
240 Int. J. High Performance Systems Architecture, Vol. 5, No. 4, 2015 

Copyright © 2015 Inderscience Enterprises Ltd. 

Dynamic communications mapping in multi-tasks 
NoC-based heterogeneous MPSoCs platform 

Mohammed Kamel Benhaoua* 
Department of Computer Science, 
Faculty of Engineering, 
University of Oran1, Algeria 
Email: kbenhaoua@gmail.com 
*Corresponding author 

Amit Kumar Singh 
Department of Computer Science, 
Faculty of Engineering, 
University of York, UK 
Email: amit.singh@york.ac.uk 

Abstract: Multi-processor system-on-chip (MPSoC) has emerged as a solution to address the 
increased computational requirements of modern applications. The network-on-chip (NoC) has 
been introduced as a power-efficient and scalable communication infrastructure between 
processors. One important phase in architectural exploration in NoC-based MPSoC is the 
communications mapping. Mapping parallelised communications of tasks onto these MPSoCs 
can be done either by static or dynamic routing. Static communication mapping strategies find 
the fixed placement of communications like XY routing and hence, these are not suitable to 
achieve high overall performance. The number of tasks or applications executing in MPSoC 
platform can exceed the available resources, requiring multi-tasking platform. In this paper, we 
propose a newly dynamic communications mapping strategy for efficient communication 
between the PEs of MPSoC, where each PE support multiple tasks and shared memory is used 
for the communications between the tasks mapped in the same PE. The strategy considers 
efficient placement of communications in order to optimise the overall performance. 
Experimental results show that the proposed mapping approach provides significant performance 
improvements when compared to those using static routing. 
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1 Introduction 

Intensive embedded systems use multi-processor  
systems-on-chip (MPSoCs), which provide increased 
parallelism towards achieving high performance (Jerraya  
et al., 2005), to cope with the limits of a single general 
purpose processor, increasing computational demands and 
performance requirements. An MPSoC (Singh et al., 2013; 
Bertozzi and Benini, 2004; Smit et al., 2004) contains 
multiple processing elements (PEs) in the same chip. The 
network-on-chip (NoC) has been introduced as a  
power efficient and scalable interconnection to support 
communication amongst the PEs (Benini and Mecheli, 
2002; Moraes et al., 2004). 

The designer has to map the tasks of the application 
onto the different processing resources of the MPSoC. Static 
mapping techniques define task placement at design-time, 
having a global view of the MPSoC resources. Such 
mapping techniques may use complex algorithms to better 
explore the MPSoC resources towards achieving optimised 
solutions (Zhang et al., 2002; Shin and Kim, 2004; Armin  
et al., 2007). However, static mapping is not able to handle 
the dynamic workload of tasks or applications that need to 
be loaded into the system at run-time. Dynamic (run-time) 
mapping techniques are required to handle these varying 
(dynamic) workloads (Chou et al., 2007; Chou and 
Marculescu, 2008; Mehran et al., 2008; Carvalho and 
Moraes, 2008; Wildermann et al., 2009). Such techniques 
find placement of tasks on the MPSoC resources at  
run-time. The latest dynamic mapping approaches try to 
place the communicating tasks on the nearest available PEs, 
i.e., close to each other in order to reduce the 
communication overhead (Carvalho et al., 2010; Singh  
et al., 2010). However, these approaches do not perform 
well when applications contain a large number of tasks that 
exceed the available resources. A multi-tasks platform is 
needed to solve the deadlock in Benhaoua et al. (2013a, 
2013b, 2014a, 2014b, 2014c) with a well clusterisation. 
Further, most of the mapping works reported in the 
literature uses a deterministic routing method (Singh et al., 
2010; Mehran et al., 2008; Wildermann et al., 2009; 
Carvalho et al., 2010; Holzenspies et al., 2008; Faruque  
et al., 2008; Manna et al., 2012; Silva et al., 2012). 
However, for a system that needs to handle dynamic 
workflow, using a dynamic routing method can lead to 
better results. 

