
240 Int. J. High Performance Systems Architecture, Vol. 5, No. 4, 2015

Copyright © 2015 Inderscience Enterprises Ltd.

Dynamic communications mapping in multi-tasks
NoC-based heterogeneous MPSoCs platform

Mohammed Kamel Benhaoua*
Department of Computer Science,
Faculty of Engineering,
University of Oran1, Algeria
Email: kbenhaoua@gmail.com
*Corresponding author

Amit Kumar Singh
Department of Computer Science,
Faculty of Engineering,
University of York, UK
Email: amit.singh@york.ac.uk

Abstract: Multi-processor system-on-chip (MPSoC) has emerged as a solution to address the
increased computational requirements of modern applications. The network-on-chip (NoC) has
been introduced as a power-efficient and scalable communication infrastructure between
processors. One important phase in architectural exploration in NoC-based MPSoC is the
communications mapping. Mapping parallelised communications of tasks onto these MPSoCs
can be done either by static or dynamic routing. Static communication mapping strategies find
the fixed placement of communications like XY routing and hence, these are not suitable to
achieve high overall performance. The number of tasks or applications executing in MPSoC
platform can exceed the available resources, requiring multi-tasking platform. In this paper, we
propose a newly dynamic communications mapping strategy for efficient communication
between the PEs of MPSoC, where each PE support multiple tasks and shared memory is used
for the communications between the tasks mapped in the same PE. The strategy considers
efficient placement of communications in order to optimise the overall performance.
Experimental results show that the proposed mapping approach provides significant performance
improvements when compared to those using static routing.

Keywords: multi-processor systems-on-chip; MPSoCs; network-on-chip; NoC; heterogeneous
architectures; dynamic mapping heuristics; routing algorithm; communications mapping;
multi-tasks platform.

Reference to this paper should be made as follows: Benhaoua, M.K. and Singh, A.K. (2015)
‘Dynamic communications mapping in multi-tasks NoC-based heterogeneous MPSoCs
platform’, Int. J. High Performance Systems Architecture, Vol. 5, No. 4, pp.240–251.

Biographical notes: Mohammed Kamel Benhaoua received his Engineer degree in Artificial
Intelligence and Magister degree in Information Security and Networking from Oran University
Computer Science Department, Algeria, in 2005 and 2009, respectively. He received his PhD
degree from Lille1 University, France and Oran1 University, Algeria. His research interests
include NoC-based MPSoC design, parallel processing, optimisation, design space exploration
(DSE) and run-time mapping techniques for MPSoC.

Amit Kumar Singh received his BTech in Electronics Engineering from Indian School of Mines,
Dhanbad, India, in 2006. Thereafter, he worked with HCL Technologies, India for a year and a
half. He joined Nanyang Technological University (NTU), Singapore, in 2008 and worked at
Centre for High Performance Embedded Systems (CHiPES), School of Computer Engineering,
NTU, Singapore as a research student towards the completion of his PhD till January 2012. From
February 2012 to August 2014, he was working with the Department of Electrical and Computer
Engineering, National University of Singapore (NUS) as a Postdoctoral Researcher. Since
September 2014, he has been working with Department of Computer Science, University of
York, UK. His research interests include 2D and 3D network-on-chip (NoC)-based
multiprocessor systems-on-chip (MPSoC), design space exploration (DSE) and run-time
mapping techniques for MPSoC. He has published over 35 papers in leading related international
journals/conferences.

 Dynamic communications mapping in multi-tasks NoC-based heterogeneous MPSoCs platform 241

1 Introduction

Intensive embedded systems use multi-processor
systems-on-chip (MPSoCs), which provide increased
parallelism towards achieving high performance (Jerraya
et al., 2005), to cope with the limits of a single general
purpose processor, increasing computational demands and
performance requirements. An MPSoC (Singh et al., 2013;
Bertozzi and Benini, 2004; Smit et al., 2004) contains
multiple processing elements (PEs) in the same chip. The
network-on-chip (NoC) has been introduced as a
power efficient and scalable interconnection to support
communication amongst the PEs (Benini and Mecheli,
2002; Moraes et al., 2004).

The designer has to map the tasks of the application
onto the different processing resources of the MPSoC. Static
mapping techniques define task placement at design-time,
having a global view of the MPSoC resources. Such
mapping techniques may use complex algorithms to better
explore the MPSoC resources towards achieving optimised
solutions (Zhang et al., 2002; Shin and Kim, 2004; Armin
et al., 2007). However, static mapping is not able to handle
the dynamic workload of tasks or applications that need to
be loaded into the system at run-time. Dynamic (run-time)
mapping techniques are required to handle these varying
(dynamic) workloads (Chou et al., 2007; Chou and
Marculescu, 2008; Mehran et al., 2008; Carvalho and
Moraes, 2008; Wildermann et al., 2009). Such techniques
find placement of tasks on the MPSoC resources at
run-time. The latest dynamic mapping approaches try to
place the communicating tasks on the nearest available PEs,
i.e., close to each other in order to reduce the
communication overhead (Carvalho et al., 2010; Singh
et al., 2010). However, these approaches do not perform
well when applications contain a large number of tasks that
exceed the available resources. A multi-tasks platform is
needed to solve the deadlock in Benhaoua et al. (2013a,
2013b, 2014a, 2014b, 2014c) with a well clusterisation.
Further, most of the mapping works reported in the
literature uses a deterministic routing method (Singh et al.,
2010; Mehran et al., 2008; Wildermann et al., 2009;
Carvalho et al., 2010; Holzenspies et al., 2008; Faruque
et al., 2008; Manna et al., 2012; Silva et al., 2012).
However, for a system that needs to handle dynamic
workflow, using a dynamic routing method can lead to
better results.

