Received: Added at production

Revised: Added at production

Accepted: Added at production

DOI: xxx/xxxx

RESEARCH ARTICLE

A new efficient multi-task applications mapping for
three-dimensional network-on-chip based MPSoC

Khadidja Gaffour! | Mohammed Kamel Benhaoua'*?> | Abou El Hassan Benyamina' | Amit Kumar

Singh?

IDepartment of Computer Science,
University of Oranl Ahmed Ben Bella,
Oran, Algeria

2Department of Computer Science,
University of Mustapha Stambouli,
Mascara, Algeria

3School of Computer Science and Electronic
Engineering, University of Essex, Essex,
UK

Correspondence

Khadidja Gaffour, Department of Computer
Science, University of Oranl Ahmed Ben
Bella, Oran, Algeria.

Email: gaffour.khadidja@edu.univ-oranl.dz

Summary

Three-dimensional Network-on-Chip (3D NoC) is a promising solution for solving
2D NoC problems while optimizing the system’s performance. Mapping applications
in 3D NoC is a crucial step as it has a significant impact on overall system perfor-
mance. Moreover, multi-task supported processing elements (PEs) are needed to run
multiple applications and provide more scalability. Most of the existing 3D map-
ping approaches consider only the single-task platform. In this paper, we propose
an efficient multi-task mapping algorithm targeting regular 3D NoC that allows an
incremental mapping and parallel execution of many applications onto different par-

titions on the 3D NoC. The proposed mapping algorithm is composed of three main

steps aiming to reduce the communications overhead, exploiting the benefits of ver-
tical links and improving the performances. The algorithm has been evaluated with
various random and realistic benchmarks and compared with existing mapping algo-
rithms for 3D NoC. The experimental results demonstrate that the proposed mapping
strategy achieves significant performance in terms of communication cost, energy

consumption and execution time.

KEYWORDS:
applications mapping, dynamic multi-task mapping, heuristics, multi-processors system-on-chip, 3D

network-on-chip

1 | INTRODUCTION

Technological advancement allows us nowadays to realize more and more complex applications. This evolution was possible
due to the miniaturization of transistors that allows integrating several billion on a single chip''. Therefore, it was possible
integrating a complete system on a single chip called System-on-Chip (SoC). To meet the growing demands of applications, the
SoC architecture has also become more complex and has gone from a single processor to a Multiprocessors System-on-Chip
(MPS0C)2. Such systems increase performance by integrating multiple homogeneous or heterogeneous processors. On the other
hand, Network-on-Chip (NoC) has been proposed as a solution to replace conventional interconnections in SoC and MPSoC
based buses ensuring flexible communication and high required bandwidth®*>, The 2D-mesh is the most studied and used NoC
topology because of its regularity and simplicity. Nevertheless, when the cores number increases, resulting in a large network
size, the network performance can degrade drastically®. The use of the 3D NoCZ8 is the envisaged solution in order to improve
the performances in terms of reduction of power and average hop-count. A 3D NoC based MPSoC is implemented by stacking

2| GAFFOUR ET AL

multiple tiers above each other and vertically interconnects them using through-silicon vias (TSVs). As 3D NoC based MPSoC
allows integrating more processors and run more applications, finding efficient and accurate applications mapping algorithm is
extremely important.

In general, applications mapping algorithms can be classified into static or dynamic PHOISI tagks mapping. The
static or offline mapping defines the placement at design-time for all tasks of the requested applications. Such mapping techniques
have a holistic view of the system that helps make better decisions about the system resources use. Therefore, these techniques
are not suitable for the systems in which the workload of tasks changes dynamically. For these type of systems, dynamic or online
mapping techniques is needed to find the application’s tasks placement at run-time. On the other hand, regarding the number of
tasks mapped per PEs, the mapping approaches can be also classified as single or multi-task. In single-task mapping, only one
task is allocated to each PE, while in multi-task mapping, more than one task can be allocated to each PE. In order to support
an increasing number of applications and allow parallel execution of many complex applications that contain a large number of
tasks, the multi-task approaches are required.

At present, there are few papers dedicated to the dynamic mapping of tasks targeting regular 3D NoC. Also, in comparison
with the single-task 3D NoC mapping, very little works have been done regarding the multi-task 3D NoC mapping. On the other
hand, in 3D NoC, the vertical links are shorter and faster compared to horizontal links, which provide low power and network
latency, also higher bandwidth. Therefore, the 3D NoC mapping must take advantages of the vertical links by mapping as much
possible the most intensive communications to vertical links.

To overcome the limitations cited above, we present a new applications mapping algorithm for regular 3D NoC based MPSoC
with multi-task supported PEs taking into account the benefits of vertical links. The proposed algorithm first needs to allocate a
mapping position for the required application and then for each task by exploiting the benefits of multitasking and vertical links.
This feature will allow the parallel mapping and execution of many applications while reducing the communication overhead
and improving the performances. The proposed algorithm is composed of three steps: (i) Dynamic 3D NoC partitioning: which
finds a contiguous partition while optimizing the layout of applications on 3D NoC (i.e., the size of partitions is determined
in an optimal way to minimize fragmentation). (ii) Application task graph decomposition: which collects the most intensive
communication tasks into groups. (iii) Multi-task groups mapping algorithm: which maps the groups of tasks on the selected
partition’s tiles, aiming to minimize the network traffic, the communication energy and maximized the performance.

The rest of this paper is organized as follows. Section 2 describes related works in 3D NoC mapping. The formulation problem
and the energy model are introduced in Section 3. The proposed mapping algorithm is described in Section 4. Section 5 presents
the experimental setup’s description and results coupled with analysis discussions. Section 6 concludes the paper.

TORLIAI2F13014:

2 | RELATED WORK AND MOTIVATION

The problem of applications mapping on 2D mesh-based NoC has been addressed in several works 210202122 However, most
of these proposed mapping algorithms extension to 3D NoC is not optimal, since the 3D NoC design offers the vertical com-
munication, which has a set of characteristics that are not considered in the 2D NoC. On the other hand, there are few papers
for applications mapping onto 3D mesh-based NoCs.

