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ABSTRACT A significant number of processing cores in any many-core systems nowadays and likely in
the future have to be switched off or forced to be idle to become dark cores, in light of ever increasing power
density and chip temperature. Although these dark cores cannot make direct contributions to the chip’s
throughput, they can still be allocated to applications currently running in the system for the sole purpose of
heat dissipation enabled by the temperature gradient between the active and dark cores. However, allocating
dark cores to applications tends to add extra waiting time to applications yet to be launched, which in return
can have adverse implications on the overall system performance. Another big issue related to dark core
allocation stems from the fact that application characteristics are prone to undergo rapid changes at runtime,
making a fixed dark core allocation scheme less desirable. In this paper, a runtime dark core allocation
and dynamic adjustment scheme is thus proposed. Built upon a dynamic programming network (DPN)
framework, the proposed scheme attempts to optimize the performance of currently running applications
and simultaneously reduce waiting times of incoming applications by taking into account both thermal
issues and geometric shapes of regions formed by the active/dark cores. The experimental results show
that the proposed approach achieves an average of 61% higher throughput than the two state-of-the-art
thermal-aware runtime task mapping approaches, making it the runtime resource management of choice in
many-core systems.

INDEX TERMS Dark core, many-core, dynamic resource allocation, throughput optimization.

I. INTRODUCTION

TECHNOLOGY scaling has ushered in the era of many-
core systems [1]. Along with the increase of number of

cores in a chip, it was reported in [2] that most computing
systems have low utilization rates, often lower than 50%,
which is partially attributed to the fact that the applications
supposedly to be running on these cores actually arrive at
drastically varying rates, and some or all of the cores need
to be frequently shut down to save energy. Moreover, since
the power density in many-core chips has skyrocketed, some
cores have to be power-gated to ensure, at any given time,

the total power consumption does not exceed the allowed
chip power budget [3]. Although those inactive or powered-
off cores, referred as dark cores [4], impose challenges for
performance tuning, they actually offer some opportunities.

Since a dark core, for the duration when it remains dark,
does not consume any power itself, it tends to be cooler
than its neighboring active cores, which are continuously
generating heat. In anticipation that “cold” dark cores can
be used for heat dissipation purposes, when an application
is mapped to run on active cores, a few dark cores can
also be allocated to the same application. There have been
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FIGURE 1. The number of arrived jobs per hour (a) / per minute (b) [10].

a number of studies on mapping applications to both active
and dark cores [4]–[9]. They basically allocate dark cores
to applications in the way that the active cores are allowed
to operate at higher frequency levels, and thus, achieve
higher performance at a cost of higher power consumption.
However, these approaches fail to deliver optimized system
performance due to the following reasons.

First, as reported in [10], the application arrival rates vary
significantly at different times. Particularly, as shown in Fig.
1(a), there is a vast gap between the maximum (highest
number of applications arriving at the system per hour) and
the minimum workloads, by as much as 200× [10]. Even
over just one single minute, as shown in Fig. 1(b), the ratio
of the maximum number of applications to the minimum can
be as high as 6:1 [10], which implies that the number of
dark cores can also vary greatly over that short time span.
However, for the sake of simplicity, both schemes in [6] [7]
inaccurately assume that the number of dark cores remains
unchanged over a long time interval, undermining the quality
of the application mapping results.
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FIGURE 2. An example illustrating two different schemes: how the free cores
are assigned to five applications that system needs to service.

Second, due to workload fluctuations, allocating dark cores
to applications necessitates the consideration of a number of
competing requirements, such as throughput and individual
application’s waiting and completion times, as shown in Fig.
2. Assume that at initial time t0, four applications (A1-A4)
occupy core regions each of which also includes one or a
few dark cores, as shown in Fig. 2(a). With application A5

arriving at time t1, there are two possible allocation schemes
that can map A5 to the cores:

• In one scheme, the dark cores already bound to A1-
A4 will be reallocated to A5 such that A5 can run
immediately at time t1, but A1-A4 have to slow down
due to fewer dark cores available to help their active
cores’ heat dissipation (shown in Fig. 2(b));

• Alternatively, A5 will be asked to wait until some ap-
plications (A1 through A4) finish their executions and
thus their cores are freed up for A5 to grab (shown in
Fig. 2(c)). In this case,A1-A4 can maintain their desired
performance, but A5 has to undergo a longer waiting
time before it starts its execution.

From Fig. 2, one can see that the mapping results generated
from the two schemes differ significantly from each other in
terms of performance (completion time) of currently running
applications and the performance of the newly arrived or
future applications.
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FIGURE 3. (a) The computation demands of running Facesim and Swaptions.
(b) Reclaiming the dark cores held for Swaptions and allocating them to
Facesim.

Third, application’s computation demand, measured by
throughput in terms of instructions per cycle (IPC), varies
with time. For instance, the computation demands of simul-
taneously running Facesim and Swaptions in the system,
shown in Fig. 3(a), vary differently. As there are dark cores
already allocated to Swaptions and it has decreasing compu-
tation demands as time passes by, the resource manager can
reclaim some of the dark cores occupied by Swaptions, and
instead allocate them to Facesim at time t5, as shown in Fig.
3(b). If the dark cores can be genuinely adjusted at runtime,
both applications will be able to have their computation
demands met.

In order to achieve optimized system performance by
addressing the aforementioned challenges, we propose a run-
time mapping scheme to dynamically allocate and adjust both
active and dark cores. Here are the highlights of the proposed
scheme.
• The proposed mapping algorithm takes the varying

workloads, the waiting times of newly arrived applica-
tions, and the computation demands of applications into
account, while the operating temperature is treated as a
thermal constraint for safe and reliable operation of the
chip. Instead of pushing each individual application’s
performance to its highest, our approach attempts to
optimize the performance of currently running applica-
tions and the ones that are about to run.
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• Based on a throughput model, a dynamic programming
network framework is proposed to determine both the
number of active and dark cores in the system for the
newly arrived applications, and the number of dark
cores that is allocated to executing applications, with the
objective of maximizing the system performance.

• The mapping algorithm also includes region determina-
tion and task-to-core mapping. In general, the dark cores
are placed near the cores that need to dissipate heat or
run at higher frequencies. Moreover, the locations and
geometric shapes of the core regions are regulated to
minimize the communication latency and fragmentation
of the free core regions, which further improves the
system performance.

The remainder of the paper is organized as follows. Section
II reviews the related work, and Section III describes the
target system and provides the problem definition. Section
IV presents the overview of the proposed method. Section V,
VI, and VII describe the detail of three steps of the proposed
method. Extensive experiments are conducted to compare the
proposed scheme against the state-of-the-art thermal-aware
runtime mapping methods, and the results are reported and
analyzed in Section VIII. Finally, Section IX concludes this
paper.

II. RELATED WORK
Runtime allocation of available system resources to tasks has
been an active research area since the inception of the many-
core era [11]. Of the many resource allocation approaches
that have been proposed, they, based on whether remapping is
allowed at runtime, can be broadly classified into two classes:

• Dynamic mapping without task migration, where no
mapping change happens after the initial task-to-core
mapping; and

• Dynamic mapping with task migration, where tasks can
be mapped and remapped to different cores at runtime.

A. DYNAMIC MAPPING WITHOUT TASK MIGRATION
Dynamic mapping without task migration can be further
classified into three categories according to their optimiza-
tion goals: communication-oriented mapping, power-aware
mapping, and thermal-aware mapping.