We present a dynamic communication mapping
algorithm that reduces the communication costs by using
the benefits of multi-tasking platform. Multi-tasking means
that each PE can execute many tasks depending in memory
capacities. A multi-tasks scheduler is implemented in each
PE. The model used for the representation of applications is
the master-slave model. This type of model is used to
represent the applications that have parallel communicating
tasks. The considered heterogeneous MPSoC platform
contains two types of PEs: instruction set processors (ISPs)
and reconfigurable areas (RAs), which execute software and
hardware tasks, respectively. In the MPSoC, each PE
supports multiple tasks. Existing techniques use static

routing approaches to facilitate the communication.
However, most of them do not focus on the adaptive routing
(dynamic communications mapping).
The proposed approach work in two cases: if the
communication is between two different PEs then the
method tries to find the path of communications that has the
lowest load (widest bandwidth). Otherwise, a shared
memory is used to communicate between intra-tasks
(multi-tasks platform) resulting in optimised execution time
and energy consumption. The obtained results show further
improvements when compared to existing approaches.

The rest of the paper is organised as follows. Section 2
provides an overview of related work. Section 3 describes
the model of considered MPSoC architecture. In Section 4,
the proposed approach has been presented. Experimental
setup and the results are presented in Section 5. Section 6
concludes the paper and provides future research directions.

2 Related work

Mapping of tasks and communications into the multi-tasks
MPSoC platform requires finding the placement of
tasks and communications into the platform resources in
view of some optimisation criterions like reducing energy
consumption, reducing total execution time and optimising
occupancy of channels. Mapping can be accomplished by
static (design-time) or dynamic (run-time) mapping
techniques (Singh et al., 2013). Most of the existing works
reported in the literature to solve the problem of mapping on
MPSoC platform are static mapping techniques (Zhang
et al., 2002; Shin and Kim, 2004; Vardi et al., 2009; Wang
et al., 2010; Ghosh et al., 2009; Sahu and Chattopadhyay,
2013). Meta-heuristics like genetic approach (Lei and
Kumar, 2003; Wu et al., 2003) and methods like tabu search
(Manolache et al., 2005; Murali et al., 2006) and stimulated
annealing (Marcon et al., 2005; Orsila et al., 2007) are
presented. These techniques find fixed placement of
tasks at design-time with a well-known computation and
communication behaviour. However, static mapping is not
able to handle dynamic workload of tasks or applications
that need to be loaded into the MPSoC at run-time.
Dynamic (run-time) mapping techniques are required to
handle the mapping of such workloads into the platform
resources.

The latest works reported in the literature handle the
problem of run-time mapping of applications’ tasks onto
NoC-based MPSoCs while optimising for different
performance metrics.

Wildermann et al. (2009) evaluate the benefit of
using a run-time mapping heuristic, which decreases the
communication overhead. A neighbourhood cost function
has been used to reduce the communication costs.
Holzenspies et al. (2008) investigate another run-time
spatial mapping technique to map streaming applications
onto heterogeneous MPSoCs, aiming at reducing the energy
consumption. Schranzhofer et al. (2010) suggest a dynamic
mapping strategy based on pre-computed template
mappings (defined at design-time), which are used to define

242 M.K. Benhaoua and A.K. Singh

placement of newly arriving tasks to the PEs at run-time.
Chou et al. (2007) use a NoC platform with multiple voltage
levels. Their mapping technique is based on a region
selection algorithm that minimises the communication
energy consumption. The communication energy is
decreased by 50%. The mapping technique is applicable to
homogenous NoC platforms. In Chou and Marculescu
(2008), the authors incorporate the user behaviour
information in the resource allocation process. This allows
the system to respond better to real-time changes and adapt
to user needs dynamically. Ost et al. (2013) propose a
dynamic power aware mapping technique that minimises
energy consumption by 16% in the best case. Mehran et al.
(2008) propose a dynamic spiral mapping (DSM) technique
for task mapping during run-time. The placement of a task
is searched in a spiral path from centre to the boundary of
the network architecture so that the communicating tasks
can be placed close to each other. It also attempts to reduce
the execution time by reducing dynamic mapping time,
reconfiguration time and task migration time.

Faruque et al. (2008) propose a decentralised
agent-based mapping approach targeting large NoC-based
heterogeneous MPSoCs such as 32 × 64 systems. The
proposed heuristic maps the applications in a decentralised
manner using an agent-based approach. Multiple agents are
used to perform resource management. There are two types
of agents: global agent (GA) and cluster agents (CAs). The
whole platform is partitioned into small clusters and each
CA has updated knowledge of its cluster resources. The GA
keeps global information about all the clusters. The agents
negotiate with each other to find PEs suitable for mapping a
task. The agent-based mapping reduces monitoring traffic
and computational effort for the mapping process, compared
to the centralised approaches.