The mapping algorithms presented in the literature use different optimization techniques such as branch and bound (BB),
genetic algorithms (GA), simulated annealing (SA), particle swarm optimization (PSO) and heuristic methods.

Wadhwani et al'? proposed an energy-aware application mapping based on branch and bound approach on a regular 3D
mesh-based NoC architecture. Moreover, the authors expose the effectiveness of 3D NoC against 2D NoC in terms of dynamic
communication energy consumption. This method needs a high computational complexity making it infeasible when the number
of tasks grows large.

Genetic algorithm and simulated annealing are commonly used meta-heuristics for mapping problem. In the work'#, a low-
power mapping for 3D NoC based on a combined genetic algorithm and simulated annealing is presented. The authors enhance
the initial population selection of genetic algorithm and integrate the simulated annealing in the operator stage of genetic
algorithm to take advantage of the local search ability of the simulated annealing. The experiments show that the proposed
method has a significant effect in reducing power consumption. This algorithm is population-based greedy approaches that
require high execution time, especially when the problem scale is large.

Regarding the PSO-based algorithms, Bhardwaj et al%¥ proposed C3Map and H-C3Map energy-aware mapping algorithms
for regular 3D NoC. C3Map is a centralized 3D mapping algorithm that uses octahedral traversal approach for mapping the

GAFFOUR ET AL | 3

application’s tasks to available cores. H-C3Map is the hybridization of C3Map with attractive and repulsive particle swarm
optimization (ARPSO). This algorithm is limited since a good efficiency of the energy optimization can only be maintained
when the scale of tasks graph is among a certain range.

On the other hand, many works have addressed the mapping problem resolution using heuristics techniques. Unlike the
previous methods, the heuristic mapping techniques do not require a long time to find the solution. Murali et al“* proposed Nmap,
a heuristic algorithm which maps the tasks of given application onto a 2D mesh. This approach tries to map the tasks with more
communication needs in the central tiles and the adjacent tasks closer to reduce the communication cost. Many works have been
extended Nmap to 3D NoC221820, This algorithm has high complexities, resulting in a huge increase in computation times.

Ziaeeziabari et al'8, proposed a latency-aware task mapping algorithm targeting a 3D NoC with partially-filled TSVs. In
this algorithm, the application’s task graph is partitioned into high-volume, low-volume and single communication sub-graphs.
Then, the mapping of the resulted sub-graphs is established according to their total intra-partition communication. The proposed
algorithm tries to map all the same partition’s tasks into one layer while minimizing the use of vertical links due to their 3D NoC
structure’s nature. Dageleh et al“Z presented a clustering-based mapping algorithm for regular 3D NoC. First, a task clustering
method called FLVAMOSA is applied to create a set of clusters as the number of 3D mesh layers. Then, each of the clusters is
mapped to a 2D layer using an existing 2D mapping algorithm called Castnet. Finally, the arrangement of layers is modified in
order to improve the mapping quality in terms of communication cost. In both these algorithms'®27, all applications reuse the
same NoC platform in distinct time slots. However, this situation results in an overhead caused by reconfiguring the NoC and
loading new applications.

Crinkle?® is a heuristic algorithm which is based on lists of prioritized tasks. First, the priority lists are organized according
to the maximum communication volume or maximum out-degree. Then, depending on the priority lists, the tasks are mapped
from the corner of 2D mesh platform and ends on another corner in a zigzag manner. Many works have been extended crinkle
to 3D NoC228023 Crinkle algorithm does not perform well for all task graphs. Generally, it works better on tasks graphs with
hierarchical and consecutive nodes.

Kiani et al'® proposed mapping of multiple applications onto irregular 3D wireless NoC. First, 3D NoC architecture is
partitioned into several regions. Then, based on the number of simultaneous running applications, a re-partitioning of NoC
architecture is established to adjust the number of partitions as much possible to the number of applications. Finally, the task
mapping is executed, taking into account the processing elements inside the dedicated partition, otherwise, outside the partition
based on the minimum path load criteria. This algorithm is specified only for irregular 3D wireless NoC architecture.

Tosun“! proposed CastNet, a heuristic algorithm for mapping tasks onto mesh-based NoCs. The tasks are selected based
on their communication weights and mapped to the shorted distance of the mapped tasks. Moreover, the approach mapping is
applied on more than one partition based on the symmetry properties of the mesh. The mapping with minimum total energy
consumption is selected as the final solution. CastNet has been extended to 3D NoC in the work?®. As a result of its greedy
performance, this mapping algorithm has a short execution time. But, it is limited in terms of scalability and generalization.

A dynamic incremental application-mapping algorithm for regular 3D NoC (we refer to this mapping technique as INC), is
proposed in the work . Here, the algorithm maps the tasks of a given application in a cuboid region while exploiting the vertical
links as much as possible. However, the algorithm is divided into three steps: NoC region selection, which selects a convex
region to map the requested application, then set matching step which allocates the most intensives communicating tasks to the
vertical links and finally the mapping of tasks into the selected region while minimizing the communication power. The main
drawback of this approach is that a single-task mapping is considered.

Singh et al*2 presented an efficient mapping algorithm for 3D video on 3D multicore intending to reduce the peak temperature
and the consumption under throughput constraint of the application. First, the characteristics of the 3D video application and
3D architecture are extracted by using an offline analysis strategy. Then, according to this information, the tasks are mapped on
cores based on the power distribution of cores and the thermal analysis. The proposed algorithm is based on application-driven
methodology but without considering the mapping of multiple applications.

Synthesis.

Table 1 summarizes the reviewed works regarding the task mapping into 3D NoC. The reported works are classified according
to the mapping nature (static or dynamic), the number of tasks allowed per PE, the target architecture’s type and nature, NoC
architecture’s management and their mapping algorithm’s optimization goal. We refer to the NoC architecture’s management to
the existence of any clustering or partitioning approach of NoC architecture for the parallel mapping and execution of multiple
applications.