Communication-oriented approaches (e.g., [12] [13]) aim
at reducing network latency or minimizing traffic congestion,
and they are similar to the contiguous mapping method [7].
However, these mapping approaches might lead to thermal
hotspots in high power density chips since they do not
consider the power budget [4].

Power-aware algorithms (e.g., [14] [15]) try to perform
mapping under the thermal design power budget, which alone
is not enough to avoid thermal violations, as found in [5]. As
a fix, some thermal-aware approaches take the temperature of
the cores into account during mapping [16].

The thermal-aware mapping approaches in [16] [17] try
to minimize the power consumption and peak temperature.

As alluded before, the existence of dark cores presents op-
portunities to optimize system temperature. Failing to take
advantage of the availability of dark cores might lead to sub-
optimal performance, as the cases of [16] [17]. To efficiently
exploit dark cores, many dark-core-aware approaches have
been considered [4]–[8]. The mapping approaches in [5] [6]
assume that the system has a fixed number of dark cores, but
in reality, the number of dark cores can vary significantly
even in a short period of time [10]. Approaches in [5] [7]
[8] do not consider the application arrival rate, and thus,
their mapping results tend to cause applications to wait too
long before they can start their execution. Although the work
in [4] considers the application arrival rate when allocating
dark cores to applications, a big drawback is that it cannot
guarantee that the cores can meet the changing computation
demands of applications.

In short, none of these dynamic mapping algorithms de-
scribed here deliver the optimal performance, as they do
not take full advantage of the dark cores in the system,
workload variation, and changing computation demands of
applications.

B. DYNAMIC MAPPING WITH TASK MIGRATION
Recognizing the deficiencies of the dynamic mapping ap-
proach without task migration, dynamic mapping approaches
allowing task migration at runtime are proposed to help
improve the runtime application performance. The dynamic
mapping approaches can be classified into three categories:
fragmentation-aware migration, communication-aware mi-
gration, and thermal-aware migration. Fragmentation-aware
migration schemes (e.g., [18] [19]) reallocate tasks with a
hope of forming a contiguous region of cores, while the
communication-aware migration approaches (e.g., [20] [21])
focus on adjusting core allocation to minimize communica-
tion latency. Thermal-aware migration approaches (e.g., [22]
[23]) move tasks from overheated cores to cooler ones to
reduce hotspots. However, the above mapping approaches
still do not exploit dark cores for better performance [8].
Although an early study in [9] presents a dark-core-aware
migration algorithm to produce better computation perfor-
mance, it does not address the changing computation de-
mands of applications.

In the next section, we will present a runtime dark core
allocation and adjustment scheme that addresses the out-
standing issues of workload variations and applications’
computation demands.

III. SYSTEM MODEL AND PROBLEM DEFINITION
A. THE TARGET MANY-CORE PLATFORM AND
APPLICATION MODEL
Fig. 4(a) shows the target many-core platform, which has
a set of homogeneous cores Q, connected by a 2D mesh
network. A core in Q is denoted as ci. One core will be
designated as the resource manager and it has the authority
and capacity to make any runtime core allocation and ad-
justment decisions. The many-core platform executes appli-
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TABLE 1. Nomenclature

Variables for the models and problem formulation
Q, ci Q is the set of cores in the many-core

platform and ci is a core in Q.
A, A(t), T (t), H(t) A set of applications arriving at

the system is denoted as A =
{A1, A2, . . . }. At time t, the appli-
cation running queue and application
waiting queue are denoted as T (t)
and H(t) = {h1(t), h2(t), . . . }, re-
spectively. A(t) includes the applica-
tions in H(t) and T (t).

AGi(τ) = (Vi(τ), Ei(τ)) The task graph of Ai at phase τ , is
denoted as AGi(τ). Vi(τ) is the set
of tasks and Ei(τ) is the set of com-
munication edges among the tasks.

vij ∈ Vi(τ) The jth task of application Ai.
eijk = (vij , vik) ∈ Ei(τ) The edge connecting tasks vij and

vik .
a(vij , τ) The execution time of task vij at

phase τ .
w(eijk, τ) The communication volume between

two tasks vij and vik at phase τ .
M(·) The task-to-core mapping function.
Bi(t) The set of dark cores associated with

application Ai at time t.
Πi,|Bi(t)| The throughput of application Ai,

given the number of dark cores
|Bi(t)|.

Ri(t) Application Ai’s core region at time
t.

γif_run
i A binary variable, indicating if appli-

cation Ai runs immediately or waits
for sufficient cores.

Variables for the proposed method
oi,b, F (t) oi,b is a vertex in the dynamic pro-

gramming network (DPN), indicating
that applications fi(t), fi+1(t), . . . ,
f|F (t)|(t) have occupied b dark cores,
where F (t) = {f1(t), f2(t), . . . } is
the set that needs to be allocated with
dark cores.

Λ(oi,b, oi+1,k) An edge connecting vertices oi,b and
oi+1,k .

C(oi,b, oi+1,k) The utility of edge Λ(oi,b, oi+1,k).
Ωd

s The set of feasible paths from the
source vertex s to the destination ver-
tex d in DPN.

U(oi,b, d) The dynamic programming value of
vertex oi,b.

|B(t)| The maximum number of dark cores
in the system.

D(·, ·) Manhattan distance of two cores.
T ∗(t+ 1) The application set that is to be run at

time t+ 1.
ψ′ The application set where applications

in it need to find a new region.
Ril ∈ Ri, Rlargest Ril is defined as the lth candidate

region in candidate region set Ri of
application Ai. Rlargest is the largest
contiguous region.

Θi A set that records the possible loca-
tions of application Ai.

~k,vij ∈ Hvij The kth dummy task associated with
task vij .

ℵci , βvij ℵci is the number of available neigh-
boring cores of core ci. βvij is
the number of unmapped neighboring
tasks of task vij .

L(Hvij , Ri(t)) A function that computes the posi-
tions of dummy tasks in Hvij .
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FIGURE 4. (a) The target many-core platform. (b) A task graph of application
Ai.

cations organized as a set, A = {A1, A2, . . . , AN}. When
an application is ready to execute at time t, it is placed
in the system waiting queue (denoted as H(t)). When an
application inH(t) is allocated to certain cores for execution,
it is added into the running queue (denoted as T (t)). When
an application in T (t) finishes its execution, it is deleted
from this queue. The notations used throughout the paper are
summarized in Table 1.

To model the time-varying features of computation de-
mands, an application Ai is divided into mutiple phases,
and at a phase τ the application is represented as a task
graph AGi(τ) = (Vi(τ), Ei(τ)), as shown in Fig. 4(b).
The task graphs at different phases can be obtained by the
heartbeat framework [24]. Vi(τ) is the set of tasks associated
with application Ai, and Ei(τ) is the set of edges governing
the communications among tasks. The vij is the jth task
of application Ai. The eijk is the edge of connecting tasks
vij and vik. Each task vij ∈ Vi(τ) has a weight a(vij , τ)
which gives the execution time at phase τ . An edge eijk =
(vij , vik) ∈ Ei(τ) has a weight of w(eijk, τ) that defines the
communication volume in terms of the number of packets
from tasks vij to vik at phase τ . Mapping a task to a core is
defined as a one-to-one mapping; that is, only one task can
run at a core, and no tasks can share a core at any given time
[13]. A mapping functionM(vij) = ci, maps task vij to core
ci.

