
Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

RESEARCH ARTICLE

A new efficient multi-task applications mapping for
three-dimensional network-on-chip based MPSoC

Khadidja Gaffour1 | Mohammed Kamel Benhaoua1,2 | Abou El Hassan Benyamina1 | Amit Kumar
Singh3

1Department of Computer Science,
University of Oran1 Ahmed Ben Bella,
Oran, Algeria

2Department of Computer Science,
University of Mustapha Stambouli,
Mascara, Algeria

3School of Computer Science and Electronic
Engineering, University of Essex, Essex,
UK
Correspondence
Khadidja Gaffour, Department of Computer
Science, University of Oran1 Ahmed Ben
Bella, Oran, Algeria.
Email: gaffour.khadidja@edu.univ-oran1.dz

Summary

Three-dimensional Network-on-Chip (3D NoC) is a promising solution for solving
2DNoC problemswhile optimizing the system’s performance.Mapping applications
in 3D NoC is a crucial step as it has a significant impact on overall system perfor-
mance. Moreover, multi-task supported processing elements (PEs) are needed to run
multiple applications and provide more scalability. Most of the existing 3D map-
ping approaches consider only the single-task platform. In this paper, we propose
an efficient multi-task mapping algorithm targeting regular 3D NoC that allows an
incremental mapping and parallel execution of many applications onto different par-
titions on the 3D NoC. The proposed mapping algorithm is composed of three main
steps aiming to reduce the communications overhead, exploiting the benefits of ver-
tical links and improving the performances. The algorithm has been evaluated with
various random and realistic benchmarks and compared with existing mapping algo-
rithms for 3D NoC. The experimental results demonstrate that the proposed mapping
strategy achieves significant performance in terms of communication cost, energy
consumption and execution time.
KEYWORDS:
applications mapping, dynamic multi-task mapping, heuristics, multi-processors system-on-chip, 3D
network-on-chip

1 INTRODUCTION

Technological advancement allows us nowadays to realize more and more complex applications. This evolution was possible
due to the miniaturization of transistors that allows integrating several billion on a single chip1. Therefore, it was possible
integrating a complete system on a single chip called System-on-Chip (SoC). To meet the growing demands of applications, the
SoC architecture has also become more complex and has gone from a single processor to a Multiprocessors System-on-Chip
(MPSoC)2. Such systems increase performance by integrating multiple homogeneous or heterogeneous processors. On the other
hand, Network-on-Chip (NoC) has been proposed as a solution to replace conventional interconnections in SoC and MPSoC
based buses ensuring flexible communication and high required bandwidth3,4,5. The 2D-mesh is the most studied and used NoC
topology because of its regularity and simplicity. Nevertheless, when the cores number increases, resulting in a large network
size, the network performance can degrade drastically6. The use of the 3D NoC7,8 is the envisaged solution in order to improve
the performances in terms of reduction of power and average hop-count. A 3D NoC based MPSoC is implemented by stacking

2 GAFFOUR ET AL

multiple tiers above each other and vertically interconnects them using through-silicon vias (TSVs)9. As 3D NoC based MPSoC
allows integrating more processors and run more applications, finding efficient and accurate applications mapping algorithm is
extremely important.
In general, applications mapping algorithms can be classified into static10,11,12,13,14 or dynamic15,16,17,18,19 tasks mapping. The

static or offlinemapping defines the placement at design-time for all tasks of the requested applications. Suchmapping techniques
have a holistic view of the system that helps make better decisions about the system resources use. Therefore, these techniques
are not suitable for the systems in which the workload of tasks changes dynamically. For these type of systems, dynamic or online
mapping techniques is needed to find the application’s tasks placement at run-time. On the other hand, regarding the number of
tasks mapped per PEs, the mapping approaches can be also classified as single or multi-task. In single-task mapping, only one
task is allocated to each PE, while in multi-task mapping, more than one task can be allocated to each PE. In order to support
an increasing number of applications and allow parallel execution of many complex applications that contain a large number of
tasks, the multi-task approaches are required.
At present, there are few papers dedicated to the dynamic mapping of tasks targeting regular 3D NoC. Also, in comparison

with the single-task 3D NoCmapping, very little works have been done regarding the multi-task 3D NoCmapping. On the other
hand, in 3D NoC, the vertical links are shorter and faster compared to horizontal links, which provide low power and network
latency, also higher bandwidth. Therefore, the 3D NoC mapping must take advantages of the vertical links by mapping as much
possible the most intensive communications to vertical links.
To overcome the limitations cited above, we present a new applications mapping algorithm for regular 3D NoC basedMPSoC