Carvalho and Moraes (2008) present heuristics for
dynamic task mapping in two phases. The first phase finds
placement of initial (starting) tasks of different applications
in the MPSoC architecture, whereas the second phase uses
different methods (e.g., first free – FF, nearest neighbour –
NN, minimum maximum channel load – MAC and path
load – PL) to find the placement for rest of the tasks on the
fly according to the communication requests and the loads
in the NoC links. NoC channel load, congestion and packet
latency gets reduced when employing different methods.
The NoC-based target MPSoC architecture contains PEs
each supporting a single task. In Carvalho et al. (2010), the
authors evaluate dynamic mapping heuristics and compare
them with static mapping techniques such as simulated
annealing and taboo search.

Singh et al. (2010) target heterogeneous MPSoC
architecture containing software and hardware PEs. In the
architecture, among the available processing nodes, one
processing node acts as a manager processor that is
responsible for task binding, task mapping, task migration,
resource control and reconfiguration control. The resource
status is updated at run-time and the manager processor
keeps track of the information about resource occupancy.
Their mapping heuristics map the communicating tasks of

an application close to each other so as to minimise the
communication overhead in order to improve the overall
performance. The heuristics in Singh et al. (2010) examine
the available resources prior to recommending the adjacent
tasks on the same PE. The mapping process is accomplished
in two phases. First, initial tasks are mapped at the centre of
the clusters that are obtained by partitioning the NoC into
regions. Thereafter, the communicating tasks are requested
and mapped by their proposed mapping approaches. In
general, the works proposed in Carvalho and Moraes (2008)
are extended in Singh et al. (2010) by employing a packing
strategy that minimises the communication overhead in
NoC-based MPSoC platform. The heuristics in Singh et al.
(2010) are further extended in (Kaushik et al., 2011) to
make them both the computation and communication
aware.

An energy-aware heuristic for dynamic task mapping,
named lower energy consumption based on dependencies-
neighbourhood (LEC-DN) has been presented in Mandelli
et al. (2011). The main cost function here is not only the
distance in hops between communicating tasks, but also the
proximity in the number of hops and the communication
volume among the tasks, since the number of transmitted
flits defines the communication energy. When target task
has only one communicating task that has already been
mapped, LEC-DN uses the NN search in a spiral fashion.
On the other hand, if there are more than one
communicating tasks that are already mapped, it searches
for a PE inside the bounding box defined by the position of
such task depending on the communication volume. In
Weichslgartner et al. (2011), a dynamic decentralised
application-driven and resource-aware mapping has been
proposed, where tasks can be embedded incrementally with
an already mapped predecessor task. This is a self-
embedding approach that is fully decentralised and
autonomous. The major contributions in the work of
Maqsood et al. (2015) are summarised as follows:

• A detailed quantitative analysis of the selected dynamic
task mapping heuristics is provided under same
environment, using same assumptions, and system
models (Singh et al., 2010).

• An extension to CPNN (Singh et al., 2010) heuristic is
proposed. The proposed heuristic aims to reduce the
communication cost and energy consumption by
migrating communicating tasks that are already mapped
using CPNN from lightly loaded PEs to the other PEs
that can accommodate those tasks.

• Formal verification and modelling of the proposed
technique is provided using high level Petri nets,
satisfiability modulo theories, and Z3 solver.

Most of the existing works use a static routing algorithm
such as XY method (Singh et al., 2010; Mehran et al., 2008;
Mandelli et al., 2011; Holzenspies et al., 2008; Carvalho
et al., 2010; Faruque et al., 2008).

Benhaoua et al. (2014a) in their paper have proposed a
new packing strategy to find free resources for run-time

 Dynamic communications mapping in multi-tasks NoC-based heterogeneous MPSoCs platform 243

mapping of application tasks on NoC-based heterogeneous
MPSoCs.

However, for a system that has a dynamic workflow,
using a dynamic routing method can lead to significant
performance improvements. Benhaoua et al. (2014c) has
proposed a dynamic multi-objective routing algorithm
working in mono-tasks platform. Some reference heuristics
in the literature has been implemented that employ XY
routing algorithm, and these heuristics have been used with
our newly proposed dynamic multi-objective routing
algorithm. In Benhaoua et al. (2014c), the results
obtained reduce significantly execution time and energy
consumption. The latest works reported in the literature use
a multi-tasks platform. In this paper, we propose a dynamic
communications mapping in multi-tasks NoC-based
heterogeneous MPSoC platform.

3 Mapping problem and reference mapping
heuristics

3.1 Application task graph

An application task graph is represented as an acyclic
directed graph TG = (T, E), where T is set of all tasks of an
application and E is the set of all edges in the application.
Figure 1(a) describes an application having initial, software
and hardware tasks along with the edges E connecting
these tasks. Figure 1(b) shows the master-slave pair
(communicating tasks). The starting task of an application is
the initial task that has no master. Each task is associated
with following attributes: task identifier tid, task type ttype
(hardware, software, initial), and task execution time texec on
supported PE types. Edge set E contains all the edges along
with the communicating tasks connected by the edges. Each
edge Figure 1(b) has following attributes: it’s master task
identifier mtid representing the connected master task, slave
task identifier stid representing the connected slave task, the
data volume sent from master to slave Vms, and data volume
sent from slave to master Vsm. If there are multiple slave
tasks communicating with a master task, the slave tasks are
requested to be mapped in the order of their assigned task
identifier number. These slave task identifiers are assigned
at design-time to optimise performance, based on the
communication overhead, connections (edges) between the
master and slave tasks and memory capacities of each PEs.
For example, let a master task identifier is 0 and its four
communicating tasks’ identifiers are 1, 2, 3 and 4, then first
the task with identifier number 1 gets requested. We look
for highlight all the requested tasks and mapping them into
the same PE or in different PEs. To transmit and receive
messages by a task, our routing algorithm chooses the
shortest trajectory and PL that disposes a low load from one
node to another node in the MPSoC architecture.