B. THROUGHPUT MODEL
Application Ai’s computation demand is measured by its
throughput, which is the lumped throughput (IPC) of the
cores running all the tasks of Ai. A throughput model is
set to compute the throughput of application Ai (denoted as
Πi,|Bi(t)|), with |Bi(t)| dark cores assigned toAi. In specific,

Πi,|Bi(t)| = f(āi, w̄i,
|Bi(t)|
|Vi(τ)|

, $i(τ)) (1)

where Bi(t) is the set that associates with application Ai. āi
and w̄i are the average execution time and communication
volumes of the tasks, respectively, and $i(τ) is given below.

$i(τ) =

∑
∀vij∈Vi(τ) a(vij , τ)∑
∀eijk∈Ei(τ) w(eijk, τ)

(2)
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Eqn. (1) can be obtained empirically by applying polynomial
regression as below.

Πi,|Bi(t)| =

z∑
j=1

βj(āi)
j

+

z∑
j=1

δj(w̄i)
j
+

z∑
j=1

ϑj(
|Bi(t)|
|Vi(τ)|

)
j

+

z∑
j=1

θj($i(τ))j + ε

(3)

The throughput model is used at runtime to estimate the
throughput, given the number of dark cores. To find the
regression coefficients βj , δj , ϑj , θj and ε, the maximum
likelihood method [25] can be used.

The throughput model can be trained offline by running
various applications. There are four steps.

Step 1: find a near square shape. Since the throughput of
applicationAi is associated with the core region, and a square
shape is ideal to address the communication latency concerns
[13], a core region close to a square shall be pursued when
mapping applications. Let Ri(t) be the core region of ap-
plication Ai, which includes the dark cores Bi(t) and active
cores. First, a basic square with length α = b

√
(|Ri(t)|)c is

found. If φ = |Ri(t)| − α2 = 0, this region is a square and
it shall be selected as the shape of core region for throughput
modeling. For a region with a non-square shape, this region
can take of the shapes made of a basic square combined with
one or two rectangles.
• Case 1: two rectangles. If φ > α, the near square shape

consists of the basic square and two rectangles, as shown
in Fig. 5(a). The two rectangles’ sizes are 1 × α and
1× (φ− α), respectively.

• Case 2: one rectangle. If φ ≤ α, the near square shape
consists of the basic shape and a rectangle of size 1×φ,
as shown in Fig. 5(b).

a

f-α
f

(b)

a

a

1

a 1

a 1
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FIGURE 5. A near square shape. (a) Case 1: φ > α. (b) Case 2: φ ≤ α.

Step 2: determine the task positions. The mapping method
described in Section VII can be used to determine the posi-
tions of tasks. The cores that are not occupied by tasks in the
core region of application Ai are powered-off as dark cores.

Step 3: set other running applications. In order to simu-
late the case that there are many other applications running
simultaneously in the system, which also consume power,
applications from PARSEC [26] are randomly picked and
mapped to cores adjacent to the application of interest.

Step 4: set voltage/frequency levels of cores. When running
applications, it is necessary to ensure that each core ci is run-
ning safely with its power consumption below the maximum

power capacity Pm(ci), which is obtained from the thermal
power capacity model in [4]. The total power consumption
comes from the dynamic power Pd(ci) and leakage power
Pl(ci). Therefore,

Pd(ci) + Pl(ci) ≤ Pm(ci) (4)

The leakage power Pl(ci) can be obtained as in [27]. The
dynamic power Pd(ci) is determined by:

Pd(ci) = 1/2 · µi · zi · `i2 · fi (5)

where µi is the switching activity, zi is the effective capac-
itance, fi is the frequency of core ci, and `i is the supply
voltage. The frequencies, power, and throughput of the dark
cores are 0. Once the positions of the tasks are determined in
the system, the method in [4] is used to set voltage/frequency
levels of the cores so that they can run at a high speed without
violating temperature constraint and the maximum power
capacity.

C. PROBLEM STATEMENT
The applications in set A arrive at the system at different
times, and the objective is to maximize ΠA, the system
throughput of running the applications in set A.

max ΠA (6)

Eqn. (6) can be transformed to maximize the system
throughput of the application set A(t) which can be executed
at time t. A(t) contains the applications that are either in the
running queue T (t) or in the waiting queue H(t) at time t.
With the throughput model, the maximum throughput for the
application set A(t) can be computed by:

max ΠA(t) = max(
∑

∀|Bi(t)|≤|Q|,∀Ai∈A(t)

γif_run
i Πi,|Bi(t)|)

(7)
subject to, ∑

∀Ai∈A(t)

γif_run
i (|Bi(t)|+ |Vi(τ)|) ≤ |Q| (8)

where γif_run
i is a binary value. If γif_run

i is 1, application Ai
can start its execution immediately as there are sufficient
cores available in the system. If γif_run

i is 0, it means appli-
cationAi is put on hold and it waits for core(s). IfAi ∈ T (t),
γif_run
i = 1.
At each control time, decision needs to be made regarding

the number of dark cores to be allocated to each application,
together with the task-to-core mapping.

IV. OVERVIEW OF THE PROPOSED METHOD
The decision to map a new application to cores, or adjust the
core regions of running applications, could usher in a couple
of challenges.

First, fragmentation of free cores [18] might occur. Dark
cores released by other applications might not form a con-
tiguous region, which increases the communication latency
for newly arrived applications.
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Second, a near square shape of the core region is ideal for
communication latency concerns [13]. However, the shape
tends to be irregular after adding or removing dark cores,
which might lead to increased communication latency.

To address these challenges, a three-step algorithm is
proposed as follows:

Step 1: dark core budgeting (Section V). A dynamic pro-
gramming framework is applied to decide the number of dark
cores for the running applications and newly arrived ones.

Step 2: region determination (Section VI). Given the num-
ber of dark cores from the previous budgeting step, the shape
and location of each application’s core region are determined
and reallocated to avoid fragmentation.

Step 3: task mapping (Section VII). A task mapping algo-
rithm maps the tasks within its core region, together with the
determination of the locations of the dark cores.

The proposed method will be triggered at each control
time.
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FIGURE 6. A dynamic programming network.

V. DARK CORE BUDGETING
Dark core budgeting, which decides the numbers of dark
cores that shall be allocated for maximal throughput (defined
in Eqns. (7) and (8)), can be transformed into the longest path
problem in an acyclic network, where a dynamic program-
ming network (DPN) can be built.

A. DYNAMIC PROGRAMMING NETWORK DEFINITION
The dynamic programming network (DPN) is denoted as
a graph DPN(O, Y ), as shown in Fig. 6, with O and
Y representing the vertex and edge sets, respectively. We
assume that dark cores should be allocated to applications in
set F (t) = {f1(t), f2(t), . . . }. Each application in set F (t)
forms a stage, and each stage has |B(t)|+1 vertices, oi,0, oi,1,
. . ., oi,|B(t)|. Here |B(t)| is the maximum number of dark
cores in the system when applications in F (t) are running in
the system, and it is computed by:

|B(t)| = |Q| −
|F (t)|∑
i=1

|Vi(τ)| (9)

Two dummy vertices, source vertex s and destination
vertex d, are added to indicate the start and the end of the
DPN, respectively. The vertex oi,b ∈ O, 0 ≤ b ≤ |B(t)|

has a dynamic programming value U(oi,b, d) to represent
the optimal overall throughput after assigning a total of b
dark cores to applications fi(t), fi+1(t), . . ., f|F (t)|(t). An
edge connecting the vertices oi,b and oi+1,k is defined as
Λ(oi,b, oi+1,k), corresponding to the decision of assigning
b − k dark cores to application fi(t). Each vertex at stage
i is connected to at most |B(t)| + 1 vertices in the next
stage i + 1. The edge Λ(oi,b, oi+1,k) has a utility function
C(oi,b, oi+1,k), which is the throughput of assigning b − k
dark cores to application fi(t).