We present a dynamic communication mapping 
algorithm that reduces the communication costs by using 
the benefits of multi-tasking platform. Multi-tasking means 
that each PE can execute many tasks depending in memory 
capacities. A multi-tasks scheduler is implemented in each 
PE. The model used for the representation of applications is 
the master-slave model. This type of model is used to 
represent the applications that have parallel communicating 
tasks. The considered heterogeneous MPSoC platform 
contains two types of PEs: instruction set processors (ISPs) 
and reconfigurable areas (RAs), which execute software and 
hardware tasks, respectively. In the MPSoC, each PE 
supports multiple tasks. Existing techniques use static 

routing approaches to facilitate the communication. 
However, most of them do not focus on the adaptive routing 
(dynamic communications mapping).  
The proposed approach work in two cases: if the 
communication is between two different PEs then the 
method tries to find the path of communications that has the 
lowest load (widest bandwidth). Otherwise, a shared 
memory is used to communicate between intra-tasks  
(multi-tasks platform) resulting in optimised execution time 
and energy consumption. The obtained results show further 
improvements when compared to existing approaches. 

The rest of the paper is organised as follows. Section 2 
provides an overview of related work. Section 3 describes 
the model of considered MPSoC architecture. In Section 4, 
the proposed approach has been presented. Experimental 
setup and the results are presented in Section 5. Section 6 
concludes the paper and provides future research directions. 

2 Related work 

Mapping of tasks and communications into the multi-tasks 
MPSoC platform requires finding the placement of  
tasks and communications into the platform resources in 
view of some optimisation criterions like reducing energy 
consumption, reducing total execution time and optimising 
occupancy of channels. Mapping can be accomplished by 
static (design-time) or dynamic (run-time) mapping 
techniques (Singh et al., 2013). Most of the existing works 
reported in the literature to solve the problem of mapping on 
MPSoC platform are static mapping techniques (Zhang  
et al., 2002; Shin and Kim, 2004; Vardi et al., 2009; Wang 
et al., 2010; Ghosh et al., 2009; Sahu and Chattopadhyay, 
2013). Meta-heuristics like genetic approach (Lei and 
Kumar, 2003; Wu et al., 2003) and methods like tabu search 
(Manolache et al., 2005; Murali et al., 2006) and stimulated 
annealing (Marcon et al., 2005; Orsila et al., 2007) are 
presented. These techniques find fixed placement of  
tasks at design-time with a well-known computation and 
communication behaviour. However, static mapping is not 
able to handle dynamic workload of tasks or applications 
that need to be loaded into the MPSoC at run-time. 
Dynamic (run-time) mapping techniques are required to 
handle the mapping of such workloads into the platform 
resources. 

The latest works reported in the literature handle the 
problem of run-time mapping of applications’ tasks onto 
NoC-based MPSoCs while optimising for different 
performance metrics. 

Wildermann et al. (2009) evaluate the benefit of  
using a run-time mapping heuristic, which decreases the 
communication overhead. A neighbourhood cost function 
has been used to reduce the communication costs. 
Holzenspies et al. (2008) investigate another run-time 
spatial mapping technique to map streaming applications 
onto heterogeneous MPSoCs, aiming at reducing the energy 
consumption. Schranzhofer et al. (2010) suggest a dynamic 
mapping strategy based on pre-computed template 
mappings (defined at design-time), which are used to define 
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placement of newly arriving tasks to the PEs at run-time. 
Chou et al. (2007) use a NoC platform with multiple voltage 
levels. Their mapping technique is based on a region 
selection algorithm that minimises the communication 
energy consumption. The communication energy is 
decreased by 50%. The mapping technique is applicable to 
homogenous NoC platforms. In Chou and Marculescu 
(2008), the authors incorporate the user behaviour 
information in the resource allocation process. This allows 
the system to respond better to real-time changes and adapt 
to user needs dynamically. Ost et al. (2013) propose a 
dynamic power aware mapping technique that minimises 
energy consumption by 16% in the best case. Mehran et al. 
(2008) propose a dynamic spiral mapping (DSM) technique 
for task mapping during run-time. The placement of a task 
is searched in a spiral path from centre to the boundary of 
the network architecture so that the communicating tasks 
can be placed close to each other. It also attempts to reduce 
the execution time by reducing dynamic mapping time, 
reconfiguration time and task migration time. 

