budget request packets are likely
to pass the HT before reaching the global manager,
this HT can make more packet modifications, and
thus can have higher impacts on the overall system
performance.

• Application’s sensitivity to its power budget. Perfor-
mance impacts due to power budget changes can be
application-specific. For example, the performance
of an instruction-bounded application is typically hit
harder than that of memory-bounded applications.

• Application’s likelihood to be tampered. We main-
tain an assumption that the HTs are evenly dis-
tributed. For a power request packet with longer
length from source to the global manager has a higher
probability of being tampered. Different applica-
tions’ locations on the chip lead to different prob-
abilities to be attacked.

Table 1 shows the mathematical notations used in the
DoS attack.

4.1. Measures of Attack Effect

Definition 1. Application k’s performance θk is defined
by

θk =
∑
j∈Ck

IPC(j, k, fj) · fj (1)

where θk is application k’s instruction per clock (IPC)
value, Ck is the set of cores running application k’s threads,
and IPC(j, k, fj) is core j’s IPC.

Definition 2. Application k’s performance change Θk is
defined as

Θk =
θk
Λk

(2)

where θk is the application k’s IPC value with HTs and
Λk is the application k’s IPC without HTs.

Table 1: Notations in the DoS Attack

IPC(i, z, f) The core i’s IPC value when running ap-
plication z and it is frequency is f .

Ck The set of cores running application k’s
threads.

θk The application k’s IPC value.
Λk The application k’s IPC value without

HTs in the chip.
Θk The application k’s change in perfor-

mance.
V The number of victims in the many-core

chip.
A The number of attackers in the many-

core chip.
φ(j, z) The core j’s sensitivity to power budget

when it is running application z.
Φk The application k’s power budget sensi-

tivity.
Zk The application k’s likelihood to be tam-

pered.
ζj The Manhattan distance from core j to

the global manager.
m The number of malicious nodes.
(ωX , ωY) The HTs’ virtual center.
ρ The Manhattan distance from the global

manager to the HTs’ virtual center.
η The HT’s distribution density.
MHT The maximum number of HTs on a chip.

Definition 3. The attack effect of the proposed DoS at-
tack Q(∆,Γ) is defined as

Q(∆,Γ) =
V ·
∑
a∈∆ Θa

A ·
∑
v∈Γ Θv

(3)

where V and A are the numbers of victims and attackers
respectively. ∆ and Γ are the sets of attacker applications
and victim applications respectively.

If the attacker’s performance improves, or victim’s per-
formance degrades, Q(∆,Γ) will show a higher value. In
a simple word, the larger Q(∆,Γ) value has, the stronger
an attack is.

4.2. Factors Impacting Attack Effect

There are a number of factors that can impact the at-
tack effects.

1. Application’s sensitivity to power budget: Applica-
tions have different performance changes when their
V/F values vary.

Definition 4. Core j’s sensitivity to power budget
while running application z, denoted as φ(j, z) is de-

5

fined by

φ(j, z) =

s−1∑
i=1

∣∣∣IPC(j, z, τi)− IPC(j, z, τi+1)

τi − τi+1

∣∣∣ (4)

τ1 < τ2 < · · · < τs

where τi and τi+1 are the available frequency lev-
els, IPC(j, z, τi) is core j’s IPC when it is running
application z’s thread with a frequency level of τi.

Definition 5. Application k’s sensitivity to the power
budget is defined by

Φk =

∑
i∈Ck

φ(i, k)

|Ck|
(5)

where Ck is the set of cores running application k’s
threads.

2. Application’s likelihood to be tampered: under the
assumption that HTs are evenly distributed over the
chip, a packet with a longer path length from the
source to the destination implies a higher probabil-
ity of being tampered. The likelihood of an appli-
cation’s power request being tampered is defined as
the average length of the packets’ paths that are sent
from the cores running the application to the global
manager.

Definition 6. Denote ζj as the Manhattan distance
from core j to the global manager. Application k’s
likelihood to be tampered Zk is defined by

Zk =

∑
j∈Ck

ζj

|Ck|
(6)

3. Parameters characterizing system architecture: The
distribution of HTs has performance implications on
both attackers and victims.

Definition 7. Assume there are a total of m mali-
cious nodes. The coordinates of the m HTs’ virtual
center is defined by

ωX =

∑m
i=1XMi

m
(7)

ωY =

∑m
i=1 YMi

m
(8)

where XMi
and YMi

are x and y coordinates of the
malicious nodes’ respectively.

Definition 8. Distance between the global manager
and the virtual center of those HTs denoted as ρ is
defined by

ρ = MD(O,Ω) (9)

where O is the global manager’s location, and Ω is
the HTs’ virtual center.

If the virtual center of HTs is far away from the
global manager, measured as a long distance between
the two, fewer packets with power requests actually
pass through the nodes infected with HTs. In other
words, the performance of the system has a lower
probability to be affected.

Definition 9. HTs’ density denoted as η is the av-
erage Manhattan distance between HTs’ virtual cen-
ter and each malicious nodes. It measures the vari-
ance of the HT distribution, which is defined as

η =

∑m
i=1 MD(Ω,Mi)

m
(10)

where m is the number of malicious nodes.

A higher density indicates a large number of mali-
cious nodes are around the virtual center, and more
packets may be intercepted and modified, leading to
a higher infection rate.

4.3. Modeling Attack Effects

We use three regression models, the linear, the quadratic
and the cubic models, to quantify the relationship between
the aforementioned parameters. The dependent variable
is the Q value (Q(∆,Γ)). The independent variables in-
clude distance (ρ), density (η), the number of HTs (m),
all applications’ sensitivity to power budget (Φk) and all
applications’ likelihood to be tampered (Zk).

And in Section 7, the quadratic model shows the lowest
prediction error, the model is as follows.