C(oi,b, oi+1,k) =

{
Πi,b−k if b ≥ k
−∞ if b < k

(10)

An edge with utility Πi,b−k (the throughput obtained from
the throughput model defined in Section III-B) exists be-
tween two vertices oi,b and oi+1,k, if b ≥ k (i.e., there are
b−k dark cores assigning to application fi(t)). For the case of
b < k, the utility of the edge Λ(oi,b, oi+1,k) is set to be −∞.
The utilities of the edges Λ(s, o1,b) are zero. The utilities of
the edges Λ(o|F (t)|,b, d) connecting the vertices in the last
stage to the destination vertex d are Π|F (t)|,b.

Let Ωds be a feasible path from the source vertex (s) to the
destination vertex (d). The maximum throughput resulting
from the dark core allocations for the application set F (t)
can be computed by finding the longest path from vertex s
to vertex d. Such a longest path can be found recursively
in the form of Bellman equations [28]. That is, the dynamic
programming value U(oi,b, d) of vertex oi,b can be computed
in a backward fashion, from vertex d back to stage i.

U(oi,b, d) = max
∀k,0≤k≤b≤|B(t)|

{C(oi,b, oi+1,k)+U(oi+1,k, d)}
(11)

By expanding Eqn. (11) from vertex s to vertex d (i.e.,
U(s, d)), the maximum throughput resulting from the dark
core allocations for the application set F (t) can be computed
by:

U(s, d) = max
∀Ωd

s

|F (t)|∑
i=1

C(oi,b, oi+1,k) (12)

Let µ(oi,b) be the vertex in stage i + 1, which connects to
vertex oi,b; and vertex oi,b has dynamic programming value
after it connects to vertex µ(oi,b).

µ(oi,b) = arg max
∀k,0≤k≤b≤|B(t)|

{C(oi,b, oi+1,k)+U(oi+1,k, d)}
(13)

Algorithm 1 shows the computation of the Bellman equa-
tions given in Eqns. (11)-(13). For each vertex oi,b in a stage,
U(oi,b, d) and µ(oi,b) are updated (Lines 4-9). The time
complexity of Algorithm 1 is O(|F (t)| · |B(t)|2).

B. FINDING THE RUNNING APPLICATION SET
To find the application set T ∗(t+ 1) that is to be run at time
t + 1 (equivalent to determining γif_run

i in Eqn. (7)), a three-
step dark core budgeting algorithm is applied, as shown in
Fig. 7.
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Algorithm 1 Find the longest path in DPN
Input:
F (t): The application set.
C(oi,b, oi+1,k): The utility of each edge.
Output:
U(oi,b, d): The dynamic programming value for oi,b.
µ(oi,b): The optimal vertex to oi,b.
Function:
Find the longest path in DPN.

1: Set each U(oi,b, d) to be zero;
2: for each stage i from |F (t)| to s do
3: for each vertex oi,b do
4: for each edge connecting oi,b and a vertex

oi+1,k at stage i+ 1 do
5: if C(oi,b, oi+1,k) + U(oi+1,k, d)

≥ U(oi,b, d) then
6: µ(oi,b) = oi+1,k;
7: U(oi,b, d) =

C(oi,b, oi+1,k)+U(oi+1,k, d);
8: end if
9: end for

10: end for
11: end for

Application waiting 

queue: H(t)

Application running 

queue: T (t)

Compute  the maximum number of 

applications that can be added into the 

running queue from waiting queue: nwait

Load  set Tl (t+1) into dynamic

 programming network,  where l  {0,…, n
wait

}

Find  set T*(t+1)  from the  Tl(t+1), 

where l from 0 to nwait
  

The throughput of 

each set Tl (t+1), 

where l  {0,…, nwait
}  

T*(t+1)
Dark core number allocation 

scheme of T*(t+1)

The dark core number 

allocation scheme of 

each set Tl (t+1), where

 l  {0,…, nwait} 

Dynamic 

programming network 

(Algorithm 1)

Throughput 

model

 Predict application

 throughput






Dark core  

budgeting algorithm

FIGURE 7. The overview of the dark core budgeting algorithm.

Step 1: T ′(t) is denoted as the application set of all the
applications that have not completed their executions after
time t. From T ′(t), the maximum number of applications
that can be added into the running queue from the waiting
queue H(t), denoted as nwait, is computed by the order that
these applications join the waiting queue (assume none of
the applications including the applications in T ′(t) running

at time t+ 1 have dark cores).

nwait = max{k|
T ′(t)∑
j=1

|Vj(τ)|+
k∑

i=1,hi(t)∈H(t)

|Vi(τ)| ≤ |Q|}

(14)
Step 2: set Tl(t + 1) = T ′(t) ∪

⋃l
j=1 hj(t), l ∈

{0, . . . , nwait}, hj(t) ∈ H(t). Here Tl(t + 1) is the set of
currently running applications after time t and l applications
in the waiting queue. These l applications are selected from
the waiting queue H(t), according to the order when they
join the waiting queue. For each application set Tl(t + 1),
l ∈ {0, . . . , nwait}, the maximum throughput Ul(s, d) in Eqn.
(12) is computed by exploring the dynamic programming
network (Algorithm 1).

Step 3: T ∗(t+ 1) = arg max∀Tl(t+1),l∈{0,...,nwait} Ul(s, d)
is found. In this case, T ∗(t+1) is the application set with the
maximum throughput.

The worse-case time complexity of finding the running
application set and dark core budgeting scheme is O(nwait ·
(|T ′(t)|+ nwait) · |B(t)|2).

Find the largest 

contiguous region: Rlargest

For each 

application 

that needs to 

find a new 

region

Find the possible core 

region locations for an 

application

Each possible location 

forms a candidate region

Find the new region from 

the candidate regions

Find the new core region

 The core region of 

each application in y’

Dark core  

budgeting algorithm

T*(t+1) Dark core number  allocation 

scheme of T*(t+1)

 Applications whose core regions 

are not  in Rlargest need to find a new 

region and are added into y’

Region 

determination algorithm

Determine the relocation 

order of applications

Order

y’

FIGURE 8. The overview of the region determination algorithm.

VI. REGION DETERMINATION
Dark core budgeting algorithm computes the number of dark
cores that is allocated to applications running at time t + 1.
The currently running applications whose dark core number
is about to change, i.e., |Bi(t)| 6= |Bi(t+ 1)|, and the newly
arrived ones need to find a new region, following a three-step
region determination algorithm, as shown in Fig. 8.

Step 1: find the largest contiguous region. Starting with the
largest contiguous region Rlargest will help alleviate the core
fragmentation problem. All of the applications whose core
regions are not located in Rlargest need to be adjusted for their
core regions.