4 | GAFFOUR ET AL

Table |1| highlights that most of the proposed works use static mapping algorithms"2!142324127285311 'Some of them #1423 are
based on GA, BB, PSO and SA . Although these methods are considered optimal mapping approaches, they impose very high
execution time and computational complexity for large-scale graphs. Moreover, these methods are not able to manage dynamic
workloads. To deal with these issues, heuristic-based dynamic mapping approaches can be used. Since, they require much lower
computing time with dynamic mapping of tasks considering the run-time environments. Moreover, most of the reviewed works
use a single-task mapping algorithm. But with the increasing number of processing elements and their capacities, the multi-task
mapping approaches are required to handle the parallel execution of multiple applications. Also, few works have addressed the
problem of mapping multiple applications in 3D NoC by investigating in the NoC architecture’s management'-'® to reduce the
interference and the fragmentation between applications. On the other hand, the mapping algorithm targeting a regular 3D NoC
should take advantage of the vertical links due to its high communication efficiency. Only one work'? has devoted to the task
mapping on regular 3D NoC taking into account the benefits of vertical links with the management of NoC architecture.

The present work proposes a multi-task applications mapping for regular 3D NoC with homogeneous cores. The proposed
mapping algorithm allows an incremental mapping of multiple applications, using a management technique to allocate efficiently
the placement of applications. Besides, a decomposition of the application’s task graph is applied to create a communicating-
groups set where each group’s tasks will be mapped on the same PE. Our mapping algorithm tries placing the communicating
groups close to each other, in order to reduce the network traffic and minimize communication power. Also, the proposed
mapping explores accurately the vertical links use.

3 | SYSTEM MODEL

This section introduces some definitions for a proper understanding of the proposed mapping strategy.

3.1 | NoC architecture and application model

A three-dimensional Network-on-Chip topology structure consists of several tiles (processing elements, routers and wire links)
connected in a grid-like fashion. 3D NoC with dimension N M K consists of stacking multiple 2D mesh layers with
dimension N M connected by vertical links. Whereas, the length of vertical links between tiles in adjacent layers is shorter
than horizontal links between neighbouring tiles in the same layer. A 3D NoC is defined by the network architecture graph.

Definition 1: A 3D NoC topology TP.N; M; K/ is represented by a network architecture graph ARG = .L;E/, where
vertices L are the tiles set, with L =N M K and the edge €;; . E presents the physical channel between tile .I;; 1;/.

Application is a set of tasks where each task needs to be mapped in NoC architecture. Each application is characterized by
the task graph defined below.

Definition 2: An application task graph is represented as a directed acyclic graph AT G = .T; D/, where T and D are the set
of all tasks and edges in the application, respectively. A task t, is defined by the parameters (t;;; REQ,), where t;4 represents
the task identifier and each req,, . REQ, determines the number of cycles to be executed by the task t;, before it sends the data
to its subsequent task t,. The task t, start its execution after it receives the complete amount of data. Each directed arc d,, . D
designates the existence of data communication between the two tasks t, and t,, and the size of data to be transferred between
them is represented by the weight Q. For example, the graph of tasks VOPD is illustrated in Figure [T}

3.2 | Energy model

The overall NoC system energy is composed of computation energy and communication energy. The computation energy is the

energy consumed by the PEs, whereas, the communication energy is the energy consumed by network resources in the traffic

transmission. In this study, we focus on minimizing the communication energy since it has a significant impact on the total
33

energy--.

— [Ecomp comm
Etotal - Etotal + Etotal (1)

GAFFOURET AL 5

FIGURE 1 VOPD application task graph

3.2.1 1 Computation energy
We have estimated the computation energy consumed by using the model proposed in te work

Epg =-NU"e Epo/ +.1% ¢ B/ 2
Wheren“" represents the number of cycles in whichplegis in running mode and“'® corresponds to the number of cycles in
which thepe is an idle mode. Whereak, ,, andE,y. are the energy consumption of PE in running and idle mode, respectively.

The total computation energy consumption is measured as the sum of the energy consumption of all the PEs.

d
comp_
Etotal - EPQ 3
i=1

3.2.2 1 Communication energy

The communication energy consumption of transfer of one bit of data is given by:
Epi = EtF:it + Etlit + Et\ﬁ + Elk;it (4)
WhereEEn, Eg-‘it, E[‘J’}{, andEgit denote the energy consumed by the routers, bu ers, internal wires, and the links, respectively.

Actually, the energy consumptidef, andE," are negligible compared &}, andE, , hence, Equation (4) can be reduced to:

Epit = EEI + Elb_it ®)
According to Equation (5), the energy consumption of transmitting a single bit from sourdg)titedestination tilel) can
be computed using the following equation:

lslg _ R HL VL
Epi' =-MD Iy UV Egi+ Nu Epy + Ny Ep (6)

El'jnL and El\)’nL are the energy consumed on horizontal and vertical links in data transmissdp,, is the Manhattan
distance from tilé tol 4, while N, andN, represent the number of horizontal and vertical links that have passed. As described
in%, EL. can be computed agy, = dV2C,;,_2 whered is wire lengthV is power supply an€,;. is link capacitance.
Assuming that the coordinates of source and destination tilexayg.¢s) and &g.yq.24) respectively, theMD, , can be
calculated as:
MD), = &s* Xq0+ &5 ™ Y0+ &* 240 @)

Lett; andt; are the tasks mapped on tileandly, thus, the total communication energy is :

Iglg — Isl
Ecor%m_ Qij Ebitd (8)
Finally, the network total energy's consumption with tra ¢ &f communication transactions is :

comm—_ B Isilg
Eow = Ecomm 9)

total
1

6 | GAFFOURET AL

3.3 | Execution time model

The execution time of given applicatidi,, is computed from root to leaf task based on the critical branch of the ATG. Hence,
to compute the total execution time, we have considered the con guration time and time executions of tasks including mapping
time, the computation time and the communication time. The execution time for each task is calculated recursively as follows:

0
Timg = Tnap* Ts + T¢ + MAX ATimg® (10)
j=1
WhereTé;ap isthetimeto nd a placememf,é' is the time needed to processes the taak]cht' is the communication time
spent of task; with its subsequent taslssi .
The overall execution time of multiple applications corresponds to the highest execution time among all applications running
in parallel. In the case of unavailability of free resources, the waiting Tigis also considered.