Q(∆,Γ) = α1 × ρ+ β1 × η + σ1 ×m

+

V∑
s=1

as,1 × Φγs +

A∑
t=1

bt,1 × Φδt +

V∑
s=1

cs,1 × Zγs + g1

(11)

Q(∆,Γ) =

2∑
p=1

αp × ρp +

2∑
p=1

βp × ηp +

2∑
p=1

σp ×mp

+

2∑
p=1

V∑
s=1

as,p × Φpγs +

2∑
p=1

A∑
t=1

bt,p × Φpδt

+

2∑
p=1

V∑
s=1

cs,p × Zpγs + g2 (12)

6

Q(∆,Γ) =

3∑
p=1

αp × ρp +

3∑
p=1

βp × ηp +

3∑
p=1

σp ×mp

+

3∑
p=1

V∑
s=1

as,p × Φpγs +

3∑
p=1

A∑
t=1

bt,p × Φpδt

+

3∑
p=1

V∑
s=1

cs,p × Zpγs + g3 (13)

where αp, βp, σp, as,p, bt,p, cs,p, 1 6 s 6 V, 1 6 t 6 A, gi, i =
1, 2, 3 are the regression coefficients, γs and δt are sth and
tth victim/attacker application, ρ is the HT’s distance be-
tween HTs’ virtual center and the global manager, η is the
HT’s distribution density, m is the number of malicious
nodes, Φγs and Φδt are the victim and the attacker appli-
cations’ sensitivities to power budget, respectively. Zγs is
likelihood of being tampered for application γs. The Eqns.
11 12 13 is linear, quadratic, and cubic regression models
respectively.

Following the attack effect model, we formulate a prob-
lem to maximize the attack effect by selecting the proper
distance and density of HTs. The constraints are the area
of the HT circuits, or equivalently, the number of HTs
that will be selected by the attacker. This attack effect
optimization problem can be formulated as follows.

max
ρ,η,m

Q(∆,Γ) (14)

subject to m 6MHT (15)

where MHT is the maximum number of malicious nodes
selected by the hackers.

The attacker solves the above problem to maximize the
attack effect before loading the application into the chip.
To solve the problem, one can exhaustively enumerate all
possible values for above mentioned three metrics: 1) num-
ber of HTs, 2) distance between the global manager and
the virtual center of HTs, 3) HTs distribution density.

5. Possible Detection and Countermeasure Against
the Proposed Attack

A possible detection method works as follows.

1) The global manager collects each core’s power budget
request and computes the average value.

2) The difference between the average value and a core’s
power request is defined as the deviation of this core’s
power request. The global manager calculates the devi-
ations from all cores’ power requests and notes the cores
into an observation list whose deviations are larger than
a threshold λ× average value.

3) When a core appears in the observation list consecu-
tively n times, the global manager marks this core is
under attacked (i.e., victims).

4) A core is marked not being attacked if the deviation of
this core’s power request is no longer larger than the
threshold.

To determine the values of λ and n, a set of experi-
ments are performed. In Fig. 4(a), the value of n varies
from 1 to 8 with the threshold λ = 0.4. The results show
that when n = 4, the attack effect is minimized. In Fig.
4(b), the threshold λ varies from 0.05 to 0.95 with n = 4.
The results show that when λ = 0.4, the attack effect is
minimized. Therefore, λ is set to be 0.4 and n is set to be
4.

0 5 10

n

4

4.5

5

5.5

6

A
tt
ac
k
E
ff
ec
t
(Q

(∆
,
Γ
)) (a)

0 0.5 1

λ

3

4

5

6

7

A
tt
ac
k
E
ff
ec
t
(Q

(∆
,
Γ
)) (b)

Figure 4: The attack effect over different n and λ values. (a) n ranges
from 1 to 8 with λ = 0.4. (b) λ ranges from 0.05 to 0.95 with n = 4.

When the global manager marks the victim cores, it
defends as follows.

1) The global manager computes the average value of the
power requests from cores that are not being attacked.

2) Before running the power budgeting algorithm, the global
manager resets those victims’ power budget requests to
the average value in step 1).

3) The global manager runs the power budgeting algo-
rithm with the new power requests.

Fig. 5 shows an example of the detection and coun-
termeasure against the proposed attack. If the power re-
quests of four cores A, B, C and D are 0.1W, 1.2W, 1.3W,
1.4W in consecutive 4 times. The average power request is
1.0W. The deviations of all cores’ power requests are 0.9W,
-0.2W, -0.3W, -0.4W. The deviation of core A (0.9W) is
larger than the threshold (0.4 × 1.0W = 0.4W), then the
global manager marked core A is under attacked. Core A’s
power request is recalculated as the average power requests
of the other three cores. Then the power budgeting algo-
rithm is applied with 1.3W (core A’s new power request),
1.2W (core B), 1.3W (core C), 1.4W (core D).

7

A
0.1W

B
1.2 W

C
1.3 W

D
1.4 W

Average power
request
1.0 W

Original power request Deviation =
Original - Average

A
0.9W

B
-0.2 W

C
-0.3 W

D
-0.4 W

> threshold = 0.4W

Reset power request

A
1.3 W

B
1.2 W

C
1.3 W

D
1.4 W

Average
value
1.3W

Figure 5: An example of the detection and countermeasure against
the proposed attack.

6. The Enhanced Attack

To avoid being detected by the method in Section 5,
the HTs need to hibernate and attack intermittently, by
controlling the ON/OFF status of the HTs. There are two
ways of controlling the ON/OFF status of an HT.

1) The HTs are turned ON or OFF randomly so that the
detection scheme fails to locate the HTs.

2) The HTs are activated by configuration packets sent by
the hacker program running on a compromised core.