Step 2: determine the relocation order. The applications
that need to find a new region are prioritized.
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Step 3: find the core region. For each application that needs
to be adjusted, a three-step algorithm is performed.
• First, find all the possible locations of the cores that an

application can be mapped to.
• Second, the candidate regions are formed, starting from

each possible core location of an application.
• Third, choose the new region out of the candidate re-

gions.

A. FINDING THE LARGEST CONTIGUOUS REGION
Let ψ ⊂ T ∗(t + 1) be a set that includes two types of
applications: (1) the ones that are newly added into the
running queue, and (2) the currently running ones which
see their number of affiliated dark cores is about to change.
Let RCi ∈ RC = {RC1, RC2, . . . , RCm, . . . } be the
ith contiguous region occupied by the applications in set
Kno_adjust = T ∗(t+ 1)− ψ, which is the set of the currently
running applications that will hold the same number of dark
cores.

To find RC, the following steps are performed iteratively.
For each RCi ∈ RC, initially, a core that is occupied by an
application in set Kno_adjust is found, and it is added to RCi.
For each core cj ∈ RCi, each of the neighboring cores cl is
checked. If core cl is already running a task of an application
in Kno_adjust, it is added to RCi. If all of the cores in RCi
are checked and

∑
∀i,1≤i≤|RC| |RCi| is less than the total

number of cores that are running the tasks of applications
in set Kno_adjust, the iteration can continue to find RCi+1;
otherwise the iteration terminates.

The largest contiguous region Rlargest is the one in RC that
has the maximum number of cores. All of the applications
running at time t + 1, whose core regions are not located in
Rlargest, are added to a set ψ′. The core regions of applications
in ψ′ need to be adjusted.

B. DETERMINATION OF THE RELOCATION ORDER OF
APPLICATIONS
To determine the relocation order of the applications, appli-
cations in ψ′ are sorted in ascending order by the Manhattan
distance between the geometric center of core region Ri(t)
and the geometric center of region Rlargest. Applications
showing shorter Manhattan distances between the two will
have higher priority to be relocated earlier. If two applica-
tions have identical Manhattan distances, the application with
more tasks will be relocated earlier, since it is more difficult
to find an appropriate core region for this application than
those applications with fewer tasks. The Manhattan distance
between the geometric center of a newly arrived application
and the geometric center of core region Rlargest is first set
to infinity, and this application is mapped after the currently
running application. Note that a core ci has a 2D coordinate
of < xi, yi >. The geometric center c(xl, yl) for core region
Ri(t) can be approximatively determined by:

xl = b
∑
∀c(xi,yi)∈Ri(t)

xi

|Ri(t)|
c (15)

yl = b
∑
∀c(xi,yi)∈Ri(t)

yi

|Ri(t)|
c (16)

C. FINDING THE APPLICATION’S CORE REGION
For each application Ai in ψ′, a three-step algorithm is
perform to find a core region.

Step 1: find all the possible core locations that an applica-
tion can be mapped to. Two classes of cores are first defined:
periphery cores and internal cores. A periphery core is the
one that is physically located on the edge of the network,
while an internal core is the one that is at least one core away
from the edge of the network. A core ck that falls into one of
the two cases is a possible core location for application Ai,
and is added into a set Θi.
• Case 1: ck is a periphery core and only one neighboring

core is occupied.
• Case 2: ck is an internal core, and ck shares two occu-

pied neighboring cores with another core, cj , where cj
is one of the cores located at {c(xk + 1, yk + 1), c(xk −
1, yk − 1), c(xk − 1, yk + 1), c(xk + 1, yk − 1)}.

Step 2: form the candidate regions. For each core ck in Θi,
cores are selected to form the candidate regionRik.Rik ∈ Ri
is defined as the kth candidate region for application Ai,
starting from the possible core location ck. To form the
candidate region Rik, |Ri(t)| − 1 cores with the minimal
Dj are added into Rik, where Dj is the summation of the
Manhattan distances between free core cj and all the cores
that are already in Rik. That is, Dj =

∑
∀cl∈Rik

D(cj , cl),
whereD(cj , cl) is the Manhattan distance between two cores,
cj and cl.

Step 3: choose the new region out of the candidate re-
gions. From candidate region set Ri, the region with the
minimal migration cost is selected as the new core region
for application Ai. The migration cost of a candidate region
is approximated as the Manhattan distance between the ge-
ometric center of application Ai’s current core region and
the geometric center of its candidate region. For the newly
arrived application, select a core region randomly from the
candidate regions as the new region.

Since the time complexity of determining the new region
for an application is O(|Θi| · |Ri(t + 1)| · |B(t)|) and there
are |ψ′| applications that need to be mapped or mapped
remapped, the time complexity of region determination at
each control time is O(|ψ′| · |Θi| · |Ri(t+ 1)| · |B(t)|).

VII. TASK MAPPING
The task mapping algorithm maps the tasks of an application
in ψ′ to its core region while minimizing the communication
latency and improving the computation performance. Specif-
ically, there are two major steps in this algorithm, as shown
in Fig. 9: for each application in ψ′, (1) extend the task graph,
and (2) perform the task-to-core mapping.

A. EXTENDING TASK GRAPH
The number of dark cores |Bi(t)| allocated to application Ai
was obtained from running the dark core budgeting algorithm
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Extending task graph

For each task vij of application Ai:

 Find a core for task vij ;

 If vij is connected by dummy tasks:

 Find positions for dummy 

 tasks (Call Algorithm 2);

     End

End   

For each 

application 

in y’ that 

needs to be 

mapped

Task mapping algorithm

 The core region of each 

application in y’

Region determination

y’

DVFS

Task-to-core 

mapping

(Algorithm 3)

FIGURE 9. The overview of the task mapping algorithm.
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FIGURE 10. (a) The task graph before task extension. (b) The extended task
graph.

presented in Section V. Since application Ai can be descried
by its task graph, |Bi(t)| dummy tasks (nodes), all with node
weight of zero, are created, and each of these |Bi(t)| dummy
nodes is connected to a task that has the maximal execution
time in the task graph of application Ai. If the execution
times of two tasks happen to be identical, the one with fewer
neighboring tasks will be selected first to connect with a
dummy task. The kth dummy task, associated with task vij ,
is denoted as ~vij ,k ∈ Hvij . Binding dummy task ~vij ,k to
task vij does not change the characteristics of the task graph,
as ~vij ,k has only one neighbor, task vij , and the node weight
of ~vij ,k and the communication volume of edge (vij , ~vij ,k)
are both set to be zero.

Fig. 10(a) illustrates a task graph with three dark cores. To
add three dummy tasks into it, it is found that tasks v12, v14

and v17 have the longest execution times, thus each of these
three tasks is connected with a dummy task. The extended
task graph is shown in Fig. 10(b).

The dummy task ~vij ,k cannot be mapped until its neigh-
boring task vij has been mapped, and ~vij ,k is mapped to
a core that is adjacent to the one running task vij . The
positions of all the dummy tasks inHvij , associated with task
vij , are determined by the function L(Hvij , Ri(t)) with the
following steps (Algorithm 2).

For each dummy task ~vij ,k in Hvij , run the following
steps to find setCvij ,k including the possible cores that can be

Algorithm 2 Locating the cores for the dummy tasks in Hvij

Input:
Ri(t): The core region.
Hvij : The dummy task set associated with task vij .
Output:
The positions of the dummy tasks in Hvij .
Function:
Finding the positions for the dummy tasks in Hvij .