Faruque et al. (2008) propose a decentralised  
agent-based mapping approach targeting large NoC-based 
heterogeneous MPSoCs such as 32 × 64 systems. The 
proposed heuristic maps the applications in a decentralised 
manner using an agent-based approach. Multiple agents are 
used to perform resource management. There are two types 
of agents: global agent (GA) and cluster agents (CAs). The 
whole platform is partitioned into small clusters and each 
CA has updated knowledge of its cluster resources. The GA 
keeps global information about all the clusters. The agents 
negotiate with each other to find PEs suitable for mapping a 
task. The agent-based mapping reduces monitoring traffic 
and computational effort for the mapping process, compared 
to the centralised approaches. 

Carvalho and Moraes (2008) present heuristics for 
dynamic task mapping in two phases. The first phase finds 
placement of initial (starting) tasks of different applications 
in the MPSoC architecture, whereas the second phase uses 
different methods (e.g., first free – FF, nearest neighbour – 
NN, minimum maximum channel load – MAC and path 
load – PL) to find the placement for rest of the tasks on the 
fly according to the communication requests and the loads 
in the NoC links. NoC channel load, congestion and packet 
latency gets reduced when employing different methods. 
The NoC-based target MPSoC architecture contains PEs 
each supporting a single task. In Carvalho et al. (2010), the 
authors evaluate dynamic mapping heuristics and compare 
them with static mapping techniques such as simulated 
annealing and taboo search. 

Singh et al. (2010) target heterogeneous MPSoC 
architecture containing software and hardware PEs. In the 
architecture, among the available processing nodes, one 
processing node acts as a manager processor that is 
responsible for task binding, task mapping, task migration, 
resource control and reconfiguration control. The resource 
status is updated at run-time and the manager processor 
keeps track of the information about resource occupancy. 
Their mapping heuristics map the communicating tasks of 

an application close to each other so as to minimise the 
communication overhead in order to improve the overall 
performance. The heuristics in Singh et al. (2010) examine 
the available resources prior to recommending the adjacent 
tasks on the same PE. The mapping process is accomplished 
in two phases. First, initial tasks are mapped at the centre of 
the clusters that are obtained by partitioning the NoC into 
regions. Thereafter, the communicating tasks are requested 
and mapped by their proposed mapping approaches. In 
general, the works proposed in Carvalho and Moraes (2008) 
are extended in Singh et al. (2010) by employing a packing 
strategy that minimises the communication overhead in 
NoC-based MPSoC platform. The heuristics in Singh et al. 
(2010) are further extended in (Kaushik et al., 2011) to 
make them both the computation and communication  
aware. 

An energy-aware heuristic for dynamic task mapping, 
named lower energy consumption based on dependencies-
neighbourhood (LEC-DN) has been presented in Mandelli 
et al. (2011). The main cost function here is not only the 
distance in hops between communicating tasks, but also the 
proximity in the number of hops and the communication 
volume among the tasks, since the number of transmitted 
flits defines the communication energy. When target task 
has only one communicating task that has already been 
mapped, LEC-DN uses the NN search in a spiral fashion. 
On the other hand, if there are more than one 
communicating tasks that are already mapped, it searches 
for a PE inside the bounding box defined by the position of 
such task depending on the communication volume. In 
Weichslgartner et al. (2011), a dynamic decentralised 
application-driven and resource-aware mapping has been 
proposed, where tasks can be embedded incrementally with 
an already mapped predecessor task. This is a self-
embedding approach that is fully decentralised and 
autonomous. The major contributions in the work of 
Maqsood et al. (2015) are summarised as follows: 

• A detailed quantitative analysis of the selected dynamic 
task mapping heuristics is provided under same 
environment, using same assumptions, and system 
models (Singh et al., 2010). 

• An extension to CPNN (Singh et al., 2010) heuristic is 
proposed. The proposed heuristic aims to reduce the 
communication cost and energy consumption by 
migrating communicating tasks that are already mapped 
using CPNN from lightly loaded PEs to the other PEs 
that can accommodate those tasks. 

• Formal verification and modelling of the proposed 
technique is provided using high level Petri nets, 
satisfiability modulo theories, and Z3 solver. 

Most of the existing works use a static routing algorithm 
such as XY method (Singh et al., 2010; Mehran et al., 2008; 
Mandelli et al., 2011; Holzenspies et al., 2008; Carvalho  
et al., 2010; Faruque et al., 2008). 

Benhaoua et al. (2014a) in their paper have proposed a 
new packing strategy to find free resources for run-time 
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mapping of application tasks on NoC-based heterogeneous 
MPSoCs. 