3.2 NoC-based heterogeneous MPSoC architecture
graph

Figure 2 shows the model of the multi-tasks heterogeneous
MPSoC architecture used in this work. The architecture
contains a set of different multi-tasks PEs that interact via a
communication network (Benini and Mecheli, 2002). The
PEs can be of varying types such as ISPs, reconfigurable
logics (RA), dedicated intellectual properties (IPs), etc.
Each PE integrates multi-tasks scheduling. Tasks to be
executed onto the PEs are categorised as software and
hardware tasks, which normally implement simple and
compute intensive functions, respectively. Software tasks
execute in ISPs and hardware tasks execute in RAs or
dedicated IPs. ISPs execute software tasks efficiently.
Induction of RAs in the platform provides flexibility to
hardware at a similar level to the ISPs programmability.
However, higher reconfiguration overheads of RAs need to
be taken into account. The communication network required
to facilitate communication amongst PEs is arranged in a
2D mesh topology (Carvalho and Moraes, 2008), as shown
in Figure 2. Network communication protocol follows
wormhole packet switching, handshake control flow, input
buffers and deterministic XY routing algorithm. In XY
routing, the packets are first transferred in X-direction and
then in Y-direction in order to transfer them from the source
PE to the destination PE.

Figure 1 Application task graph modelling and master-slave pair

SW
Task

Initial

HW
Task

(Vms , Vsm) (Vms , Vsm)

(Vms , Vsm)

(a)

(Vms , Vsm)

Master

Slave

(b)

244 M.K. Benhaoua and A.K. Singh

Figure 2 Multi-tasks heterogeneous MPSoC architecture (see online version for colours)

In addition to XY routing, our dynamic routing algorithm
has also been incorporated, which will be detailed in the
next section. The inter-task communication is supported by
a message passing mechanism similar to the one used in
Carvalho and Moraes (2008).

A multi-tasks NoC-based heterogeneous MPSoC
architecture is a directed graph AG = (P, V), where P is the
set of tiles and V represents the physical channels between
the tiles. Each tile in P has following attributes: the tile
identifier pid, the tile address padd that is used to receive
packets sent from some other tile, the tile type ptype
(hardware, software, initial). Each physical channel keeps
the channel width information in packets and percentage
usage of available bandwidth in order to facilitate efficient
transmission of data.

3.3 Reference mapping heuristics

We will use the mapping heuristics FF, NN and best
neighbour (BN) proposed in Carvalho et al. (2010) and
Singh et al. (2010) as the reference heuristics to be used for
the comparative study.

3.3.1 NN heuristic

The NN mapping algorithm assigns the first task to the
selected initial PE. It considers only the proximity of an
available resource to execute a given task. Later, the
requested task is mapped to the available PEs that have the
minimum distance to the already mapped PEs, with
reference to initial position. The distance is calculated based
on the hop count starting from the hop count of 0 and going
up to the maximum hop distance (hop distance = 0 to max
hop count).

3.3.2 BN heuristic

The NN heuristic considers only the proximity of an
available resource to execute a given task. The BN heuristic
combines the search strategy of NN with the path load (PL)
computation approach. Unlike NN that stops the evaluation

when the first free supported PE is found, BN evaluates all
the free supported PEs at each hop distance. For all the
supported PEs, their imposed path loads in the channels
used for communications are computed and the PE with
minimum PL is chosen for final allocation (mapping) in
order to get the best neighbor from the available neighbors.
The channel (link) that needs to transfer minimum number
of packets is the one having minimum PL. If a mapping is
found with the PEs in the current hop distance, then the
evaluation process is stopped for higher hop distances. The
other steps of BN heuristic are similar to that of NN
heuristic.

3.3.3 FF heuristic

FF is the simplest mapping algorithm. For task placement,
the algorithm looks for the first available PE and assigns the
task to it. The tasks are mapped in a sequential order,
starting from the initial position of (0, 0) which represents
0th row and 0th column in the mesh NoC. The algorithm
keeps on looking for the available PEs until the position
reaches the boundary of NoC. If no PE is found, then it
looks for the PEs in the next row. In every iteration, the
mapping is completed only if PE is found or if all the PEs
have been evaluated (Maqsood et al., 2015).

3.3.4 PL heuristic

Computes the load in each channel used in the
communication path. PL computes the cost of the
communication path between the source task and each one
of the available resources. The selected mapping is the one
with minimum cost.

4 Proposed dynamic communication mapping
algorithm in multi-tasks NoC-based
heterogeneous MPSoCs platform

The reference heuristics including most of the existing
dynamic task mapping approaches (e.g., Carvalho et al.,

 Dynamic communications mapping in multi-tasks NoC-based heterogeneous MPSoCs platform 245