1: for each dummy task ~vij ,k in Hvij do
2: Initialize the set Cvij ,k = ∅;

// Step 1
3: C1 = {cl|cl = arg min∀ck∈Ri(t){D(M(vij), ck)}};
4: Cvij ,k = C1;

// Step 2
5: if |C1| > 1 then
6: Cvij ,k = ∅;
7: C2 = {cl|cl =

arg max∀ck∈C1

∑
∀bi∈Bi(t)

D(bi, ck)};
8: Cvij ,k = C2;

// Step 3
9: if |C2| > 1 then

10: Cvij ,k = ∅;
11: C3 = {cl|cl = arg min∀ck∈C2 ℵck};
12: Cvij ,k = C3;
13: end if
14: end if

// Step 4
15: Randomly select a core c∗ from Cvij ,k;
16: M(~vij ,k) = c∗;
17: end for

allocated to ~vij ,k. A core is randomly selected from Cvij ,k
to run ~vij ,k.

Step 1: build setC1 which contains the free core(s) selected
from core region Ri(t) such that the Manhattan distance
between each cl in C1 and the coreM(vij) (occupied by task
vij) is the shortest.

C1 = {cl|cl = arg min
∀ck∈Ri(t)

{D(M(vij), ck)}} (17)

The cores in C1 are next added into Cvij ,k (Lines 3-4). If
there is only one core in C1, jump to Step 4.

Step 2: if there are more than one core in C1, clear set
Cvij ,k and find set C2 from C1 such that,

C2 = {cl|cl = arg max
∀ck∈C1

∑
∀bi∈Bi(t)

D(bi, ck)} (18)

where cl inC2 is the farthest-away core from all the currently
mapped dummy tasks of application Ai. The cores in C2

are next added into Cvij ,k (Lines 5-8). This step helps to
distribute the dark cores across the chip. If there is only one
core in C2, jump to Step 4.

Step 3: if there are more than one core in C2, clear set
Cvij ,k and find set C3 from C2 such that,

C3 = {cl|cl = arg min
∀ck∈C2

ℵck} (19)
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where each core in C3 has the minimal number of available
free neighboring cores (denoted as ℵck ), and all the cores in
C3 are added into Cvij ,k (Lines 9-13). This step can reduce
the impact of dark cores on communication latency, since a
dummy task ~vij ,k does not incur any communication with
other tasks.

Step 4: from set Cvij ,k, a core is selected randomly, and
map dummy task ~vij ,k to the selected core (Lines 15-16).
The core occupied by a dummy task is turned-off as dark
core.

The time complexity of Algorithm 2 is O(|Hvij | · |Ri(t)|).

B. TASK-TO-CORE MAPPING
Algorithm 3 shows the two-step task-to-core mapping to map
the tasks of an application to its core region:

Step 1: vm, the task with the highest total communication
volume, is mapped to the geometric center (ccenter) of appli-
cation Ai’s core region Ri(t). If task vm is connected with
dummy tasks, their respective positions are determined by
function L(·, ·) (Algorithm 2) (Lines 1-2).

Step 2: let I be the set of tasks in Vi(τ) sorted by their
communication volumes in descending order, and those con-
nected with the dummy tasks are mapped first. For each task
vij in I , find set Zvij which includes the possible positions
that can map vij . A core c∗ is randomly selected from Zvij to
run task vij . There are two cases to consider to find set Zvij
(Lines 3-24).
• Case 1: (Lines 5-11) if at least one neighbor of task vij

has been mapped, build set Z1 such that,

Z1 = {cl|cl = arg min
∀ck∈Ri(t)

{
∑
∀vn∈Vij

D(M(vn), ck)}}

(20)
where a core in Z1 is closest to all the tasks in Vij , and
Vij is the set of the already mapped neighboring tasks
of vij . The cores in Z1 are next added into Zvij (Lines
5-7). If there are more than one core in Z1, clear set Zvij
and find set Z2 from Z1 such that,

Z2 = {cl|cl = arg min
∀ck∈Z1

{|ℵck − βvij |}} (21)

where the number of available neighboring cores of each
core cl in Z2 is closest to the number of unmapped
neighboring tasks of task vij (i.e., βvij ). The cores in
Z2 are added into Zvij (Lines 8-11).

• Case 2: (Lines 12-20) if none of vij’s neighboring tasks
are mapped yet, build set Z1 such that,

Z1 = {cl|cl = arg min
∀ck∈Ri(t)

{|ℵck − βvij |}} (22)

where the number of available neighboring cores of each
core cl in Z1 is closest to βvij (the number of unmapped
neighboring tasks of task vij). The cores inZ1 are added
into Zvij (Lines 13-14). If Z1 has more than one core,
clear set Zvij and find set Z2 from Z1 such that,

Z2 = {cl|cl = arg max
∀ck∈Z1

∑
∀v′ij∈V ′

i

D(M(v′ij), ck)}

(23)

Algorithm 3 Task-to-core mapping
Input:
AGi(τ) = (Vi(τ), Ei(τ)): Application Ai’s task graph.
Ri(t): The application core region of Ai.
I: Sorted task set.
Output:
The mapping result.
Function:
Finding positions for tasks and dark cores.

// Step 1
1: M(vm) = ccenter;
2: L(Hvm , Ri(t)); // Call Algorithm 2

// Step 2
3: for each task vij in I do
4: Initialize the set Zvij = ∅;

// find the set Zvij
5: if vij has already mapped neighboring tasks then

// Case 1
6: Z1 = {cl|cl =

arg min∀ck∈Ri(t){
∑
∀vn∈Vij

D(M(vn), ck)}};
7: Zvij = Z1;
8: if |Z1| > 1 then
9: Zvij = ∅;

10: Z2 = {cl|cl =
arg min∀ck∈Z1{|ℵck − βvij |}};

11: end if
12: else

// Case 2
13: Z1 = {cl|cl = arg min∀ck∈Ri(t){|ℵck − βvij |}};
14: Zvij = Z1;
15: if |Z1| > 1 then
16: Zvij = ∅;
17: Z2 = {cl|cl =

arg max∀ck∈Z1

∑
∀v′ij∈V ′

i
D(M(v′ij), ck)};

18: Zvij = Z2;
19: end if
20: end if

// Map the task vij
21: Randomly select a core c∗ from Zvij ;
22: M(vij) = c∗;
23: L(Hvij , Ri(t)); // Call Algorithm 2
24: end for

where each core in Z2 is a farthest-away core from the
positions of all of the tasks in V ′i , and V ′i is the set of the
already mapped tasks of applicationAi. The cores in Z2

are added into Zvij (Lines 15-19).

After building set Zvij , a core is randomly selected from
Zvij , and task vij is mapped to this selected core (Lines 21-
22). After mapping task vij , check and find positions for its
dummy tasks, using function L(·, ·) described in Algorithm
2 (Line 23).

The time complexity of Algorithm 3 is O(|Vi(τ)| · |Hvij | ·
|Ri(t)|).
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Once the positions of the tasks for all of the applications
in set ψ′ are determined, the method in [4] is used to set
voltage/frequency levels of the cores so that they can run at a
high speed without violating temperature constraint and the
maximum power capacity.
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FIGURE 11. A mapping example that involves three dark cores. (a) The core
region (a total of 11 cores). (b) The mapping result after v14 and dummy task
~v14,1 are mapped. (c) The mapping result after v17 and dummy task ~v17,1

are mapped. (d) The mapping result after all of the tasks connected with
dummy tasks are mapped. (e) The final mapping result.