For the first type of HTs (referred as randomly-activated
HTs), each HT in the routers flips its ON/OFF status after
a random time period. The HT uses a mod-k counter such
that when the counter output equals to 0, the HT is OFF
and when the counter is 1 otherwise. When the victim
packets are passing through the HT-infected routers, they
might be tampered, depending on the ON/OFF status of
the HTs. As a result, the detector fails to locate HTs.

For the second type of HTs (referred as hacker-controlled
HTs), as introduced in Section 3.3, the attacker can use ac-
tivation signals to turn each hardware Trojan ON or OFF
by a Q-learning algorithm [43]. The hacker program run-
ning on a compromised core configures the HTs by search-
ing the Q-table to select an action which is to turn ON or
OFF the HTs. In the next iteration, the attacker records
its performance improvement as the reward and updates
the Q-table. The advantage of this type of attack is that
the attack effect can be optimized. It is different from a
worm or a software malware in that, 1) the worm or mal-
ware can be detected and neutralized by anti-virus soft-
ware while the HTs cannot be detected by it, and 2) HTs
can tamper the data packets directly, which cannot be di-
rectly accessed by software level operations. The notations
are listed in Table 2.

In what follows, the state space and actions are first
defined, followed by the Q-learning based algorithm which
runs by the hacker program.

Table 2: Notations in the enhanced attack

Q(s, a) Q-table.
ε The greedy rate in Q-learning.
α The learning rate in Q-learning.
γ The discount rate in Q-learning.
st HTs’ state at time t.
at The attacker’s action at time t.
rt The reward at time t, equal to the malicious

application’s performance change (Θ in the
Definition 2) at time t.

⊕ Exclusive or (XOR) operation.

6.1. States and Actions

Definition 10. At time t, the attacker’s state st = (s1
t ,

s2
t , ..., s

m
t) is defined as

sit =

{
1, if the ith HT is ON,
0, if the ith HT is OFF,

(16)

i = 1, 2, ...,m

For example, assume a chip has 3 HTs. The first one is
ON while the others are OFF. The current state vector is
st = (1, 0, 0).

Definition 11. For the i-th HT, the flipping operation is
defined as reversing the current state (sit+1 = 1 − sit). At
time t, the attacker’s action at = (a1

t , a
2
t , ..., a

m
t) is defined

as

ait =

{
1, if the ith HT’s state is flipped,
0, if the ith HT’s state is NOT flipped,

(17)

i = 1, 2, ...,m

The action space is Π = {τ1, τ2, ..., τ2m}, where at ∈ Π. In
the above example, the action space is Π = {(0, 0, 0), (0, 0, 1),
(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}. If the
action is at = (0, 1, 0), the 2nd HT’s state is to be flipped.
The next state st+1 is (1, 1, 0).

Based on the above settings, the next state equals to
bit-wise exclusive ORing (XORing) the current state and
the action, i.e., st+1 = st ⊕ at.

6.2. Q-Learning Based Enhanced Attack with Improved Stealth-
iness

Definition 12. The Q-table Q(st,at) is a 2-dimension
table where the index of the row is st and the index of
column is at.

Definition 13. The attacker’s reward rt is the malicious
application’s performance change (Θ in Definition 2) at
time t.

The attacker is enhanced by a Q-learning algorithm to
improve the stealthiness of the HTs given the HT detection
method in Section 5. By doing so, the detection method

8

fails to identify those victim cores. The reason is as fol-
lows. The detection method only marks those cores as be-
ing attacked that send n low power requests consecutively.
However, the attacker switches the HTs ON and OFF to
break the continuity of victims’ low power requests. The
pseudocode of the Q-learning based method is shown in
Algorithm 1.

The attacker’s initial state s0 is set to be (0, 0, ... ,0).
In each iteration, the attacker selects the action at by the
ε-greedy strategy as follows.

Definition 14. At time t, the attacker selects an action
randomly with a probability ε, or the action which maxi-
mizes the Q value given the current state.

at =

 τk, τk ∈ Π, k ∈ {1, 2, ..., 2m}, if random(0,1) 6 ε

arg maxa∈ΠQ(st, a), otherwise

(18)

where the function random(0,1) generates a random num-
ber ranging from 0 to 1.

Next, the attacker transfers to the next state (st+1),
records the reward and updates the Q-table by [43]

Q(st,at) = (1− α)×Q(st,at)+ (19)

α× [rt + γ ×max
a∈Π

Q(st+1, a)]

The entry Q(st,at) is updated by a weighted average
of two terms [43]. The two terms are: 1) the entry’s
previous value Q(st,at), 2) future expected return after
discounting plus the reward rt. The future expected re-
turn after discounting is the product of discount rate γ
and the maximum value under the next state in Q-table
maxa∈ΠQ(st+1, a). These steps iterate until reaching the
preset maximal iteration number (i.e. T in Algorithm 1).

When all the HTs are at the ON state at the time when
power is turned on, the detector shall be able to detect
some hardware Trojans, and as a result, the infection rate
gradually decreases. When all the HTs are at the OFF
state at the time when power is turned on, the detector will
not be able to detect all the HTs. As a result, the infection
rate gradually increases. When the greedy probability ε is
small, the attacker tends to choose an action that tends
to maximize the Q value in the current state. When the
greedy probability ε is large, the attacker tends to choose
its action in a random fashion. A larger greedy probability
leads to better exploration in the reinforcement learning,
which increases the probability of HTs being detected, and
thus leading to a lower infection rate.

The Q-learning based hacker program has a lower over-
head on the overall system. The experimental results show
the enhanced attack program accounts for about 2%-4%
running time compared to a normal program running on
the compromised core.

Algorithm 1: The Enhanced Attack

Input: ε: The probability that the attacker chooses
an action randomly.

α: The learning rate in Q-learning.
γ: The discount rate in Q-learning.
T : The maximal iteration number.
s0: The initial state of the attacker in Q-learning.