2010; Singh et al., 2010; Carvalho and Moraes, 2008)
use static XY communication mapping to facilitate
communication amongst the communicating tasks once they
are mapped onto the PEs otherwise in the same PE.
Example of such a routing is shown in Figure 3(a). The
figure shows an example of tasks mapping into NoC. Each
PE can execute more than one task. If the tasks are mapped
in the same PE, a shared memory is used for the
communication. Otherwise, NoC links are used where two
communicating tasks are mapped on different PEs (source
and destination) and they need to communicate with each
other. The values mentioned adjacent to the links represent
the volumes present in the links, i.e., the number of packets
to be transmitted through the links. Figure 3(a) indicates
that in order to transfer a token from the source PE (PE that
execute the tasks number 9) to the destination PE (PE that
execute the tasks number 10), the packet is first transferred
2 hop distances in X direction and then 2 hop distances in Y
direction while following the XY routing mechanism. The
packets are sent one by one in the same direction created by
the first packet. In Figure 3(a), the first chosen link in X
direction has volume of (150) that is more than the volume
(110) present in Y direction. Similarly, the second chosen
link in the X direction has more volume than that of the link
in Y direction (250 vs. 80). This mechanism routes the
packets through a path that incurs high communication costs
due to high volumes present in the links chosen for
communication, resulting in high communication costs.
Thus, choosing such communication paths may incur high
communication time and energy consumption. In order to
provide efficient communication between the source and
destination nodes, an efficient routing strategy needs to be
developed. The routing strategy should be able to choose
the links with lower volumes at run-time. Figure 3(b)
describes an example for the operation of the proposed
dynamic communication mapping algorithm presented in
Algorithm 1. Unlike the static communication mapping, our
proposed dynamic communication mapping chooses an
efficient routing path where the packets are transferred by
the links having the lowest loads. The direction to be taken
from source to destination PE follows different paths
depending upon the location of the PEs and loads in the
paths. If x-coordinate of the source Xsource is less than the
x-coordinate of the destination Xdest, then the trajectory
(path) will be up to down; otherwise down to up. For down
to up, if y-coordinate of the source Ysource is less than the
y-coordinate of the destination Ydest, then the path
will be left to right, else right to left. For all the different
paths, the algorithm chooses the link direction that
has the lowest load. For example, Algorithm 2 shows
how the lowest loaded link is found in the case of
Up_to_Down-Left_to_Right. Depending upon the load
values present in the links, the algorithm chooses left to
right (X’ = Xsource, Y’ = Ysource+1) or up to down link, which
has lower loads. Similar approach as that of Algorithm 2 is

followed for other cases when up, down, left and right are
contained in the calling function. In the case when Ysource
and Ydest are the same (i.e., in the same column), the
direction is up to down or down to up and there is no
evaluation to get the load values on the link. The direction is
automatically taken in one of the two directions. Similarly,
if Xsource and Xdest are the same (i.e., in the same row) then
the link chosen and the direction is left to right or right to
left. This kind of links selection towards the destination PE
facilitates to choose the lowest loaded links. Once a chosen
link becomes more loaded, another less loaded link is
chosen for the packet transmission if the source and
destination PE are not in the same row or column.
Otherwise, the same link gets used. For all the
communicating tasks, the packets to be transferred use the
same strategy.

Algorithm 1 Dynamic communication mapping algorithm

Input: Xsource, Ysource, Xdest, Ydest
Output: X’, Y’
1: if Xsource < Xdest then //Up to Down
2: if Ysource < Ydest then
3: Up_to_Down-Left_to_Right(Xsource, Ysource)
4: else
5: Up_to_Down-Right_to_Left(Xsource, Ysource)
6: end if
7: else // Down to Up
8: if Ysource < Ydest then
9: Down_to_Up-Left_to_Right(Xsource, Ysource)
10: else
11: Down_to_Up-Right_to_Left(Xsource, Ysource)
12: end if
13: end if
14: if Xsource = Xdest then //in the same row
15: Right_to_Left-Left_to_Right(Xsource, Ysource)
16: end if
17: if Ysource = Ydest then // in the same column
18: Up_to_Down-Down_to_Up(Xsource, Ysource)
19: end if

Algorithm 2 Up_to_Down-Left_to_Right

Input: Xsource, Ysource
Output: X’, Y’
1: if get_value_Link(Xsource, Ysource + 1) <

get_value_Link(Xsource + 1, Ysource) then
2: X’ ← Xsource
3: Y’ ← Ysource + 1 //Left to Right
4: else
5: X’ ← Xsource + 1 //Up to Down
6: Y’ ← Ysource
7: end if

246 M.K. Benhaoua and A.K. Singh

Figure 3 Static and dynamic communication mapping in multi-tasks heterogeneous MPSoC architecture, (a) static communication
mapping (b) proposed dynamic communication mapping (see online version for colours)

(a)

(b)

4.1 Computing overall execution time and energy

consumption

In this subsection, we describe the mathematical formulas
used for the computation of energy consumption and
execution time.

4.1.1 Energy consumption computation

The ways for calculating various energy consumption
values are introduced subsequently.

Energy consumption for software tasks (in the same
software resource). With multitasking the resource can
execute more than one task depends in memory capacities:

1

ns s inst
tn stinsti

TEC EC T
=

= ∗∑ (1)

We calculate de energy consumption by instruction for each
software instruction ()s inst

stinstEC T∗ for all the software
tasks ()s

tnTEC mapped in the same software resource.
Energy consumption for hardware tasks (in the same

hardware resource). With multitasking the resource can
execute more than one task depends in memory capacities:

1

nh h inst
tn inst hti

TEC EC T
=

= ∗∑ (2)

We calculate de energy consumption by instruction for each
hardware instruction ()h inst

inst htEC T∗ for all the hardware
tasks ()h

tnTEC mapped in the same hardware resource.
If the communicating tasks are not mapped in the same

resource, then the links of the NoC are used for the

 Dynamic communications mapping in multi-tasks NoC-based heterogeneous MPSoCs platform 247

communication. Energy consumption for one packet
sending from ti to tj with rate R:

tj
ti

i
jR R

ss

Q
EC EC

R
= ∗ (3)