Timey, = MAX o

T+ T, 11
i=1 to application® pp w ()

3.4 | Application mapping

The application mapping problem is de ned as follows:
Problem: Given an application task grag¥mT G = . T ; D/ and NoC architecture graghRG = .L; E / those satisfy:

arof Dd (12)
Find a mapping functiomap: T ™ L with the optimization function:
. @6 mapt;/;mapt; /<
min: A Q; Eg ’ (13)
me1
Such that:
At E T;mapt/E L (14)

4 | PROPOSED MAPPING APPROACH

In this section, we describe in details our proposed multi-task 3D mapping approach that aims at reducing the network tra c
and communication energy. The approach is constituted of three dapmic 3D NoC partitioningapplication task graph
decompositiomndmulti-task groups mapping algorithithe main parameters used in the proposed approach are described in
Table 2.

Step 1. Dynamic 3D NoC partitioningDe ne a 3D contiguous partition intended for the mapping, according to the application's
characteristic.

Step 2. Application task graph decompositioDivide the application task graph into a set of groups while minimizing the
inter-group communication.

Step 3. Multi-task groups mapping algorithmMap the group of tasks into the selected partition's tiles with minimized
communication energy.

4.1 | Dynamic 3D NoC partitioning

The mapping and the execution of multiple applications require a partitioning mechanism in order to reduce the interference
between them. All the tasks of the same application are mapped in the same partition. Let's suppose that the NoC partitioning
is not carried out, in this case, the communicating tasks of an application will be mapped in sparse tiles, which increase the cos
of communication. Besides, in the case of complex applications containing a large number of tasks, the multi-task mapping is
needed to improve the running of the applications. Instead of ¥pvke use the dynamic 3D NoC partitioning considering a
multi-task operating system.

GAFFOURET AL 7

FIGURE 2 Dynamic 3D NoC partitioning step where applications 1, 2 and 3 contains 16, 28 and 8 tasks respectively

In the proposed algorithm, for each incoming application, a contiguous partition with dimensiom K should be located
satisfying the following two conditions:
min: A K* ard (15)

Kgard (16)

Three metrics are used to de ne the partition's shape: the number of tasks allowed per PE, the number of layers and the
number of application's tasks. The algorithm retrieves the application's information by o ine pro ling. The step's details of
dynamic 3D NoC partitioning are given in Algorithm 1. First, the size and the dimension of the partitiofin one layer is
computed (lines 1-8). Next, a search process for free tiles is established starting by the bottom layer (lines 9-11). Then, the full
partition with dimension K will be determined (line 12). The goal of starting the search process by the bottom layer is
the creation of a partition that contains the greatest possible number of vertical links. Finally, the algorithm keeps track of free
tiles by updating the unpartitioned nodes list after the creation of each partition (line 13).

Figure 2 illustrates the running of the proposed partitioning algorithm in regular 3D NoC architecture including three layers,
where 3 tasks are allowed per each PE considering three applications task graphs with 16, 26 and 8 tasks. The applications .
2 and 3 are mapped into NoC partitions with sizes 1x2x3, 3x1x3 and 1x1x3 respectively. As we can see, all applications are
mapped in contiguous partition, which decreases signi cantly the communication cost and enhances the system's performance

4.2 | Application task graph decomposition

To reduce communication overheads, complex applications with a large number of tasks should be partitioned and mappec
e ciently. Therefore, this step's goal is the decomposition of the application task graph into a set of groups where the most
communicating tasks are in the same group and the inter-group communications are minimized.

The proposed algorithm divides the application task graplés = . T; D/ into a set of disjoint communicating multi-task

groupsCG ="' o' ;115" =, such that:

Ngf a8 (17)
1f NTgf g (18)
A" /ECGandi' j;';a';=¢ (19)

WhereN ; andN T are the number of groups and the number of tasks in each group respectively.

s | GAFFOURET AL

Algorithm 1 Dynamic 3D NoC partitioning

Input: ATG =.T; D/ : Application task graph of the requested application
ARG =.L; E/: Network architecture graph
pe - Maximum number of tasks allowed per PE
UNP_List: The list of unpartitioned tiles
Output: PR=.L ;E/: Resulted partition intended for the mapping

. Stepl: compute the size and the dimension of the partition in one layer

1. =0d/. pge* K); . Compute the number of tiles needed
2for =1to _2 do . Compute the size of the partition in one layer
3 for =1to _2do

4 if ¢ g then

5: Break from loop;

6 end if

7 end for

8: end for

. Step2: nd the partition with the dimension (,K)

. We assume the coordinateRfis (x; y; 0)

9: forall P, E UNP _List do, selectP; where: . Search for free tiles in the bottom layer
10: bottom_partition } select free_partition X+ ;y + ; 0/or select_free_partition Y+ o x + ;0

11: end for

12 PR} get_full_partition .bottom_partition /; . Determine the full partition

. Step3: Update the list of unpartitioned tiles
13: Update(UNP_List);