1 t = 0 ;
2 while t < T do

/* The greedy strategy in Q-learning.

*/

3 if random(0,1) 6 ε then
4 Choose at randomly;
5 end
6 else
7 at = arg maxa∈ΠQ(st, a);
8 end
9 Execute action at, st+1 = st ⊕ at ;

10 Calculate reward rt ;
/* Updating the Q-table. */

11 Q(st,at) = (1− α)×Q(st,at) + α× [rt + γ ×
maxa∈ΠQ(st+1, a)] ;

12 t = t+ 1 ;

13 end

7. Experimental Results

7.1. Experimental Setup

Experiments are performed to evaluate the attack ef-
fect with the number of HTs and HTs’ distribution. The
experiments are using an event-driven many-core simula-
tor in C++ [44]. The simulated architecture is a shared
memory structure, with each core having its own L1 cache
and a shared L2 cache bank. A tile is connected to a
local network interface and a router, and together they
form one node of the NoC. Table 3 lists the simulator
configuration. Multi-threaded applications can have their
threads running on different cores. Communications be-
tween threads take place through the NoC. The messages
in the network are generated by memory transactions in-
cluding read/write access requirements. Table 4 lists the
benchmarks used for performance evaluation, they are se-
lected from PARSEC and SPLASH-2. In the following ex-
periments, we select a 16 × 16 2D mesh as the underline
NoC architecture.

7.2. Evaluating the Infection Rate

Fig. 6 (a) compares the infection rates when the global
manager is at different locations and the system size is 64.
One can see that along with the increase of the number of
HTs, the infection rate increases as well. If the global man-
ager is placed at the corner of the chip, the corresponding
infection rate is more than 20% higher than that of the
case where the global manager is placed at the center, as-
suming there are more than 10 HTs. When the system

9

Table 3: Configuration used in the simulation

Number of processors 256 (Alpha ISA 64 compat-
ible)

Fetch/Decode/Commit
size

4/4/4

ROB size 64
L1 D cache(private) 16 KB, two-way, 32B line,

two cycles, two ports, dual
tags

L1 I cache(private) 32 KB, two-way, 64B line,
two cycles

L2 cache(shared) MESI 64 KB slice/node, 64B line
protocol six cycles, two ports
Main memory size 2 GB, latency 200 cycles

On-chip network parameters

NoC flit size 72-bit
Data packet size 5 flits
Meta packet size 1 flit
NoC latency router two cycles, link one

cycle
NoC Virtual Channel
(VC) number

4

NoC buffer 5× 5 flits
Routing algorithm XY Routing or Adaptive

Routing

Table 4: Benchmarks used in the simulation

PARSEC streamcluster, swaptions, ferret, uidani-
mate, blackscholes, freqmine, dedup, can-
neal, vips

SPLASH-2 barnes, raytrace

size is 512, a similar trend is observed as shown in Fig.
6 (b). The reason is that a packet loaded with a power
budget request has to travel a long distance to reach the
global manager that is at the corner of the chip. Longer
routing distance increases the chance that such a packet is
intercepted and modified by an HT node.

Fig. 7 compares the infection rates of 3 different cases:
(i) HTs are all placed close to the center of the chip, (ii)
HTs are randomly distributed, and (iii) HTs are placed
to a concentrated area near one corner. Here, the global
manager is assumed to be at the center of the chip.

From Fig. 7, one can see that the infection rates of the
cases that the HTs are near the center location of the chip
are higher than those of the other two cases. For example,
in Fig. 7 (a), when the system size is 256, the infection rate
of the case that the HTs are close to the center is 1.59×
and 9.85× more than those of the other two cases, respec-
tively. The reason is that, in the case HTs are around the
center, more packets with power requests are likely to be
intercepted and modified. In the case when HTs are ran-
domly distributed, fewer packets with power requests will

0 10 20 30

Number of HTs

0

0.5

1

In
fe

ct
io

n
 r

at
e

(a) System size = 64

The global manager in the center

The global manager in one corner

0 20 40 60

Number of HTs

0

0.5

1

In
fe

ct
io

n
 r

at
e

(b) System size = 512

Figure 6: Infection rate comparison with different HT numbers when
the system size is (a) 64, and (b) 512.

be attacked. In the case when HTs are clustered around
one corner of the chip, some packets with power requests
will never be attacked.

64 128 256 512
System size

0

0.5

1

In
fe

ct
io

n
 r

at
e

(a)

64 128 256 512
System size

0

0.5

1

In
fe

ct
io

n
 r

at
e

(b)

HTs around the center

HTs distributed randomly

HTs in one corner

Figure 7: Infection rate comparison with different HT distributions,
when the number of HTs is (a) 1

16
, (b) 1

8
of the system size.

7.3. Evaluating Attack Effect

We use the mixes of a few benchmarks to test the at-
tack effects of the proposed DoS attack. The numbers of
attackers and victims are set to be 1, 2, and 3, and they
can be mixed to obtain four combinations, as tabulated in
Table 5.

Table 5: Benchmark combinations used in the experiments

Combination Attackers Victims

Mix-1 barnes, can-
neal

blackscholes, raytrace

Mix-2 freqmine,
swaptions

raytrace, vips

Mix-3 canneal barnes, vips, dedup
Mix-4 barnes,

stream-
cluster,
freqmine

raytrace

Fig. 8 shows each mix’s Q value with respect to infec-
tion rate. Each application is set to have 64 threads and
run on a chip with 256 cores. Overall speaking, a higher
infection rate leads to a larger Q value. In the case of
Mix-4 which has three attackers, the Q value reaches its

10

peak (i.e., 6.89) at the infection rate of 0.9. In Fig. 9 (a),
one can see that when the infection rate is 0.5, the perfor-
mance of the attackers is improved by as much as 1.2×,
and the victim’s performance drops by 0.6×. In Fig. 9
(c), when there are 3 victims, and the infection rate is 0.5,
the performance improvement of the attacker is as much
as 1.35×. In Fig. 9 (d), when there are 3 attackers, and
the infection rate remains at 0.5, the victims’ performance
degrades by as much as 0.8×.