However, for a system that has a dynamic workflow, 
using a dynamic routing method can lead to significant 
performance improvements. Benhaoua et al. (2014c) has 
proposed a dynamic multi-objective routing algorithm 
working in mono-tasks platform. Some reference heuristics 
in the literature has been implemented that employ XY 
routing algorithm, and these heuristics have been used with 
our newly proposed dynamic multi-objective routing 
algorithm. In Benhaoua et al. (2014c), the results  
obtained reduce significantly execution time and energy 
consumption. The latest works reported in the literature use 
a multi-tasks platform. In this paper, we propose a dynamic 
communications mapping in multi-tasks NoC-based 
heterogeneous MPSoC platform. 

3 Mapping problem and reference mapping 
heuristics 

3.1 Application task graph 

An application task graph is represented as an acyclic 
directed graph TG = (T, E), where T is set of all tasks of an 
application and E is the set of all edges in the application. 
Figure 1(a) describes an application having initial, software 
and hardware tasks along with the edges E connecting  
these tasks. Figure 1(b) shows the master-slave pair 
(communicating tasks). The starting task of an application is 
the initial task that has no master. Each task is associated 
with following attributes: task identifier tid, task type ttype 
(hardware, software, initial), and task execution time texec on 
supported PE types. Edge set E contains all the edges along 
with the communicating tasks connected by the edges. Each 
edge Figure 1(b) has following attributes: it’s master task 
identifier mtid representing the connected master task, slave 
task identifier stid representing the connected slave task, the 
data volume sent from master to slave Vms, and data volume 
sent from slave to master Vsm. If there are multiple slave 
tasks communicating with a master task, the slave tasks are 
requested to be mapped in the order of their assigned task 
identifier number. These slave task identifiers are assigned 
at design-time to optimise performance, based on the 
communication overhead, connections (edges) between the 
master and slave tasks and memory capacities of each PEs. 
For example, let a master task identifier is 0 and its four 
communicating tasks’ identifiers are 1, 2, 3 and 4, then first 
the task with identifier number 1 gets requested. We look 
for highlight all the requested tasks and mapping them into 
the same PE or in different PEs. To transmit and receive 
messages by a task, our routing algorithm chooses the 
shortest trajectory and PL that disposes a low load from one 
node to another node in the MPSoC architecture. 

3.2 NoC-based heterogeneous MPSoC architecture 
graph 

Figure 2 shows the model of the multi-tasks heterogeneous 
MPSoC architecture used in this work. The architecture 
contains a set of different multi-tasks PEs that interact via a 
communication network (Benini and Mecheli, 2002). The 
PEs can be of varying types such as ISPs, reconfigurable 
logics (RA), dedicated intellectual properties (IPs), etc. 
Each PE integrates multi-tasks scheduling. Tasks to be 
executed onto the PEs are categorised as software and 
hardware tasks, which normally implement simple and 
compute intensive functions, respectively. Software tasks 
execute in ISPs and hardware tasks execute in RAs or 
dedicated IPs. ISPs execute software tasks efficiently. 
Induction of RAs in the platform provides flexibility to 
hardware at a similar level to the ISPs programmability. 
However, higher reconfiguration overheads of RAs need to 
be taken into account. The communication network required 
to facilitate communication amongst PEs is arranged in a 
2D mesh topology (Carvalho and Moraes, 2008), as shown 
in Figure 2. Network communication protocol follows 
wormhole packet switching, handshake control flow, input 
buffers and deterministic XY routing algorithm. In XY 
routing, the packets are first transferred in X-direction and 
then in Y-direction in order to transfer them from the source 
PE to the destination PE. 

Figure 1 Application task graph modelling and master-slave pair 
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Figure 2 Multi-tasks heterogeneous MPSoC architecture (see online version for colours) 

 

 
In addition to XY routing, our dynamic routing algorithm 
has also been incorporated, which will be detailed in the 
next section. The inter-task communication is supported by 
a message passing mechanism similar to the one used in 
Carvalho and Moraes (2008). 

A multi-tasks NoC-based heterogeneous MPSoC 
architecture is a directed graph AG = (P, V), where P is the 
set of tiles and V represents the physical channels between 
the tiles. Each tile in P has following attributes: the tile 
identifier pid, the tile address padd that is used to receive 
packets sent from some other tile, the tile type ptype 
(hardware, software, initial). Each physical channel keeps 
the channel width information in packets and percentage 
usage of available bandwidth in order to facilitate efficient 
transmission of data. 