Algorithm 2 shows the pseudo-code of the application task graph decomposition. In this algorithm, for given application task
graph and a number of tasks allowed per PE representeddythe communicating multi-task groups will be generated. The
algorithm tries including up top g tasks with a minimum of one task in each group as described by the equation 18. Initially,
the edges of the task graph are sorted on decreasing order of their communication weight and all tasks are labelled as unmarke
(lines 1-3). Then, for each edge in sorted orag)X, a multi-task group is created including the unmarked tgskadt, (lines
7-8). In order to select the other tasks to integrate into the multi-task group created, rst the neighbour's tasks are found (line
10) and they are chosen in descending order by their communication volume. Two cases must be considered: in the case c

pE = 2, the selection for other tasks is not performed and the creation process for the current edge is stopped. Otherwise, the
most communicating tasks will be assigned to the created group one by one according to their communication volume with
tasks in the group until the number of tasks in the created group reaches the pal(fmes 9-20). In the situation, if more
than one communicating task having the same communication volume are selected, then the algorithm chooses the task havir
the minimum number of unmarked neighbours (lines 15-17). The aim of this decision of selection is to retain the tasks with
a large number of unmarked neighbours in order to select them for the creation of other multi-task groups. Tasks are labellec
as marked since they are assigned to a multi-task group (line 19). Finally, each created multi-task group is inserted into the
communication group list CG (line 22).

We illustrate the functioning of our proposed application tasks graph decomposition with an example in Figure 3. Considering
the VOPD application graph with 16 tasks given in Figure 1 and NoC platform with 3 tasks allowed per PE. The sorted edges
list of ATG is: /(8,10), (9,10), (2,3), (3,4), (4,5), (5,6), (6,7), (8,9), (7,8), (13,14), (1,2), (4,16), (16,5), (11,12), (12, 9), (12,6),
(12,13), (14,15), (15,16) The edge8; 10/ has the highest communication weight, thus, a multi-task group is created containing
the taskdg andt;,. Since the maximum task allowed per PE is greater than the size of the created group, the most unassigned
communicating tasks witly andt,, are added. Therefore, the rst groug contains the taskdg;t,4;ty" as depicted in Figure
3(1). Instep 2, the edgg; 3/ is selected for the creation of the second multi-task group. We note that the9etlgés bypassed
since the taskg, andt,, are already assigned. The most communicating task with taskedt, is taskt,. Thus, the second
group' , includes the taskst,;ts;t," . In step 3, the edge$8; 4/ and .4;5/ are bypassed as the tagksandt, are assigned,

GAFFOURET AL | o

therefore, the edgé®; 6/ is selected. The third multi-task groug includes the task&ts; ts; t;” . The same strategy is followed

for creating the multi-task group in step 4. In step 5, the eilijel 2/ is selected and the edgds?2/; .4; 16/; .16; 5/ are bypassed.

The fth multi-task group' 5 contains only the task¥,;;t;,” because all their communicating tasks are already attributed in
other groups. At this stage, only the tasksindt, s are not assigned. Therefore, the sixth and the seventh groups contain the
task”t,” and”t,4" respectively (steps 6 and 7).

Algorithm 2 Application task graph decomposition

Input: ATG =.T; D/ : Application task graph of the requested application
pe . Maximum number of tasks allowed per PE
Output: CG: List of communicating multi-task groups
1: Unmark all tasks irAT G;
2. Put each taskdt; E T) in separate group;;
3: Sort all edges oAT G in descending order according to their communication weight;
4: foreachd,, = .t,;t,/E D do

5: ' } G . Initialization of the group
6: if (t, andt, are not markedhen . Checking each edge if it is labelled as unmarked
T ouay
8: markg, andt,);
9: while (8 6< p¢)do . Assignment of tasks in the group until their number reaches the vajuie
10: candidate_task list } getthe list of unmarked tasks which communicate with tasks in
11: for all (ct E candidate task_list) do . Selection of the dominant task among all neighbours of tasks in
12: comm_vol; } communication volume aft; with tasks in" ;
13: Select dominant task or tasks which have the maximuromm_vol; ;
14: end for
15: if more than one task is selectian
16: t; } choose the task which has a minimum of unmarked neighbours.
17: end if
18: "} a
19: markg;); . Each assigned task is labelled as marked
20: end while
21: end if
22: insert (to CG; . Update the list of communicating multi-task groups
23: end for

4.3 | Multi-task groups mapping algorithm

After the decomposition of application tasks graph into multi-task communicating groups, the step of the mapping is carried
out. Di erently from the state-of-the-art algorithms, the proposed approach can handle multiple tasks simultaneously by taking
mapping decisions for each group of tasks instead of each task separately. As mentioned in the second step, highly commun
cating tasks are collected in the same groups. Therefore, the algorithm tries to map the communicating groups close to eac
other while the tasks of each group are mapped in the same tile. The placement of the most communicating tasks into the sam
tile will reduce the communication overhead signi cantly due to their fast communication. Further, we consider that the length
of the vertical links is shorter and faster than horizontal links. Hence, for the intensive inter-group communications the vertical
links are favoured over horizontal links.

The proposed mapping described in Algorithm 3 takes the NoC partition architecture graph (PR), application task graph
(ATG) and the list of decomposed groups of tasks (CG) as inputs and e ciently performs the mapping of the groups of tasks
on the free tiles of the NoC patrtition. First, the algorithm searches and selects the initial multi-task group to be mapped (line 5).

10 GAFFOURET AL

FIGURE 3 Application task graph decomposition step

Then, the multi-task groups are mapped one by one in descending order, according to their total inter-communication volume
with mapped one (lines 6-43).

The multi-task groups are distinguished based on their total intra-communication and inter-communication. We assume that
each group ; E CGis a connected sub-graph of application task graph, ATG = G(T,D). The following equations are used to
compute the total intra-communication and inter-communication for each multi-task group.

E
= Qu:lf if Ng (20)
MUVE' 1
E P
= Quilf i;j f Ng (21)
A
t,E';
P
dy,ED

The selection and the mapping of the rst multi-task group are explained with Procedure 1. For this selection, the group with
the highest total inter-communication is selected as the initial multi-task group to be mapped. If multiple groups are selected,
then the algorithm chooses the group which has the maximum intra-communication (lines 1-4).