Next, the attack effect of an NoC system with HTs
optimally placed (select number of HTs, distance between
the global manager and virtual center of HTs, HTs distri-
bution density which solves Eqns. 14-15) is compared with
that of a system with randomly placed HTs. In the case
that there are 16 HTs in the chip and the global manager
is in the center of the chip, the attack effect of the NoC
with optimal HT distribution is about 30% higher than
that of NoC but with a random HT distribution for the
mixes of 1, 2 and 3. More significant improvement (by as
much as 110%) in attack effect is seen in the case of mix-4.
In a simple word, solving the attack effect maximization
problem in Eqns. 14-15 can indeed improve the attack
effects substantially.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Infection rate

1

2

3

4

5

6

7

Q
 v

a
lu

e

Attack effect

mix-1

mix-2

mix-3

mix-4

Figure 8: Attack effect comparison with different infection rates.

7.4. HT’s Area and Power

Each HT has an area of 12.1716µm2 and consumes
0.55018µW power, as reported by Synopsys Design Com-
piler under 45nm TSMC library. As a comparison, a router
with 4 virtual channels and 5-flit depth First-Input-First-
Output has a total area of 71814 µm2 and consumes a to-
tal power of 31881µW , obtained from DSENT. In a sim-
ple term, an HT’s area and power is about 0.017% and
0.0017% of a single router, the delay for a packet passing
through a router with HT’s circuits is 0.05ns more than
passing a router without HT, making such an HT hard to
be detected.

7.5. Comparison of Different Attack Effect Models

As discussed in Section 4, a new variable that quan-
tifies the likelihood that power request may be tampered

(Zk) is added in the attack effect model. To validate the
new variable, we used mixes in Table 5 to compute the
average regression error under different system size. Fig.
10 and Fig. 11 shows the regression error after includ-
ing applications’ likelihoods to be tampered (Zk) in the
linear and quadratic models respectively. In Fig. 10, as
the size of the system grows, the linear model’s regres-
sion error decreases from about 8%-9% to 6% before Zk is
added in the model and decreases from about 7% to 5%
after Zk is added in the model. In the Fig. 11, as the
size of the system grows, the quadratic model’s regression
error decreases from about 7% to 6% before Zk is added
in the model and decreases from about 6% to 4% after Zk
is added in the model. After including Zk both of the two
models’ regression errors decrease by 1-2%.

Next, the attack effect models (Eqn. 11, 12, 13) with
different polynomial orders are compared. Fig. 12 shows
the regression error with three different polynomial orders,
i.e., linear, quadratic and cubic. As the size of the system
grows, the regression errors of all three models decreased
from about 7%-9% to 5%. From Fig. 12, the quadratic
model has a minimal error and is thus used in the paper.

7.6. Evaluating the Enhanced Attack

With mix-1 in Table 5, Fig. 13 shows the infection
rate in four scenarios. 1) The infection rate is about 0.72
when the many-core chip is under the proposed baseline
attack in Section 3 (without enhancement). 2) The infec-
tion rate decreases to about 0.14 when the global man-
ager uses the countermeasure in Section 5 to monitor all
cores’ power requests, which is about 80.56% lower com-
pared to the case without the countermeasure. 3) The
infection rate increases to about 0.38 when the randomly-
activated HTs are deployed against the countermeasure in
Section 5, which is about 171.43% higher compared to the
case without the enhancement. 4) The infection rate in-
creases to about 0.56 when the hacker-controlled HTs are
applied, which is about 298.34% higher compared to the
case without the enhancement and 47.37% higher com-
pared to the case with the randomly-activated HTs. The
proposed countermeasure can decrease the infection rate
compared to the baseline attack. Comparing to the base-
line attack, both of the proposed enhanced attacks increase
the infection rate significantly even the countermeasure is
there. The hacker-controlled HTs have more infection rate
improvement than the randomly-activated HTs.

8. Conclusion

In this paper, we proposed a new type of Hardware-
Trojan-assisted DoS attack that can severely penalize the
performance of a many-core chip by tampering the power
budget requests within the chip. Specifically, when a power
request packet from a victim application/thread traverses
through a malicious router infected with an HT, the power
request is modified. As a result, this victim application

11

0 0.5 1
Infection rate

0

0.5

1

1.5

P
er

fo
rm

an
ce

 c
h
an

g
e (a) mix-1

attacker 1

attacker 2

victim 1

victim 2

0 0.5 1
Infection rate

0

0.5

1

1.5

P
er

fo
rm

an
ce

 c
h
an

g
e (b) mix-2

attacker 1

attacker 2

victim 1

victim 2

0 0.5 1
Infection rate

0

0.5

1

1.5

P
er

fo
rm

an
ce

 c
h
an

g
e (c) mix-3

attacker 1

victim 1

victim 2

victim 3

0 0.5 1
Infection rate

0

0.5

1

1.5

P
er

fo
rm

an
ce

 c
h
an

g
e (d) mix-4

attacker 1

attacker 2

attacker 3

victim 1

Figure 9: Applications’ performance changes for each mix.

64 128 256 512

System Size

0

2

4

6

8

10

A
v
er

ag
e

R
eg

re
ss

io
n
 E

rr
o
r/

%

Original attack effect model

Adding new parameter Z
k

Figure 10: The regression error comparison over different network
sizes, when the attack effect model is a linear regression model (Eqn.
11).