3.3 Reference mapping heuristics 

We will use the mapping heuristics FF, NN and best 
neighbour (BN) proposed in Carvalho et al. (2010) and 
Singh et al. (2010) as the reference heuristics to be used for 
the comparative study. 

3.3.1 NN heuristic 

The NN mapping algorithm assigns the first task to the 
selected initial PE. It considers only the proximity of an 
available resource to execute a given task. Later, the 
requested task is mapped to the available PEs that have the 
minimum distance to the already mapped PEs, with 
reference to initial position. The distance is calculated based 
on the hop count starting from the hop count of 0 and going 
up to the maximum hop distance (hop distance = 0 to max 
hop count). 

3.3.2 BN heuristic 

The NN heuristic considers only the proximity of an 
available resource to execute a given task. The BN heuristic 
combines the search strategy of NN with the path load (PL) 
computation approach. Unlike NN that stops the evaluation 

when the first free supported PE is found, BN evaluates all 
the free supported PEs at each hop distance. For all the 
supported PEs, their imposed path loads in the channels 
used for communications are computed and the PE with 
minimum PL is chosen for final allocation (mapping) in 
order to get the best neighbor from the available neighbors. 
The channel (link) that needs to transfer minimum number 
of packets is the one having minimum PL. If a mapping is 
found with the PEs in the current hop distance, then the 
evaluation process is stopped for higher hop distances. The 
other steps of BN heuristic are similar to that of NN 
heuristic. 

3.3.3 FF heuristic 

FF is the simplest mapping algorithm. For task placement, 
the algorithm looks for the first available PE and assigns the 
task to it. The tasks are mapped in a sequential order, 
starting from the initial position of (0, 0) which represents 
0th row and 0th column in the mesh NoC. The algorithm 
keeps on looking for the available PEs until the position 
reaches the boundary of NoC. If no PE is found, then it 
looks for the PEs in the next row. In every iteration, the 
mapping is completed only if PE is found or if all the PEs 
have been evaluated (Maqsood et al., 2015). 

3.3.4 PL heuristic 

Computes the load in each channel used in the 
communication path. PL computes the cost of the 
communication path between the source task and each one 
of the available resources. The selected mapping is the one 
with minimum cost. 

4 Proposed dynamic communication mapping 
algorithm in multi-tasks NoC-based 
heterogeneous MPSoCs platform 

The reference heuristics including most of the existing 
dynamic task mapping approaches (e.g., Carvalho et al., 
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2010; Singh et al., 2010; Carvalho and Moraes, 2008)  
use static XY communication mapping to facilitate 
communication amongst the communicating tasks once they 
are mapped onto the PEs otherwise in the same PE. 
Example of such a routing is shown in Figure 3(a). The 
figure shows an example of tasks mapping into NoC. Each 
PE can execute more than one task. If the tasks are mapped 
in the same PE, a shared memory is used for the 
communication. Otherwise, NoC links are used where two 
communicating tasks are mapped on different PEs (source 
and destination) and they need to communicate with each 
other. The values mentioned adjacent to the links represent 
the volumes present in the links, i.e., the number of packets 
to be transmitted through the links. Figure 3(a) indicates 
that in order to transfer a token from the source PE (PE that 
execute the tasks number 9) to the destination PE (PE that 
execute the tasks number 10), the packet is first transferred 
2 hop distances in X direction and then 2 hop distances in Y 
direction while following the XY routing mechanism. The 
packets are sent one by one in the same direction created by 
the first packet. In Figure 3(a), the first chosen link in X 
direction has volume of (150) that is more than the volume 
(110) present in Y direction. Similarly, the second chosen 
link in the X direction has more volume than that of the link 
in Y direction (250 vs. 80). This mechanism routes the 
packets through a path that incurs high communication costs 
due to high volumes present in the links chosen for 
communication, resulting in high communication costs. 
Thus, choosing such communication paths may incur high 
communication time and energy consumption. In order to 
provide efficient communication between the source and 
destination nodes, an efficient routing strategy needs to be 
developed. The routing strategy should be able to choose 
the links with lower volumes at run-time. Figure 3(b) 
describes an example for the operation of the proposed 
dynamic communication mapping algorithm presented in 
Algorithm 1. Unlike the static communication mapping, our 
proposed dynamic communication mapping chooses an 
efficient routing path where the packets are transferred by 
the links having the lowest loads. The direction to be taken 
from source to destination PE follows different paths 
depending upon the location of the PEs and loads in the 
paths. If x-coordinate of the source Xsource is less than the  
x-coordinate of the destination Xdest, then the trajectory 
(path) will be up to down; otherwise down to up. For down 
to up, if y-coordinate of the source Ysource is less than the  
y-coordinate of the destination Ydest, then the path  
will be left to right, else right to left. For all the different 
paths, the algorithm chooses the link direction that  
has the lowest load. For example, Algorithm 2 shows  
how the lowest loaded link is found in the case of 
Up_to_Down-Left_to_Right. Depending upon the load 
values present in the links, the algorithm chooses left to 
right (X’ = Xsource, Y’ = Ysource+1) or up to down link, which 
has lower loads. Similar approach as that of Algorithm 2 is  
 