The selection of the initial tile depends on the total number of horizontal and vertical links that the initial multi-task group
requires for inter-communication (lines 5-13 in Procedure 1). Hence, the algorithm computes the intra-communication volume
between the initial multi-task group and its neighbour's groups (line 7 in Procedure 1). If the communication volume is greater

GAFFOURET AL | 1

than or equal to the average communication, the number of vertical links is increased (lines 8-9). Otherwise, the number of
horizontal links is increased (lines 10-11). The average communication volume is computed as follow:

E
Acomm: Ql.,lv_a:)6 (22)
Ad, ED

u v
Then, the algorithm searches for a suitable tile inside the selected partition, with the same computed number of vertical anc
horizontal links (line 14). If the tile is not found, the required number of horizontal links is minimized, until a suitable tile is
found. Otherwise, the required number of vertical links is minimized. For exampld,Jet 1 andN,, = 2 whereN,, and
Ny denote the required number of horizontal and vertical links respectively. In the search process, the algorithm evaluates the
following combination until a suitable tileL() is found: {L\'"Z;; L\"2; L "2). Finally, each task in the initial multi-task
group will be mapped to the initial tile and resources statue are updated (lines 15-17).

After the initial mapping has been executed, the algorithm maps the remaining multi-task groups one by one. Among the
unmapped multi-task groups, the algorithm selects the group with highest inter-communication volume with its mapped neigh-
bour's groups. If more than one multi-task group is selected, the group with the maximum intra-communicasahosen
to be mapped (lines 7-10).

The proposed algorithm is based on a two-search process to select the most suitable tile for the chosen multi-task group. Whe
the multi-task group has only one communicating neighbour group already mapped, the algorithm tries to map the tasks of the
chosen multi-task group on the same tile as of its communicating neighbour group. If the resource at the same tile is not able tc
support the tasks, the algorithm computes the communication volume between the target multi-task group and its communicating
neighbour group. If the computed communication volume is greater or equal to the average commudjgatica search for
free vertical tile at one hop distance from already mapped communicating neighbour is carried out. Otherwise, the algorithm
searches for horizontal tile at one hop distance (lines 13-25). If the multi-task group to be mapped has multiple neighbours
groups already mapped, then the search process takes the location of all its communicating groups to nd a suitable tile (lines
27-41). Thus, each free tile of NoC partition is examined and the tasks of the selected group will be placed onto the tile that
minimizes the communication cost with mapped groups. The communication cost is computed by Equation 8. Note that, after
each mapping, the status of the resources is updated (line 43). The same strategy as described above is applied until no unmapy.
multi-task group remain in th€G list.

For multiple applications mapping, the steps described above are applied for each application. First, a suitable NoC partition
is found by Algorithm 1. Then, the application graph is decomposed into communicating multi-task groups by Algorithm 2.
Finally, the tasks of each group are mapped as described by Algorithm 3.

An example of our proposed mapping algorithm is shown in Figure 4. We use the decomposed VOPD task graph resulted
from the execution of step 2 as shown in 3. A 3x3x3 NoC is used with 3 tasks allowed per each PE. As the number of VOPD tasks
is 16, a NoC partition with size 1x2x3 is selected for the mapping. In Figure 4, at step 1, the rst multi-task group to be mapped
is' 3, since, it has the highest inter-communication. The multi-task grqupeeds two vertical links and one horizontal link to
communicate with their neighbours as explained in Procedure 1. Thus, thétgsks;,” are mapped to tileé. In step 2, the
next multi-task group to be mapped is as it is the most communicating group with grdup As the communication volume
betweer , and' ; is greater than the average communication volume, then, a vertical link is needed. So, the tasks'of group
are mapped to tile;). In the same manner, in step 3, the tasks of groyare mapped to tile 18 In step 4, the group ; is
selected to be mapped. Then we nd the candidate tile location on the mesh partition. Thé giagtwo mapped neighbours
groups' , and' ;. According to the equation 8, the best tile location to map the tasks of greigplL 1 In the same manner,
we map the tasks of groups;, ' s and' 4intile L, L, andL 4 respectively as shown in steps 5, 6 and 7.

5 | COMPLEXITY ANALYSIS

In this section, we present the complexity analysis of our proposed approach composed of three Algorithms.
In Algorithm 1, there are three main loops which must be considered in the worst-case analysis of this algorithm. The run time
for the rst set of nestedior loop depends on the number of NoC tiles in the bottom layer. Hence, the complexity of lines 2 to 8
is 0.d.8 & d2. The secondor loop (Lines 9 to 11) consists of searching free tiles in the bottom layer. For that, the complexity
is 0.4 8 &K d. However, in the worst case, the complexity of the Algorithm Dimaxd 8§ K d.4.6 K d%/ = 0.4.8 K J2

12 | GAFFOURET AL

Procedure 1Initial mapping
Input: ATG;PR;CG
Output: map: At; E ctg;,q, ™tilefq EL

1: Clgy + Selecta dominarit, E CG wich has maximum. o . Select a dominant group according to the total inter-communication
2: if more than oné, is selectedhen . If multiple dominant groups, the selection is according to their total intra-communication
3 choose ; which has a maximum ;

4: end if

5.} get_neighbours .ctg. /; . Getall neighbours groups of the initial multi-task group
6: for all Ccg E do . Compute the required number of horizontal and vertical links
7 commvol,, } computecommeg; Ctg; /;

8 if commvol.y g Acommthen . Case of intensive communication
9 Ny} Ny +1; . The number of vertical links is increased
10: else . Case of low communication
11: Ny} Ny +1; . The number of horizontal links is increased
122 endif

13: end for

14: tileg; } search_tild® R; Ny ; Ny); . Search of the corresponding tile
15: Map each task of groupctg;; to tiletiles ;

16: insert.tiles;,s, to mag andupdateresource by map . Update the status of the resources

Algorithm 2 has partial dependency on the complexity of the sorting process Line 3 witicBD8log, @ d. On the other
hand, thefor loop (Lines 4 to 23) has a nestddr loop inside while loop (Lines 11 to 14 and Lines 9 to 20). The run time
of while loopdepends onp¢, whereas the inner and the outer loop depend on the number of tasks and edges, respectively.
Considering the worst case, thvile loop(Lines 9 to 23) run®. g+ oI d. As the value of ¢ is constant, the outdor loop
(Lines 4 to 23) has a complexity €1.8T & d. Therefore, in the worst case, the complexity of Algorithm DiéTr 6® d since
the complexity of sorting process is lower.