64 128 256 512

System Size

0

2

4

6

8

10

A
v
er

ag
e

R
eg

re
ss

io
n
 E

rr
o
r/

% Original attack effect model

Adding new parameter Z
k

Figure 11: The regression error comparison over different network
sizes, when the attack effect model is a quadratic regression model
(Eqn. 12).

64 128 256 512

System Size

0

2

4

6

8

10

A
v
er

ag
e

R
eg

re
ss

io
n
 E

rr
o
r/

% Linear Fitting

Quadratic Fitting

Cubic Fitting

Figure 12: The regression error comparison over different network
sizes with different models (Eqn. 11, 12, 13).

0 100 200 300 400 500

Number of Packets

0

0.2

0.4

0.6

0.8

1

In
fe

ct
io

n
 R

at
e

Baseline Attack

With Countermeasures

Randomly-activated HTs

Hacker-controlled HTs

0.72

0.56

0.38

0.14

Figure 13: The infection rate comparison of 1) the baseline attack
(without any countermeasures) in Section 3, 2) system with counter-
measures in Section 5, 3) system under the randomly-attacked HTs
and 4) system under the hacker-controlled HTs in Section 6

.

12

suffers from poorer performance due to its granted power
budget is lower than its power needs to sustain its per-
formance. In contrast, malicious applications/threads can
receive excessive power budgets so that they experience
performance boost at the cost of performance degradation
of legitimate applications/threads. Even worse, we exper-
imentally demonstrated that with a randomly-activated
HT method and a Q-learning based attack method as
described in this paper, all the known countermeasures
known today would fail when combating this new type of
DoS attack. As so, rigorous research on developing detec-
tion and protection methods against this new DoS attack
is warranted.

References

[1] Y. L. Gwon, H. T. Kung, D. Vlah, Distroy: detecting inte-
grated circuit trojans with compressive measurements, in: Proc.
USENIX Conf. Hot Topics in Security, HotSec’11, 2011, pp. 3–9.

[2] M. Beaumont, B. Hopkins, T. Newby, Hardware Trojans-
prevention, detection, countermeasures (a literature review),
Tech. rep., DTIC Document (2011).

[3] K. Chrysanthou, P. Englezakis, A. Prodromou, A. Panteli,
C. Nicopoulos, Y. Sazeides, G. Dimitrakopoulos, An online
and real-time fault detection and localization mechanism for
network-on-chip architectures, ACM Trans. Architecture and
Code Optimization 13 (2) (2016) 22:1–22:26.

[4] A. Kulkarni, Y. Pino, T. Mohsenin, Svm-based real-time hard-
ware trojan detection for many-core platform, in: Int’l Symp.
Quality Electronic Design (ISQED), 2016, pp. 362–367.

[5] A. Kulkarni, Y. Pino, M. French, T. Mohsenin, Real-time
anomaly detection framework for many-core router through
machine-learning techniques, ACM J. Emerging Technologies
in Computing Systems (JETC) 13 (1) (2016) 10:1–10:22.

[6] R. JS, D. M. Ancajas, K. Chakraborty, S. Roy, Runtime detec-
tion of a bandwidth denial attack from a rogue network-on-chip,
in: Proc. Int’l Symp. Networks-on-Chip, 2015, pp. 8–16.

[7] J. Frey, Q. Yu, A hardened network-on-chip design using run-
time hardware trojan mitigation methods, Integration, the
VLSI Journal 56 (2017) 15–31.

[8] H. Li, Q. Liu, J. Zhang, A survey of hardware trojan threat and
defense, Integration, the VLSI Journal 55 (2016) 426–437.

[9] S. K. Haider, C. Jin, M. van Dijk, Advancing the state-of-the-art
in hardware trojans design, arXiv preprint arXiv:1605.08413.

[10] W. Burleson, O. Mutlu, M. Tiwari, Invited-who is the major
threat to tomorrows security?: You, the hardware designer, in:
Proc. Design Automation Conf., 2016, pp. 1–5.

[11] J. Dofe, Q. Yu, H. Wang, E. Salman, Hardware security threats
and potential countermeasures in emerging 3d ics, in: Proc. Int’l
Symp. VLSI, 2016, pp. 69–74.

[12] S. Pagani, J.-J. Chen, M. Shafique, J. Henkel, Thermal-aware
power budgeting for dark silicon chips, in: Proc. Int’l Conf.
Green Computing and Sustainable Computing Conf. (IGSC),
2015, pp. 1–6.

[13] A. Rezaei, D. Zhao, M. Daneshtalab, H. Wu, Shift sprinting:
fine-grained temperature-aware noc-based mcsoc architecture in
dark silicon age, in: Proc. Design Automation Conf., 2016, pp.
155:1–155:6.

[14] X. Wang, J. F. Mart́ınez, Rebudget: trading off efficiency
vs. fairness in market-based multicore resource allocation via
runtime budget reassignment, ACM SIGPLAN Notices 51 (4)
(2016) 19–32.

[15] A. Sharifi, A. K. Mishra, S. Srikantaiah, M. Kandemir, C. R.
Das, PEPON: performance-aware hierarchical power budgeting
for NoC based multicores, in: Proc. Int’l Conf. Parallel Archi-
tectures and Compilation Techniques, 2012, pp. 65–74.

[16] S. M. Zahedi, B. C. Lee, Ref: resource elasticity fairness with
sharing incentives for multiprocessors, ACM SIGARCH Com-
puter Architecture News 42 (1) (2014) 145–160.

[17] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, M. Martonosi,
An analysis of efficient multi-core global power management
policies: maximizing performance for a given power budget, in:
Proc. IEEE/ACM Int’l Symp. microarchitecture, 2006, pp. 347–
358.

[18] X. Li, G. Yan, Y. Han, X. Li, Smartcap: user experience-
oriented power adaptation for smartphone’s application proces-
sor, in: Proc. Conf. Design, Automation and Test in Europe,
2013, pp. 57–60.