 
 

followed for other cases when up, down, left and right are 
contained in the calling function. In the case when Ysource 
and Ydest are the same (i.e., in the same column), the 
direction is up to down or down to up and there is no 
evaluation to get the load values on the link. The direction is 
automatically taken in one of the two directions. Similarly, 
if Xsource and Xdest are the same (i.e., in the same row) then 
the link chosen and the direction is left to right or right to 
left. This kind of links selection towards the destination PE 
facilitates to choose the lowest loaded links. Once a chosen 
link becomes more loaded, another less loaded link is 
chosen for the packet transmission if the source and 
destination PE are not in the same row or column. 
Otherwise, the same link gets used. For all the 
communicating tasks, the packets to be transferred use the 
same strategy. 

Algorithm 1 Dynamic communication mapping algorithm 

Input: Xsource, Ysource, Xdest, Ydest 
Output: X’, Y’ 
1: if Xsource < Xdest then //Up to Down 
2:  if Ysource < Ydest then 
3:   Up_to_Down-Left_to_Right(Xsource, Ysource) 
4:  else 
5:   Up_to_Down-Right_to_Left(Xsource, Ysource) 
6:  end if 
7: else // Down to Up 
8:  if Ysource < Ydest then 
9:   Down_to_Up-Left_to_Right(Xsource, Ysource) 
10:  else 
11:   Down_to_Up-Right_to_Left(Xsource, Ysource) 
12:  end if 
13: end if 
14: if Xsource = Xdest then //in the same row 
15:  Right_to_Left-Left_to_Right(Xsource, Ysource) 
16: end if 
17: if Ysource = Ydest then // in the same column 
18:  Up_to_Down-Down_to_Up(Xsource, Ysource) 
19: end if 

Algorithm 2 Up_to_Down-Left_to_Right 

Input: Xsource, Ysource 
Output: X’, Y’ 
1: if get_value_Link(Xsource, Ysource + 1) < 

get_value_Link(Xsource + 1, Ysource) then  
2:  X’ ← Xsource 
3:  Y’ ← Ysource + 1 //Left to Right 
4: else 
5:  X’ ← Xsource + 1 //Up to Down 
6:  Y’ ← Ysource 
7: end if 
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Figure 3 Static and dynamic communication mapping in multi-tasks heterogeneous MPSoC architecture, (a) static communication 
mapping (b) proposed dynamic communication mapping (see online version for colours) 
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4.1 Computing overall execution time and energy 

consumption 

In this subsection, we describe the mathematical formulas 
used for the computation of energy consumption and 
execution time. 

4.1.1 Energy consumption computation 

The ways for calculating various energy consumption 
values are introduced subsequently. 