Fig. 11 shows a mapping example for the task graph with
three dark cores in Fig. 10.

First, map the task with the highest communication vol-
ume. The task v14 is first mapped to core c5 in Fig. 11(a), the
geometric center of core region. A core is selected randomly
from {c2, c4, c6} for dummy task ~v14,1, since c2, c4 and c6
have fewer neighboring cores than that of c8, as shown in Fig.
11(b).

Second, map the tasks connected with dummy tasks. Task
v17 is mapped to c7, since task v17 has no mapped neighbor-
ing tasks and has four unmapped neighboring tasks, which
is closest to ℵc7 = 3, the number of available neighboring
cores of c7. The dummy task ~v17,1 is mapped to core c10, as
the Manhattan distance of c10 to core M(~v14,1), occupied
by dummy task ~v14,1, is larger than that of c4 and c8 to
M(~v14,1), as shown in Fig. 11(c). In a similar fashion, task
v12 and its dummy task ~v12,1 are subsequently mapped, as
shown in Fig. 11(d).

Third, map the tasks whose dummy task set Hvij is empty.
Task v15 is mapped to core c8, as task v15 is a neighbor of
tasks v14 and v17. Similarly, tasks v13, v16, v11, and v18 are
mapped onto the core region, as shown in Fig. 11(e).

VIII. PERFORMANCE EVALUATION
A. EXPERIMENTAL SETUP
To model the task graph and application execution, we
implement an event-driven C++ network simulator with its
configuration summarized in Table 2. This simulator is able
to model packet delay and energy consumption in communi-
cations in a cycle accurate manner. Hotspot [29] is used for
temperature simulation and McPat [30] is used as the power
model. The power needed to turn on a dark core is set to the

TABLE 2. Simulation configurations

Event-driven C++ network simulator
Flit size 128 bits
Latency Router: 2 cycles; link: 1 cycle
Routing algorithm XY routing
Buffer depth 4 flits
Baseline topology 5× 5, 6× 6, 8× 8, 12× 12
Frequency 1 to 3 GHz

Random benchmark parameters
Degree of tasks 1 to 14
Number of tasks 4 to 15
Communication volume 10 to 500 Kbits

Task graphs of real applications
blackscholes, canneal, dedup, fluidanimate, freqmine, streamcluster, vips,

swaptions, ferret [26], barnes, raytrace [33], AES enc, AES dec [34].
Number of tasks 16, 64

Configuration of the cycle accurate many-core simulator
Temperature threshold 80◦C
Baseline frequency 3GHz
Core architecture 64-bit Alpha 21264
Network size 4× 4, 8× 8
Fetch / Decode / Commit size 4 / 4 / 4
ROB size 64
L1 D cache (private) 16KB, 2-way, 32B line, 2 cycles, two

ports
L1 I cache (private) 32KB, 2-way, 64B line, 2 cycles
L2 cache (shared) 64KB slices/core, 64B, 64B
MESI protocol Line, 6 cycles, 2 ports
Main memory size 2 GB

same as that in [31]. The floorplan of the underline many-core
system is adopted from [32].

We evaluate the proposed method on random and real
workloads, as tabulated in Table 2. The task degree of the
random applications ranges from 1 to 14, and the number of
tasks per application varies from 4 to 15. The task graphs
of the real applications are generated from the traces of
PARSEC [26] and SPLASH-2 [33] benchmark suites. These
traces are collected by executing them in an NoC-based cycle
accurate many-core simulator [35], whose configuration is
also reported in Table 2. The applications in PARSEC and
SPLASH-2 benchmarks are running with thread number of
16 and 64 in two network sizes, 4×4 and 8×8, respectively.

We compare our proposed method with the following
methods: (1) Fixed_dark_core_allocation, which cannot ad-
just the number of dark cores after the initial task-to-core
mapping and uses only the mapping method described in
Section VII-B; (2) Bubble_budgeting [4], which uses virtual
mapping to determine the number and the positions of dark
cores; and (3) Adboost [6] where a core region including dark
cores is found for an application. These two papers [4] [6]
are the state-of-the-art thermal-aware runtime task mapping
approaches, which also consider the dark core allocation.
Herein after our proposed scheme (including the adjustment)
is termed as the Proposed.

In the following experiments, we compare the the four
methods in terms of throughput, communication latency, and
waiting time under different network sizes and application
arrival rates. The waiting time occurs when there are insuffi-
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FIGURE 12. (a) Errors of different regression models for throughput
estimation. (b) Comparison of the online and offline throughputs.

cient cores to run the newly arrived applications.

B. EVALUATING THE ERROR OF THE THROUGHPUT
MODEL
Fig. 12(a) compares the error of linear regression and poly-
nomial regression models for throughput estimation. Appli-
cations are executed under different numbers of dark cores
|Bi(t)|. The error of a single experiment is defined as:

ι =
|Πi,|Bi(t)| −Π′i,|Bi(t)||

Π′i,|Bi(t)|
(24)

where Π′i,|Bi(t)| and Πi,|Bi(t)| are the throughputs obtained
from the simulator and the throughput model, respectively.
From Fig. 12(a), one can see that the seventh order poly-
nomial regression has the lowest error (7.61%) among all.
Therefore, in the following experiments, the seventh or-
der polynomial regression model is used as the throughput
model.

C. THE COMPARISON OF OFFLINE AND ONLINE
THROUGHPUTS
It is possible that the core region used for training of the
throughput model (see Section III-B) is different from the
one selected at runtime. In addition, the thermal profile of
the runtime system might also be different from that for the
throughput model training. Thus, the estimated throughput
(denoted as ΠA) used in the dark core budgeting algorithm
for application set A may be different from the online
throughput (denoted as Π′A) obtained from application exe-
cution at runtime, and the difference is defined as:

ξ =
|ΠA −Π′A|

Π′A
(25)

Among the many different application sets executed, the
difference is within 6%, as shown in Fig. 12(b). Moreover,
the experimental results show that the average aspect ratio of
application core regions determined at online is 1.22, which
is close to the average aspect ratio (close to 1) of the core
regions used for training the throughput model. These results
indicate that the throughput model can give fairly accurate
prediction of the throughput, which is so much needed in the
dark core budgeting algorithm.

225M 150M 75M 37.5M 7.5M
cycles

0.50

0.75

1.00
Normalized throughput

FIGURE 13. Throughputs under different interval lengths of control time.

D. FINDING THE INTERVAL LENGTH OF CONTROL TIME
Our approach is triggered at each control time to process the
workload variation and applications’ computation demands.
Fig. 13 shows how the throughput varies with various lengths
of interval between two control times (in million cycles). Ap-
plications with different execution times and communication
volumes are executed under different system settings in terms
of network size and application arrival rate. From Fig. 13, one
can see that the interval length of control time of 75M cycles
generates the best performance. Therefore, in the following
experiments, we set the interval length of control time to be
75M cycles.