[19] K. Ma, X. Wang, Pgcapping: exploiting power gating for power
capping and core lifetime balancing in cmps, in: Proc. Int’l
Conf. Parallel Architectures and Compilation Techniques, 2012,
pp. 13–22.

[20] X. Wang, B. Zhao, T. Mak, M. Yang, Y. Jiang, M. Daneshtalab,
On fine-grained runtime power budgeting for networks-on-chip
systems, IEEE Trans. Computers 65 (9) (2016) 2780–2793.

[21] Y. Zhao, X. Wang, Y. Jiang, M. Yang, A. K. Singh, T. Mak, On
a new hardware trojan attack on power budgeting of many core
systems, in: IEEE Int’l Conf. System-on-Chip (SOCC), 2018,
pp. 58–64.

[22] A.-M. Rahmani, M.-H. Haghbayan, A. Kanduri, A. Y.
Weldezion, P. Liljeberg, J. Plosila, A. Jantsch, H. Tenhunen,
Dynamic power management for many-core platforms in the
dark silicon era: A multi-objective control approach, in:
IEEE/ACM Int’l Symp. Low Power Electronics and Design
(ISLPED), IEEE, 2015, pp. 219–224.

[23] A. M. Rahmani, M.-H. Haghbayan, A. Miele, P. Liljeberg,
A. Jantsch, H. Tenhunen, Reliability-aware runtime power man-
agement for many-core systems in the dark silicon era, IEEE
Trans. Very Large Scale Integration (VLSI) Systems 25 (2)
(2017) 427–440.

[24] Wang, Xiaohang and Zhao, Baoxin and Wang, Ling and Mak,
Terrence and Yang, Mei and Jiang, Yingtao and Daneshtalab,
Masoud, A pareto-optimal runtime power budgeting scheme
for many-core systems, Microprocessors and Microsystems 46
(2016) 136–148.

[25] T. Moscibroda, O. Mutlu, Memory performance attacks: de-
nial of memory service in multi-core systems, in: Proc. Symp.
USENIX Security, 2007, pp. 18:1–18:18.

[26] C. Karlof, D. Wagner, Secure routing in wireless sensor net-
works: attacks and countermeasures, Ad hoc networks 1 (2)
(2003) 293–315.

[27] L. S. Indrusiak, J. Harbin, M. J. Sepulveda, Side-channel
attack resilience through route randomisation in secure
real-time networks-on-chip, in: Int’l Symp. Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), 2017, pp.
1–8.

[28] J. Lee, T. Kim, J. Huh, Reducing the memory bandwidth over-
heads of hardware security support for multi-core processors,
IEEE Trans. Computers 65 (11) (2016) 3384–3397.

[29] A. K. Biswas, S. Nandy, R. Narayan, Network-on-chip router
attacks and their prevention in mp-socs with multiple trusted
execution environments, in: Proc. IEEE Int’l Conf. Electronics,
Computing and Communication Technologies (CONECCT),
2015, pp. 1–6.

[30] Xiao, Kan and Forte, Domenic and Jin, Yier and Karri, Ramesh
and Bhunia, Swarup and Tehranipoor, Mohammad, Hardware
trojans: Lessons learned after one decade of research, ACM
Trans. on Design Automation of Electronic Systems (TODAES)
22 (1) (2016) 6–28.

[31] M. Tehranipoor, F. Koushanfar, A survey of hardware trojan
taxonomy and detection, IEEE Trans. Design Test of Comput-
ers 27 (1) (2010) 10–25.

[32] S. Bhunia, M. S. Hsiao, M. Banga, S. Narasimhan, Hard-
ware trojan attacks: threat analysis and countermeasures, Proc.
IEEE 102 (8) (2014) 1229–1247.

[33] A. Ganguly, M. Y. Ahmed, A. Vidapalapati, A denial-of-service
resilient wireless noc architecture, in: Proc. Great Lakes Symp.

13

VLSI, 2012, pp. 259–262.
[34] S. R. Hasan, S. F. Mossa, C. Perez, F. Awwad, Hardware tro-

jans in asynchronous fifo-buffers: from clock domain crossing
perspective, in: Proc. IEEE Int’l Midwest Symp. Circuits and
Systems (MWSCAS), 2015, pp. 1–4.

[35] T. Boraten, A. K. Kodi, Mitigation of denial of service attack
with hardware trojans in noc architectures, in: Proc. IEEE
Int’l Symp. Parallel and Distributed Processing, 2016, pp. 1091–
1100.

[36] C. Gómez, M. E. Gómez, P. López, J. Duato, Reducing packet
dropping in a bufferless noc, in: Proc. European Conf. Parallel
Processing, 2008, pp. 899–909.

[37] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, Y. Zhou,
Designing and implementing malicious hardware., Large-Scale
Exploits and Emergent Threats (LEET) 8 (2008) 1–8.

[38] M. Hussain, H. Guo, Packet leak detection on hardware-trojan
infected nocs for mpsoc systems, in: Proc. Int’l Conf. Cryptog-
raphy, Security and Privacy, 2017, pp. 85–90.

[39] J. Frey, Q. Yu, Exploiting state obfuscation to detect hardware
trojans in noc network interfaces, in: Proc. IEEE Int’l Midwest
Symp. Circuits and Systems (MWSCAS), 2015, pp. 1–4.

[40] Y. Wang, G. E. Suh, Efficient timing channel protection for on-
chip networks, in: Proc. IEEE/ACM Int’l Symp. Networks on
Chip (NoCS), 2012, pp. 142–151.

[41] H. M. Wassel, Y. Gao, J. K. Oberg, T. Huffmire, R. Kastner,
F. T. Chong, T. Sherwood, Surfnoc: a low latency and prov-
ably non-interfering approach to secure networks-on-chip, in:
ACM SIGARCH Computer Architecture News, Vol. 41, 2013,
pp. 583–594.