Energy consumption for software tasks (in the same 
software resource). With multitasking the resource can 
execute more than one task depends in memory capacities: 

1

ns s inst
tn stinsti

TEC EC T
=

= ∗∑  (1) 

We calculate de energy consumption by instruction for each 
software instruction ( )s inst

stinstEC T∗  for all the software 
tasks ( )s

tnTEC  mapped in the same software resource. 
Energy consumption for hardware tasks (in the same 

hardware resource). With multitasking the resource can 
execute more than one task depends in memory capacities: 

1

nh h inst
tn inst hti

TEC EC T
=

= ∗∑  (2) 

We calculate de energy consumption by instruction for each 
hardware instruction ( )h inst

inst htEC T∗  for all the hardware 
tasks ( )h

tnTEC  mapped in the same hardware resource. 
If the communicating tasks are not mapped in the same 

resource, then the links of the NoC are used for the 
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communication. Energy consumption for one packet 
sending from ti to tj with rate R: 

tj
ti

i
jR R

ss

Q
EC EC

R
= ∗  (3) 

Energy consumption for waiting data in the link for sending 
data from ti to tj: 

i
jd

w w
Q

EC EC
R

= ∗  (4) 

Finally, total energy consumption is calculated as follows: 

tj
ti

R s h
total w tn tns

EC EC EC TEC TEC= + + +∑ ∑ ∑ ∑  (5) 

4.1.2 Execution time computation 

The execution time for a task ti (software or hardware) is the 
summation of time taken to find a mapping for the task 

( )ti
mapT  and its communications (we do not consider the 

execution time of the communicating tasks mapped in the 
same resource that use the shared memory 

ti
mastercom

mapT  and 

),
master
ticom

mapT ε=  configuration time for task ti ( )ti
uploadT  and 

execution time of the tasks ( / )( )ti s h
exeT  in the multitasking 

configured resources (software resource or hardware 
resource). The mapping time of communications 
(communicating tasks mapped in different PEs) consists of 
time taken to map communications from the ti’s master to ti 
and ti to ti’s master. The execution of ti is not finished until 
the execution of all of its slaves is not finished. As the 
slaves execute in parallel, the one taking the maximum time 
contributes to the execution time of ti. The application 
execution time consists of communication time in addition 
to the above mention timings. 

Figure 4 Packages of the simulator and the interactions between them (see online version for colours) 
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The execution time for every task is calculated in recursive 
manner as follows: 

( / )

1

ti
master

master
ti

comti s hti ti ti
exe exe map mapupload

slaves mastercom tn
map exen

T T T T T

T MaxT
−

=

= + + +

+ +∑
 (6) 

The overall execution time is calculated as the maximum 
execution time amongst all the applications running in 
parallel. 

0max app
Totalexec i to appl numb exeT T= −=  (7) 

5 Validation by simulation 

To compare the mapping of tasks and communications 
heuristics, we have used our high-level simulator (Benhaoua 
et al., 2015) written in Java that provides results quite fast as 
compared to cycle accurate simulator. Figure 4 shows the 
class diagram of our tool DynMapNoCSIM (Benhaoua  
et al., 2015), a Java-based dynamic mapping simulator for 
NoC-based MPSoC architecture, which builds upon the 
object-oriented modular design of the NoC-based MPSoC 
architecture components. 

5.1 Experimental setup 

This section describes the experimental set up used. All the 
applications are modelled as in Figure 1. (a), with initial 
tasks, hardware tasks and software tasks. The values present 
on the edges represent the volume of data to be sent and 
received by the master as explained in definition application 
task graph. The NoC is modelled as in Figure 2 with initial 
tasks supported PEs at the middle position in each cluster. 
We have using our simulator (Benhaoua et al., 2015)  
to realise a heterogeneous platform that comprises  
64 processors: 12 hardwares, 51 softwares, and one 
manager processor. Our simulator permits us to create and 
simulate any platform. Our choice is carried on a platform 
of 8 × 8 processors. For positioning types of processors on 
the platform, we have choosing the same architecture used 
in the work of Singh et al. (2010). The manager is 
responsible for finding placement of the applications’  
tasks, task configuration, platform resources update and 
communications routing. The platform uses a NoC as a 
communication support, which is responsible for data 
transfer between the tasks when the communicating tasks 
are mapped in different PEs. Manager processor knows only 
the initial tasks. When initial tasks start their execution, the 

slave tasks are mapped dynamically, according to the 
communication request. The processing time of tasks 
depends on the type and capacity of PE. We can vary 
several parameters through an input configuration file 
(parameters file) that contain all the parameters such as 
platform configurations, choice of dynamic mapping 
heuristic, routing method, memory capacities, scheduling 
methods in the PE (multi-tasking), etc. Each PE contains a 
scheduler for multi-tasking. The experiments are performed 
for different scenarios: 

• Scenario 1: Applications generated by task graph for 
free (TGFF) as shown in Figure 5 (3-4 level, 1-3 son). 
Applications contain a maximum of 9 tasks. 