Energy consumption for waiting data in the link for sending
data from ti to tj:

i
jd

w w
Q

EC EC
R

= ∗ (4)

Finally, total energy consumption is calculated as follows:

tj
ti

R s h
total w tn tns

EC EC EC TEC TEC= + + +∑ ∑ ∑ ∑ (5)

4.1.2 Execution time computation

The execution time for a task ti (software or hardware) is the
summation of time taken to find a mapping for the task

()ti
mapT and its communications (we do not consider the

execution time of the communicating tasks mapped in the
same resource that use the shared memory

ti
mastercom

mapT and

),
master
ticom

mapT ε= configuration time for task ti ()ti
uploadT and

execution time of the tasks (/)()ti s h
exeT in the multitasking

configured resources (software resource or hardware
resource). The mapping time of communications
(communicating tasks mapped in different PEs) consists of
time taken to map communications from the ti’s master to ti
and ti to ti’s master. The execution of ti is not finished until
the execution of all of its slaves is not finished. As the
slaves execute in parallel, the one taking the maximum time
contributes to the execution time of ti. The application
execution time consists of communication time in addition
to the above mention timings.

Figure 4 Packages of the simulator and the interactions between them (see online version for colours)

248 M.K. Benhaoua and A.K. Singh

The execution time for every task is calculated in recursive
manner as follows:

(/)

1

ti
master

master
ti

comti s hti ti ti
exe exe map mapupload

slaves mastercom tn
map exen

T T T T T

T MaxT
−

=

= + + +

+ +∑
 (6)

The overall execution time is calculated as the maximum
execution time amongst all the applications running in
parallel.

0max app
Totalexec i to appl numb exeT T= −= (7)

5 Validation by simulation

To compare the mapping of tasks and communications
heuristics, we have used our high-level simulator (Benhaoua
et al., 2015) written in Java that provides results quite fast as
compared to cycle accurate simulator. Figure 4 shows the
class diagram of our tool DynMapNoCSIM (Benhaoua
et al., 2015), a Java-based dynamic mapping simulator for
NoC-based MPSoC architecture, which builds upon the
object-oriented modular design of the NoC-based MPSoC
architecture components.

5.1 Experimental setup

This section describes the experimental set up used. All the
applications are modelled as in Figure 1. (a), with initial
tasks, hardware tasks and software tasks. The values present
on the edges represent the volume of data to be sent and
received by the master as explained in definition application
task graph. The NoC is modelled as in Figure 2 with initial
tasks supported PEs at the middle position in each cluster.
We have using our simulator (Benhaoua et al., 2015)
to realise a heterogeneous platform that comprises
64 processors: 12 hardwares, 51 softwares, and one
manager processor. Our simulator permits us to create and
simulate any platform. Our choice is carried on a platform
of 8 × 8 processors. For positioning types of processors on
the platform, we have choosing the same architecture used
in the work of Singh et al. (2010). The manager is
responsible for finding placement of the applications’
tasks, task configuration, platform resources update and
communications routing. The platform uses a NoC as a
communication support, which is responsible for data
transfer between the tasks when the communicating tasks
are mapped in different PEs. Manager processor knows only
the initial tasks. When initial tasks start their execution, the

slave tasks are mapped dynamically, according to the
communication request. The processing time of tasks
depends on the type and capacity of PE. We can vary
several parameters through an input configuration file
(parameters file) that contain all the parameters such as
platform configurations, choice of dynamic mapping
heuristic, routing method, memory capacities, scheduling
methods in the PE (multi-tasking), etc. Each PE contains a
scheduler for multi-tasking. The experiments are performed
for different scenarios:

• Scenario 1: Applications generated by task graph for
free (TGFF) as shown in Figure 5 (3-4 level, 1-3 son).
Applications contain a maximum of 9 tasks.

• Scenario 2: Applications multi-window display
(MWD), video object plane decoder (VOPD),
picture-in-picture (PIP) as shown in Figure 6, and
multiple MPEG-4 applications as shown in Figure 7.
The MWD, VOPD, PIP and MPEG-4 contain 12, 15, 8
and 13 tasks, respectively.

For each scenario, we try to map and execute a total of ten
applications, whereas any number of applications can be
considered. The platform is divided into nine clusters and
thus nine applications can be mapped and executed initially
and one application has to wait until one of the first nine has
not finished. Multiple instances of the same application are
considered to take a total of ten applications in each
scenario. The data volume in different scenarios has been
varied. The applications with varying number of tasks are
considered to see how far (in terms of number of hops) the
tasks of the same application can get mapped. We must
have an adaptative routing method in order to minimise the
costs of communications. In the current work, software and
hardware resources execute multi-tasks, to solve the
deadlock problem caused by the mono-task platform when
the number of tasks is less than the number of PEs.

5.2 Experimental results

Using a static communication mapping can influence the
costs of communications. By employing the proposed
dynamic communication mapping combined with the
benefits of the multi-tasks platform, we can reduce the
communication time significantly. In the case when the
communicating tasks are mapped in different PEs, in our
approach, the packets can take more than one trajectory
(path) to facilitate for faster communication, resulting in
reduced communications costs.