In Algorithm 3, the step of computing the total inter and intra-communication (Lines 1 to 4) is of the@rgy/. The
Procedurénitial_mappingconsists of selecting the initial multi-task group and searching a suitable tile for the mapping inside
the selected partition (Line 5). The selection of dominant multi-task group @Rég/, and the selection of tile depends on the
number of horizontal and vertical links that the selected group requires for inter-communication. For that, the Procedure checks
only the edges set of the selected group, which means that it has the worst time complexdy &f Moreover, there are three
main loops which must be considered in the worst-case analysis of the Algorithm 3 which consist of mapping the remaining
multi-task groups. Hence the complexity of the nested loops (Lines 6 to @§ik;08 o0& d. In the worst case, the complexity
of Algorithm 3 isO.&N ;08 08 d.

Therefore the complexity of the proposed approach (Algorithm1 + Algorithm 2 + Algorithm G) i 6® &+ AN\ ;08 0D d.

6 | EXPERIMENTAL RESULTS AND ANALYSIS

6.1 | Simulation Setup

The performance of our proposed algorithm was evaluated on a modi ed version of Noxim simulator. Noxim is a cycle-accurate
event-based NoC simulator developed in SystemC. We have conducted two sets of experiments. In the rst set, a single appli
cation is mapped to 3D NoC including random and real ones. In the second set, multiple random and real applications are
incrementally mapped to a 3D NoC.

We have used the task graph for free benchmark (T&RB)generate six random applications task graphs namely G1-G6
and six real-life applications: Video Object Plane Decoder (VOPD), Multi-Window Display (MWD), Picture in Picture (PIP),
263 encoder (263 Enc), 263 decoder (263 Dec) and MP3 encoder (MP3 Engé) fiarthe random applications, the depen-
dencies between tasks are varying from 200 to 400 packets with a size of 8 its and each it has 128-bit. The characteristics of

GAFFOURET AL 13

Algorithm 3 Application mapping algorithm

Input: PR=.L";E/:NoC partition intended for the mapping

AT G =.T; D/ : Application task graph of the current application
CG:: List of communicating multi-task groups

Output: map: T ™ML~

1 forall ' | ECGdo . Compute the total inter and intra-communication for all groups
2: -, } compute the total inter-communication;

3: -} compute the total intra-communication;

4: end for

5: intial _mappingATG;PR;CG; . Selection and mapping of the initial multi-task group
6: while (still exist unmappedictg ECG)do . Mapping of the remaining multi-task groups
7: bestuctg} nd group uctg doing a maximum inter-communication volume with mapped one; Choosing a dominant

10:
11:
12:

13:
14:

15:
16:
17:
18:

19:

20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:

multi-task group to be mapped

if multiple uctg are selectethen
chooseuctg with maximum ¢4 ;

end if
best tile } *1;
} nd mapped neighbours groups bést uctg
if (size. /== 1) then . Case of one mapped neighbour group
mst tile } get the tile of the mapped neighbor group;
if resource available atst tile then . Test of PE occupation
best tile } mst tile ;
else
commvol } communication volume between groupsst uctgand
if commvol g Agynmthen . Search for horizontal or vertical tile according to the communication volume
best tile } search vt_oneHopmst tile/; . Search for vertical tile at one hop distance
else
best tile } search ht_oneHopmst tile/; . Search for horizontal tile at one hop distance
end if
end if
end if
if (size. /> 1) OR (pbesttile ==*1) then . Case of multiple mapped neighbours groups
min_cost} @ . Initialization of cost with highest value
forall pg EL do
if resource available @i then . Test of PE occupation
total_cost} O;
forall cg E do . Compute the communication cost
mst tile } get tile.cg/;
total_cost} total_cost+ computecommcg; best ucty « computeenergype; mst tile/;
end for
if (total_cost < min cos) then . Set the minimum cost and the target PE
min_cost} total_cost
besttile } pe;
end if
end if
end for
end if
Map each task; of groupbest uctgto tile best tile;
insert.best tile to mag andupdateresource by mdp . Update the status of the resources

44: end while

14 GAFFOURET AL

FIGURE 4 Multi-task groups mapping step

random and real applications in terms of the number of tasks and edges are shown in Table 3.

For evaluation, the platform chosen is 8x8x3 3D NoC, where full channel bandwidth has been allocated to each channel. We
assume that each core is able to execute up to three tasks and to transfer a it over a channel one cycle is needed. All experimen
are run on a PC Intel i5-4310U 2.00 GHz dual-core processor. The system simulation con guration is outlined in Table 4.

6.2 | Simulation Results

The evaluated parameters are the average execution time, the communication cost, the average network latency and ener
consumption.

GAFFOURET AL | 15

6.2.1 | Single application mapping

In this experiment, both randomly generated graphs and real benchmarks are evaluated. The proposed algorithm is compare
against ING?, Nmap?*, Castnet! and Crinkle’® algorithms. We have extended the algorithms Nmap, CastNet and Crinkle to
support 3D NoC. The algorithms Nmap 3D, Castnet 3D, Crinkle 3D and INC support only the mono-tasking. As our knowledge,
there are not any 3D multi-task applications mapping algorithm for regular 3D NoCs targeting our same optimization goals.
In addition, to assess the e ciency of our proposed algorithm, the step of dynamic 3D NoC partitioning is not performed in
Nmap 3D, Castnet 3D and Crinkle 3D algorithms. The INC algorithm uses the dynamic 3D partitioning with mono-tasking.
The results will be compared to:

Compare the results of the proposed algorithm with Nmap 3D, Castnet 3D and Crinkle 3D algorithms (algorithms without
dynamic 3D NoC partitioning using di erent single-task mapping strategies).