[42] M. Kayaalp, N. Abu-Ghazaleh, D. Ponomarev, A. Jaleel, A
high-resolution side-channel attack on last-level cache, in: Proc.
Design Automation Conference (DAC), ACM, 2016, pp. 72:1–
72:6.

[43] C. J. Watkins, P. Dayan, Q-learning, Machine learning 8 (3-4)
(1992) 279–292.

[44] X. Wang, M. Yang, Y. Jiang, P. Liu, M. Daneshtalab, M. Palesi,
T. Mak, On self-tuning networks-on-chip for dynamic network-
flow dominance adaptation, ACM Trans. Embedded Computing
Systems (TECS) 13 (2s) (2014) 73:1–73:21.

Biography

Yiming Zhao is an under-
graduate in School of Software
Engineering, South China Univer-
sity of Technology. His research
interests include networks-on-chip
architecture and hardware secu-
rity.

Xiaohang Wang received the
B.Eng. and Ph.D degree in com-
munication and electronic engi-
neering from Zhejiang University,
in 2006 and 2011. He is cur-
rently an associate professor at
South China University of Tech-
nology. He was the receipt of PDP
2015 and VLSI-SoC 2014 Best Pa-
per Awards. His research inter-

ests include many-core architec-
ture, power efficient architectures,
optimal control, and NoC-based

systems.

Yingtao Jiang joined the De-
partment of Electrical and Com-
puter Engineering, University of
Nevada, Las Vegas in Aug. 2001,
upon obtaining his Ph.D degree in
Computer Science from the Uni-
versity of Texas at Dallas. He
has been a full professor since July
2013 at the same university, and
now assumes the role of the De-
partment Chair. His research in-
terests include algorithms, com-
puter architectures, VLSI, net-

working, nano-technologies, etc.

Liang Wang received the
B.Eng. and MSc degree in elec-
tronics engineering from Harbin
Institute of Technology, Harbin,
China, in 2011 and 2013 respec-
tively, and the Ph.D degree in
Computer Science and Engineer-
ing from The Chinese University
of Hong Kong, Hong Kong, China,
in 2017. He is currently a post-
doctoral research fellow at Insti-
tute of Microelectronics, Tsinghua

University, China. His research interests include power-
efficient and reliability-aware design for network-on-chip
and many-core system. He was a recipient of the VLSI-
SoC 2014 Best Paper Awards.

Mei Yang received her Ph.D
in Computer Science from the Uni-
versity of Texas at Dallas in Aug.
2003. She has been a full profes-
sor in the Department of Electrical
and Computer Engineering, Uni-
versity of Nevada, Las Vegas since
2016. Her research interests in-
clude computer architectures, net-
working, and embedded systems.

14

Amit Kumar Singh received
the B.Tech. degree in Electron-
ics Engineering from Indian Insti-
tute of Technology (Indian School
of Mines), Dhanbad, India, in
2006, and the Ph.D degree from
the School of Computer Engineer-
ing, Nanyang Technological Uni-
versity(NTU), Singapore, in 2013.

He was with HCL Technologies, India for year and half
before starting his PhD at NTU, Singapore, in 2008. He
worked as a post-doctoral researcher at National Univer-
sity of Singapore (NUS) from 2012 to 2014 and at Univer-
sity of York, UK from 2014 to 2016. Currently, he is work-
ing as senior research fellow at University of Southamp-
ton, UK. His current research interests include system
level design-time and run-time optimizations of 2D and
3D multi-core systems with focus on performance, energy,
temperature, and reliability. He has published over 45
papers in the above areas in leading international jour-
nals/conferences.

Terrence Mak is an Asso-
ciate Professor at Electronics and
Computer Science, University of
Southampton. Supported by the
Royal Society, he was a Visiting
Scientist at Massachusetts Insti-
tute of Technology during 2010,
and also, affiliated with the Chi-
nese Academy of Sciences as a Vis-
iting Professor since 2013. Pre-
viously, He worked with Turing
Award holder Prof. Ivan Suther-
land, at Sun Lab in California and
has awarded Croucher Foundation

scholar. His newly proposed approaches, using runtime op-
timization and adaptation, strengthened network reliabil-
ity, reduced power dissipations and significantly improved
overall on-chip communication performances. Throughout
a spectrum of novel methodologies, including regulating
traffic dynamics using network-on-chips, enabling unprece-
dented MTBF and to provide better on-chip efficiencies,
and proposed a novel garbage collections methods, defrag-
mentation, together led to three prestigious best paper
awards at DATE 2011, IEEE/ACM VLSI-SoC 2014 and
IEEE PDP 2015, respectively. More recently, his newly
published journal based on 3D adaptation and deadlock-
free routing has awarded the prestigious 2015 IET Com-
puters & Digital Techniques Premium Award. He has pub-
lished more than 100 papers in both conferences and jour-
nals and jointly published 4 books.

15

	Introduction
	Background and Previous Studies
	Power Budgeting in Many-Core Systems
	DoS Attack
	Detection and Countermeasures against Hardware Trojans

	HT-Enabled DoS Attacks Targeting the Power Budgeting System
	Threat Model
	Packet Frames
	HT Attack Process
	HT Circuits Implementation

	Evaluating the DoS Attack Effect
	Measures of Attack Effect
	Factors Impacting Attack Effect
	Modeling Attack Effects

	Possible Detection and Countermeasure Against the Proposed Attack
	The Enhanced Attack
	States and Actions
	Q-Learning Based Enhanced Attack with Improved Stealthiness

	Experimental Results
	Experimental Setup
	Evaluating the Infection Rate
	Evaluating Attack Effect
	HT's Area and Power
	Comparison of Different Attack Effect Models
	Evaluating the Enhanced Attack

	Conclusion