Figure 5 Applications generated by Task Graph For Free (3-4 Level, 1-3 Son) (see online version for colours)

 Dynamic communications mapping in multi-tasks NoC-based heterogeneous MPSoCs platform 249

Figure 6 Applications MWD, VOPD, PIP

(a) (b) (c)

Figure 7 MPEG-4 applications

Figure 8 Execution time and energy consumption comparison of
FF, NN and BN employing static and dynamic (our
proposed) communication mapping for scenario 1

Graphs in Figure 8 show the normalised total execution time
and energy consumption for executing ten applications
considered in scenario 1 when different heuristics are
applied to map the applications on the multi-tasks
NoC-based heterogeneous MPSoC platform. The heuristics
are applied by employing both XY and our approaches to
see the impact on the total execution time and energy

consumption. It can be observed that a reduction in the
execution times and energy consumption is achieved when
the routing approach is changed from static to our approach
for all the considered heuristics. This is due to the dynamic
adaptation of the paths by our approach. Therefore, the
results suggest that our proposed approach should be
applied with mapping heuristics in order to achieve better
performance.

Figure 9 Execution time and energy consumption comparison of
FF, NN and BN employing static and dynamic (our
proposed) communication mapping for scenario 2

In order to evaluate the performance improvement on
realistic applications by employing our approach over static,
we have performed similar experiments by considering the
applications of scenario 2. Figure 9 shows the total
execution time and energy consumption for executing ten
applications considered in scenario 2 when different
heuristics are applied to map the applications on the
multi-tasks NoC-based heterogeneous MPSoC platform.
Similar results as that of scenario 1 can be observed in
scenario 2 as well when the routing approach is changed
from static to our dynamic communication mapping for all
the considered heuristics. These observations show that our

250 M.K. Benhaoua and A.K. Singh

proposed routing approach reduces the execution time and
energy consumption for different kinds of application
scenarios and can be considered as a potential candidate for
efficient routing strategy. Otherwise, using multitasks
platform optimise consequently the performance of the
system (consumption energy, computational time)
compared to mono-task platform.

6 Conclusions and future directions

This paper presents a mapping approach that performs
communication mapping. When tasks are mapped in the
same PE, a shared memory is used to communicate between
tasks, resulting in optimised execution time and energy
consumption. Also, the approach maps the communications
between the tasks mapped in different PEs. To reduce the
communication costs, a dynamic communication mapping
algorithm has been proposed to map the communications.
Experiments have shown significant reduction in total
execution time and energy consumption when compared to
heuristics employing static routing and mono task platform.
In future, we plan to consider task migration to balance the
loads on the processors and the monitoring.

References
Armin, M. et al. (2007) ‘Spiral: a heuristic mapping algorithm for

network on chip’, IEICE Electronic Express, Vol. 4, No. 15,
pp.478–484.

Benhaoua, M.K. et al. (2013a) ‘Heuristics for dynamic task and
communications mapping in NoC-based heterogeneous
MPSoSs’, in The Mediterranean Journal of Computers and
Networks, October, Vol. 9, No. 4, pp.135–146, ISSN: 1744-
2397.

Benhaoua, M.K. et al. (2013b) ‘Heuristics for routing and spiral
run-time task mapping in NoC-based heterogeneous
MPSOCs’, in IJCSI International Journal of Computer
Science Issues, July, Vol. 10, No. 4, pp.233–238, ISSN
(Print): 1694-0814 | ISSN (Online): 1694-0784.

Benhaoua, M.K. et al. (2014a) ‘Heuristic for accelerating run-time
task mapping in NoC-based heterogeneous MPSoCs’, in
Journal of Digital Information Management, Vol. 12, No. 5,
pp.292–302.

Benhaoua, M.K. et al. (2014b) ‘Heuristic for accelerating run-time
task mapping in NoC-based heterogeneous MPSoCs’, in
ICESIT 2014: International Conference on Embedded
Systems and Intelligent Technology, Dubai, UAE,
25–26 November.

Benhaoua, M.K. et al. (2014c) ‘Multi-objective routing algorithm
for dynamic communications mapping in NoC-based
heterogeneous MPSoCs’, in META’2014 International
Conference on Metaheuristics and Nature Inspired
Computing, Marrakech, Morocco, 27–31 October.

Benhaoua, M.K. et al. (2015) ‘DynMapNoCSIM: a dynamic
mapping simulator for network on chip based MPSoC’, in
Journal of Digital Information Management, Vol. 13, No. 1,
pp.45–54.

Benini, L. and Mecheli, G.D. (2002) ‘Networks on chips: a new
SoC paradigm’, Computer, Vol. 35, No. 1, pp.70–78.

Bertozzi, D. and Benini, L. (2004) ‘Xpipes: a network-on-chip
architecture for gigascale systems-on-chip’, Circ. Syst. Mag.
IEEE, Vol. 4, No. 2, pp.18–31.

Carvalho, E. and Moraes, F. (2008) ‘Congestion-aware task
mapping in heterogeneous MPSoCs’, in SoC.

Carvalho, E., Calazans, N. and Moraes, F. (2010) ‘Dynamic
task mapping for MPSoCs’, IEEE Design Test of Computers,
Vol. 13, No. 1, pp.26–35.

Chou, C.L. and Marculescu, R. (2008) ‘User-aware dynamic task
allocation in networks-on-chip’, in DATE.

Chou, C.L. et al. (2007) ‘Incremental run-time application
mapping for homogeneous NoCs with multiple voltage
levels’, in CODES.