• Scenario 2: Applications multi-window display 
(MWD), video object plane decoder (VOPD),  
picture-in-picture (PIP) as shown in Figure 6, and 
multiple MPEG-4 applications as shown in Figure 7. 
The MWD, VOPD, PIP and MPEG-4 contain 12, 15, 8 
and 13 tasks, respectively. 

For each scenario, we try to map and execute a total of ten 
applications, whereas any number of applications can be 
considered. The platform is divided into nine clusters and 
thus nine applications can be mapped and executed initially 
and one application has to wait until one of the first nine has 
not finished. Multiple instances of the same application are 
considered to take a total of ten applications in each 
scenario. The data volume in different scenarios has been 
varied. The applications with varying number of tasks are 
considered to see how far (in terms of number of hops) the 
tasks of the same application can get mapped. We must 
have an adaptative routing method in order to minimise the 
costs of communications. In the current work, software and 
hardware resources execute multi-tasks, to solve the 
deadlock problem caused by the mono-task platform when 
the number of tasks is less than the number of PEs. 

5.2 Experimental results 

Using a static communication mapping can influence the 
costs of communications. By employing the proposed 
dynamic communication mapping combined with the 
benefits of the multi-tasks platform, we can reduce the 
communication time significantly. In the case when the 
communicating tasks are mapped in different PEs, in our 
approach, the packets can take more than one trajectory 
(path) to facilitate for faster communication, resulting in 
reduced communications costs. 

Figure 5 Applications generated by Task Graph For Free (3-4 Level, 1-3 Son) (see online version for colours) 
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Figure 6 Applications MWD, VOPD, PIP 

 
(a) (b) (c) 

 
Figure 7 MPEG-4 applications 

 

Figure 8 Execution time and energy consumption comparison of 
FF, NN and BN employing static and dynamic (our 
proposed) communication mapping for scenario 1 

 

 

Graphs in Figure 8 show the normalised total execution time 
and energy consumption for executing ten applications 
considered in scenario 1 when different heuristics are 
applied to map the applications on the multi-tasks  
NoC-based heterogeneous MPSoC platform. The heuristics 
are applied by employing both XY and our approaches to 
see the impact on the total execution time and energy 

consumption. It can be observed that a reduction in the 
execution times and energy consumption is achieved when 
the routing approach is changed from static to our approach 
for all the considered heuristics. This is due to the dynamic 
adaptation of the paths by our approach. Therefore, the 
results suggest that our proposed approach should be 
applied with mapping heuristics in order to achieve better 
performance. 

Figure 9 Execution time and energy consumption comparison of 
FF, NN and BN employing static and dynamic (our 
proposed) communication mapping for scenario 2 

 

 

In order to evaluate the performance improvement on 
realistic applications by employing our approach over static, 
we have performed similar experiments by considering the 
applications of scenario 2. Figure 9 shows the total 
execution time and energy consumption for executing ten 
applications considered in scenario 2 when different 
heuristics are applied to map the applications on the  
multi-tasks NoC-based heterogeneous MPSoC platform. 
Similar results as that of scenario 1 can be observed in 
scenario 2 as well when the routing approach is changed 
from static to our dynamic communication mapping for all 
the considered heuristics. These observations show that our 
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proposed routing approach reduces the execution time and 
energy consumption for different kinds of application 
scenarios and can be considered as a potential candidate for 
efficient routing strategy. Otherwise, using multitasks 
platform optimise consequently the performance of the 
system (consumption energy, computational time) 
compared to mono-task platform. 

6 Conclusions and future directions 

This paper presents a mapping approach that performs 
communication mapping. When tasks are mapped in the 
same PE, a shared memory is used to communicate between 
tasks, resulting in optimised execution time and energy 
consumption. Also, the approach maps the communications 
between the tasks mapped in different PEs. To reduce the 
communication costs, a dynamic communication mapping 
algorithm has been proposed to map the communications. 
Experiments have shown significant reduction in total 
execution time and energy consumption when compared to 
heuristics employing static routing and mono task platform. 
In future, we plan to consider task migration to balance the 
loads on the processors and the monitoring. 
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