E. PERFORMANCE EVALUATION ON RANDOM
BENCHMARKS
Fig. 14 compares the throughput, waiting time, and com-
munication latency of the four methods when they are per-
formed in the system with different network sizes, running
the random benchmarks where applications arrive at the
system randomly. These results are normalized to that of the
proposed method. It can be seen from Fig. 14(a) that the
proposed method improves the throughput by 23.9%, 26.3%,
and 29.2% compared with Fixed_dark_core_allocation as the
network sizes vary from 5 × 5, 8 × 8, to 12 × 12, respec-
tively. The proposed algorithm can adjust the dark cores
of each application at runtime to optimize both currently
running applications and newly arrived ones. Therefore, the
proposed approach considers all of the applications to make
a sound global decision that redistributes the dark cores
among the running applications and newly arrived ones.
The Fixed_dark_core_allocation only takes the next arrived
application into account and cannot change the dark core
allocation in response to the changing computation demands,
which leads to sub-optimal performance.

(a) (c)
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FIGURE 14. Comparisons of throughput, waiting time, and communication
latency with different network sizes when running the random benchmarks.
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It can also be seen from Fig. 14(a) that, on average, the
throughput of the proposed method is 1.45× and 1.82×
over Bubble_budgeting and Adboost, respectively. The rea-
son is that Bubble_budgeting only optimizes an individual
application, without considering all the currently running
applications. Therefore, it might allocate excessive number
of dark cores to certain applications. Adboost, on the other
hand, assumes the system has fixed number of dark cores,
and it cannot allocate cores to applications according to their
computation demands.

As shown in Fig. 14(b), on average, the proposed ap-
proach reduces the waiting time by 33.0%, 44.7%, and
71.0% over Fixed_dark_core_allocation, Bubble_budgeting,
and Adboost, respectively. The reason is that, the proposed
approach makes a global decision to balance the execution
time of currently running applications and the waiting time
of newly arrived ones on the fly. The communication latency
of the proposed approach is also lower than those of the other
three methods, as shown in Fig. 14(c). The reason is that the
proposed approach adjusts the mapping scheme according
to the changing computation demands. Moreover, with the
proposed method, the dark cores are placed in the way that
they have little impact on the communication latency. With
large network sizes, the proposed approach achieves better
performance in terms of waiting time and communication
latency. The reason is that there are more dark cores for
applications that can be adjusted at runtime to meet the
workload variations.

Fig. 15 compares the throughput, waiting time, and
communication latency of the four methods when they
are adopted in a system running the random benchmarks
with different application arrival rates. The results in Fig.
15(a) (b) and (c) are normalized to that of the proposed
method. The respective throughput in Fig. 15(d) is nor-
malized to that of Adboost when application arrival rate
is 1. The application arrival rate is defined as the num-
ber of applications arrived at the system per 105 cycles,
which measures the workloads of the system. It can be
seen from Fig. 15(a) that, when the arrival rate is high,
e.g., 2.78 applications arrive at the system per 105 cy-
cles, the throughput of the proposed approach is 1.20×,
1.42×, and 1.96× over Fixed_dark_core_allocation, Bub-
ble_budgeting, and Adboost, respectively. On average, the
proposed approach reduces waiting time by 83%, 96%, and
99% over Fixed_dark_core_allocation, Bubble_budgeting,
and Adboost, respectively. The proposed approach achieves
better performance since it can adjust the dark cores to
reduce the waiting time of newly arrived applications when
application arrival rates are high.

It can also be seen from Fig. 15(d) that, Adboost and
Fixed_dark_core_allocation reach their throughput satura-
tion points at the arrival rates of 1.25 and 1.85 applications
per 105 cycles, respectively, while those of the proposed ap-
proach and Bubble_budgeting are both arriving at 2.50 appli-
cations per 105 cycles. The reason for this is that the proposed
approach and Bubble_budgeting both take application arrival
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FIGURE 15. Comparisons of throughput, waiting time, and communication
latency with different arrival rates when running the random benchmarks.

rate into their consideration. Moreover, the throughput of the
proposed approach increases rapidly compared with that of
Bubble_budgeting, as it considers all of the applications to
make a global optimization.
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FIGURE 16. Comparisons of throughput, waiting time, and communication
latency of the four methods with different network sizes when running the real
benchmarks.

F. PERFORMANCE EVALUATION ON REAL
BENCHMARKS
Fig. 16 compares the throughput, waiting time, and com-
munication latency of the four approaches when they are
adopted in a system with different network sizes, running the
real benchmarks where applications arrive at the system ran-
domly. These results are normalized to that of the proposed
method. The throughputs of the proposed method are 1.15×,
1.40×, and 1.73× over Fixed_dark_core_allocation, Bub-
ble_budgeting, and Adboost on average, respectively. The
proposed approach also shows substantially reduced waiting
time and communication latency, as shown in Fig. 16. The
reason for these results is that the proposed method can make
decision of dark core allocation and adjustment at runtime,
which helps to optimize the performance of currently running
applications and the newly arrived ones.

Fig. 17 shows the throughput, waiting time, and com-
munication cost of the four methods when running the real
benchmarks with different arrival rates. These results are
normalized to that of the proposed method. When the arrival
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FIGURE 17. Comparisons of throughput, waiting time, and communication
latency of the four methods with different arrival rates when running the real
benchmarks.

rate is high, the throughput achieved by our approach is about
1.16×, 1.35×, and 1.48× over Fixed_dark_core_allocation,
Bubble_budgeting, and Adboost, respectively. On aver-
age, the proposed approach reduces waiting time by 43%,
79%, and 86% over the Fixed_dark_core_allocation, Bub-
ble_budgeting, and Adboost, respectively. The reason for
this case is similar to that seen in the case of the random
benchmarks. That is, adjusting dark core can achieve higher
system performance.
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Peak temperature (℃)

FIGURE 18. Comparisons of the average peak temperatures of the chip by
running the four algorithms.

G. TEMPERATURE ANALYSIS
Fig. 18 evaluates the average peak temperatures of the four
methods by running applications in a system with differ-
ent configurations for one hundred times. One can see that
the peak temperatures of all the four algorithms are below
the temperature threshold 80◦C, but the proposed method
achieves the lowest temperature, i.e., the proposed approach
reduces the average peak temperature by 1◦C, 2◦C, and
3◦C over Fixed_dark_core_allocation, Bubble_budgeting,
and Adboost, respectively. The reason is that the proposed
mapping algorithm spreads the dark cores across the chip
and redistributes them when needed at runtime. Doing so
has a positive impact on heat dissipation to bring down chip
temperature.

H. COST ANALYSIS OF THE PROPOSED ALGORITHM
The time penalties of running the three-step proposed ap-
proach, Bubble_budgeting, and Adboost are all in the order

of 0.25M cycles. This is averaged out by running the algo-
rithms one hundred times with different system parameters,
such as network size, arrival rate, and communication volume
of applications. In practice, most of applications run for as
long as more than 108 cycles. Therefore, from the perspective
of the application execution time, the time penalty of running
the proposed algorithm is quite low. The energy spent to exe-
cute the proposed algorithm is also considered and analyzed,
which is 17.01W. The global average migration overhead at a
control interval of 75M cycles is in the order of 0.2M cycles,
which is also acceptably low.

IX. CONCLUSION
In this paper, built upon a dynamic programming frame-
work, a runtime dark core allocation and dynamic adjustment
scheme was proposed, taking into account the application
arrival rate as well as the variation of the application’s com-
putation demands. An efficient task mapping algorithm was
also proposed to reduce the negative impact of dark cores on
communication latency and fragmentation. The experiments
confirmed that, compared with two existing runtime thermal-
aware resource management approaches, the proposed ap-
proach improves the system throughput by as much as 61%
on average. The time penalty of running the proposed algo-
rithm is very low, making it a suitable method for runtime
resource management in many-core systems.
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