Faruque, M. et al. (2008) ‘Adam: run-time agent-based distributed
application mapping for on-chip communication’, in DAC.

Ghosh, P. et al. (2009) ‘Energy efficient application mapping to
NoC processing elements operating at multiple voltage
levels’, in NoCs, pp.80–85.

Holzenspies, P.K.F. et al. (2008) ‘Run-time spatial mapping of
streaming applications to a heterogeneous multi-processor
system-on-chip (MPSOC)’, in DATE.

Jerraya, A. et al. (2005) ‘Guest editors’ introduction:
multiprocessor systems-on-chips’, Computer, Vol. 38, No. 7,
pp.36–40.

Kaushik, S., Singh, A.K. and Srikanthan, T. (2011) ‘Computation
and communication aware run-time mapping for NoC-based
MPSoC platforms’, in SOCC ‘11: Proceedings of the 2011
IEE International System-on-Chip Conference.

Lei, T. and Kumar, S. (2003) ‘Algorithms and tools for network on
chip based system design’, in Proc. ICSD, p.163.

Mandelli, M. et al. (2011) ‘Multi-task dynamic mapping onto
NoC-based MPSoCs’, in SBCCI.

Manna, K., Chattopadhaya, S. and Sengupta, I. (2012) ‘An
efficient routing technique for mesh-of-tree-based NoC and
its performance comparison’, Int. J. High Performance
Systems Architecture, Vol. 4, No. 1, pp.25–37.

Manolache, S. et al. (2005) ‘Fault and energy-aware
communication mapping with guaranteed latency for
applications implemented in NoC’, in Proc. of DAC,
pp.266–269.

Maqsood, T. et al. (2015) ‘Dynamic task mapping for
network-on-chip based systems’, JSA, Vol. 61, No. 7,
pp.293–306.

Marcon, C. et al., (2005) ‘Time and energy efficient mapping of
embedded applications onto NoCs’, in Proc. of ASP-DAC,
pp.33–38.

Mehran, A. et al. (2008) ‘DSM: a heuristic dynamic spiral
mapping algorithm for network on chip’, IEICE Electronics,
Vol. 5, No. 13, pp.5–13.

Moraes, F. et al. (2004) ‘Hermes : an infrastructure for law area
overhead packet-switching networks on chip’, Integr. VLSI J.,
Vol. 38, No. 1, pp.69–93.

Murali, S. et al. (2006) ‘A methodology for mapping multiple
use-cases onto networks on chips’, in Proc. of DATE,
pp.118–123.

Orsila, H. et al. (2007) ‘Automated memory-aware application
distribution for multi-processors-systems-on-chips’, JSA,
Vol. 53, No. 11, pp.795–815.

Ost, L. et al. (2013) ‘Power-aware dynamic mapping heuristics for
NoC-based MPSoCs using a unified model-based approach’,
ACM Trans. Embedded Comput. Syst., Vol. 12, No. 3, p.75.

 Dynamic communications mapping in multi-tasks NoC-based heterogeneous MPSoCs platform 251

Sahu, P.K. and Chattopadhyay, S. (2013) ‘A survey on application
mapping strategies for network-on-chip design’, JSA, Vol. 59,
No. 1, pp.60–76.

Schranzhofer, A. et al. (2010) ‘Dynamic and adaptive allocation of
applications on MPSoC platforms’, in ASP-DAC.

Shin, D. and Kim, J. (2004) ‘Power-aware communication
optimization for networks-on-chips with voltage scalable
links’, in CODES.

Shin, D. and Kim, J. (2004) ‘Power-aware communication
optimization for networks-on-chips with voltage scalable
links’, in Proc. of CODES and ISSS, pp.170–175.

Silva Junior, L.D.R.S., Nedjah, N. and Mourelle, L.M. (2012)
‘Static routing for applications mapped on NoC platform
using ant colony algorithms’, Int. J. High Performance
Systems Architecture, Vol. 4, No. 1, pp.57–64.

Singh, A.K. et al. (2010) ‘Communication-aware heuristics for
run-time task mapping on NoC-based MPSoC platforms’,
JSA, Vol. 56, No. 7, pp.242–255.

Singh, A.K., Shafique, M., Kumar, A. and Henkel, J. (2013)
‘Mapping on multi/many-core systems: survey of current and
emerging trends’, in DAC.

Smit, L. et al. (2004) ‘Run-time mapping of applications to a
heterogeneous reconfigurable tiled system on chip
architecture’, in FPT.

Vardi, F. et al. (2009) ‘Crinkle: a heuristic mapping algorithm for
network on chip’, IEICE Electronics Express, Vol. 6, No. 24,
pp.1737–1744.

Wang, X. et al. (2010) ‘Power-aware mapping for network-on-chip
architectures under bandwidth and latency constraints’,
TACO, Vol. 7, No. 1, p.6.

Weichslgartner, A. et al. (2011) ‘Dynamic decentralized mapping
of tree-structured applications on NoC architectures’, in
NoCs.

Wildermann, S. et al. (2009) ‘Run time mapping of adaptive
applications onto homogeneous NoC-based reconfigurable
architectures’, in FPL.

Wu, D. et al. (2003) ‘Scheduling and mapping of conditional task
graphs for the synthesis of low embedded systems’, DATE,
pp.1090–1095.

Zhang, Y. et al. (2002) ‘Task scheduling and voltage selection for
energy minimization’, in Proc. DAC, pp.183–188.