Compare the results of the proposed algorithm with INC algorithm (algorithm using dynamic 3D NoC partitioning using
single-task mapping strategy).

Figure 5 and Figure 6 show the comparison result for the execution time and energy consumption using random and real appli
cations. The total execution time is the time taken by the application as shown in Equation 10. As illustrated in Figure 5(a) and
Figure 6(a), the proposed approach reduces the execution time when compared to the algorithms Nmap 3D, Castnet 3D, Crinkl
3D and INC for random and real applications. This result is explained by the fact that in our proposed approach, each processo
can execute more than one task while the most communicating tasks are grouped in the same processor, resulting in a reductic
of computation time and communication time. Moreover, the multi-task group mapping is carried out based on 3D NoC par-

titioning where the communicating groups of tasks are mapped in close proximity in order also to reduce the communication
time. Our mapping strategy reduces the total execution time on average by 46.4715% and 12.40% for real and random applicz
tions respectively compared to INC algorithm. On the other hand, it reduces the execution time by (46.47%, 14.54%), (46.55%
11.85%), (46.47%, 13.78%) for real and random applications compared to Nmap 3D, Crinkle 3D and Castnet 3D algorithms,
respectively.

The total energy consumption is shown in Figure 5(b) and Figure 6(b) for random and real applications mapping, respectively.
The energy consumption is greatly reduced in our proposed mapping strategy when compared to other heuristics. The tota
energy consumption is proportional to the average tra c in the network. Therefore, in our proposed algorithm the total tra ¢
is well minimized as the most communicating task are in the same processor. Also, the most communicating groups of tasks
are allocated to the vertical links which further reduce the energy consumption. The average reduction in energy consumptior
is 58.37% and 52.22% for real and random applications as compared to INC algorithm. Compared to Nmap 3D, Castnet 3D an
Crinkle 3D, the average energy consumption reduction is (58.37%, 45.17%), (56.98%, 42.90%), (56.68%, 61.98%) for real an
random applications, respectively.

In Table 5, we present the communication cost and the average network latency results obtained by our proposed algorithn
compared with INC, Nmap 3D, Castnet 3D and Crinkle 3D algorithms. The communication cost refers to the amount of tra c
in the network multiplied by the average hop count. In our proposed algorithm, the produced tra c in the network is reduced
using a multi-task approach, which leads to the reduction of communication cost. Furthermore, it tries to minimise the distance
between communicating group of tasks. The communication cost reduction of our proposed algorithm is (78.50% and 50.62%)
(77.28%, 47.09%), (75.06%, 40.76%), (76.91%, 71.36%) for real and random applications compared to INC, Nmap 3D, Castne
3D and Crinkle 3D algorithms, respectively. The network latency is the average time taken between packet injection in the local
port and tail it consumption in the local port of the destination node. Compared to the non-partitioning algorithms that use the
total NoC space, our proposed algorithm has little increase in the average network latency in some cases, since the XYZ routing
algorithm is based on shortest paths and in the partition space, the number of available network paths is in a lower humbel
compared to NoC space. This is a small overhead since it not a ect the performance of the system and the execution time, the
communication cost and energy consumption are considerable better than the other algorithms.

6.2.2 | Multiples applications mapping

In this experiment, multiple random and real applications are incrementally mapped to a 3D NoC. The proposed algorithm is
compared against random, Nmap 3D and INC mapping algorithms. In the random mapping algorithm, the tasks of an application
are mapped to the tiles randomly. The experiments are performed for di erent scenarios. In each scenario, 10 applications are
mapped and executed.

16 GAFFOURET AL

FIGURE 5 Execution time and energy consumption resulting from random single applications mapping

FIGURE 6 Execution time and energy consumption resulting from single multimedia applications mapping

~ Scenario 1:Four repeats o652 and three repeats &4 and three repeats 1.
~ Scenario 2:Five repeats 063 and two repeats db5 and three repeats &2.
" Scenario 3:VOPD, ve repeats of 263 Dec and four repeats of PIP.

~ Scenario 4:Four repeats of 263 Enc and four repeats of MP3 Enc and two repeats of MWD.

Figures 7 and 8 show the average execution time and energy consumption resulting from the execution of random application:
(scenario 1 and scenario 2) and real applications (scenario 3 and scenario 4) using Random, Nmap 3D and INC mapping
algorithm. In comparison with mono-task mapping algorithm using the total NoC space, our multi-task mapping algorithm using
3D NoC partitioning has less execution time and energy consumption. The reduction of execution time is (28.88%, 57.59%) anc
(13.93%, 44.95%) for random and real applications compared to Random and Nmap 3D algorithms, respectively. On the othe
hand, our proposed multi-task mapping reduces the execution time over INC algorithm by 13.43% and 44.19% for random anc
real applications. The reduction in the execution time against Random and Nmap 3D algorithm is due to 3D NoC partitioning
which allows the execution of more applications simultaneously. Moreover, compared to INC algorithm, our proposed algorithm
is based on a multi-task approach that group the most communicating task in the same processor which reduce greatly th
communication time and consequently the execution time.

	A new efficient multi-task applications mapping for three-dimensional network-on-chip based MPSoC
	Abstract
	Introduction
	Related work and motivation
	System model
	NoC architecture and application model
	Energy model
	Computation energy
	Communication energy

	Execution time model
	Application mapping

	Proposed mapping approach
	Dynamic 3D NoC partitioning
	Application task graph decomposition
	Multi-task groups mapping algorithm

	Complexity analysis
	Experimental results and analysis
	Simulation Setup
	Simulation Results
	Single application mapping
	Multiples applications mapping

	Conclusion
	References