with multi-task supported PEs taking into account the benefits of vertical links. The proposed algorithm first needs to allocate a
mapping position for the required application and then for each task by exploiting the benefits of multitasking and vertical links.
This feature will allow the parallel mapping and execution of many applications while reducing the communication overhead
and improving the performances. The proposed algorithm is composed of three steps: (i) Dynamic 3D NoC partitioning: which
finds a contiguous partition while optimizing the layout of applications on 3D NoC (i.e., the size of partitions is determined
in an optimal way to minimize fragmentation). (ii) Application task graph decomposition: which collects the most intensive
communication tasks into groups. (iii) Multi-task groups mapping algorithm: which maps the groups of tasks on the selected
partition’s tiles, aiming to minimize the network traffic, the communication energy and maximized the performance.
The rest of this paper is organized as follows. Section 2 describes related works in 3DNoCmapping. The formulation problem

and the energy model are introduced in Section 3. The proposed mapping algorithm is described in Section 4. Section 5 presents
the experimental setup’s description and results coupled with analysis discussions. Section 6 concludes the paper.

2 RELATEDWORK ANDMOTIVATION

The problem of applications mapping on 2D mesh-based NoC has been addressed in several works15,16,20,21,22. However, most
of these proposed mapping algorithms extension to 3D NoC is not optimal, since the 3D NoC design offers the vertical com-
munication, which has a set of characteristics that are not considered in the 2D NoC. On the other hand, there are few papers
for applications mapping onto 3D mesh-based NoCs.
The mapping algorithms presented in the literature use different optimization techniques such as branch and bound (BB),

genetic algorithms (GA), simulated annealing (SA), particle swarm optimization (PSO) and heuristic methods.
Wadhwani et al13 proposed an energy-aware application mapping based on branch and bound approach on a regular 3D

mesh-based NoC architecture. Moreover, the authors expose the effectiveness of 3D NoC against 2D NoC in terms of dynamic
communication energy consumption. This method needs a high computational complexity making it infeasible when the number
of tasks grows large.
Genetic algorithm and simulated annealing are commonly used meta-heuristics for mapping problem. In the work14, a low-

power mapping for 3D NoC based on a combined genetic algorithm and simulated annealing is presented. The authors enhance
the initial population selection of genetic algorithm and integrate the simulated annealing in the operator stage of genetic
algorithm to take advantage of the local search ability of the simulated annealing. The experiments show that the proposed
method has a significant effect in reducing power consumption. This algorithm is population-based greedy approaches that
require high execution time, especially when the problem scale is large.
Regarding the PSO-based algorithms, Bhardwaj et al23 proposed C3Map and H-C3Map energy-aware mapping algorithms

for regular 3D NoC. C3Map is a centralized 3D mapping algorithm that uses octahedral traversal approach for mapping the

GAFFOUR ET AL 3

application’s tasks to available cores. H-C3Map is the hybridization of C3Map with attractive and repulsive particle swarm
optimization (ARPSO). This algorithm is limited since a good efficiency of the energy optimization can only be maintained
when the scale of tasks graph is among a certain range.
On the other hand, many works have addressed the mapping problem resolution using heuristics techniques. Unlike the

previousmethods, the heuristic mapping techniques do not require a long time to find the solution.Murali et al24 proposed Nmap,
a heuristic algorithm which maps the tasks of given application onto a 2D mesh. This approach tries to map the tasks with more
communication needs in the central tiles and the adjacent tasks closer to reduce the communication cost. Many works have been
extended Nmap to 3D NoC25,18,26. This algorithm has high complexities, resulting in a huge increase in computation times.
Ziaeeziabari et al18, proposed a latency-aware task mapping algorithm targeting a 3D NoC with partially-filled TSVs. In

this algorithm, the application’s task graph is partitioned into high-volume, low-volume and single communication sub-graphs.
Then, the mapping of the resulted sub-graphs is established according to their total intra-partition communication. The proposed
algorithm tries to map all the same partition’s tasks into one layer while minimizing the use of vertical links due to their 3D NoC
structure’s nature. Dageleh et al27 presented a clustering-based mapping algorithm for regular 3D NoC. First, a task clustering
method called FLVAMOSA is applied to create a set of clusters as the number of 3D mesh layers. Then, each of the clusters is
mapped to a 2D layer using an existing 2D mapping algorithm called Castnet. Finally, the arrangement of layers is modified in
order to improve the mapping quality in terms of communication cost. In both these algorithms18,27, all applications reuse the
same NoC platform in distinct time slots. However, this situation results in an overhead caused by reconfiguring the NoC and
loading new applications.
Crinkle28 is a heuristic algorithm which is based on lists of prioritized tasks. First, the priority lists are organized according

to the maximum communication volume or maximum out-degree. Then, depending on the priority lists, the tasks are mapped
from the corner of 2D mesh platform and ends on another corner in a zigzag manner. Many works have been extended crinkle
to 3D NoC29,30,23. Crinkle algorithm does not perform well for all task graphs. Generally, it works better on tasks graphs with
hierarchical and consecutive nodes.
Kiani et al19 proposed mapping of multiple applications onto irregular 3D wireless NoC. First, 3D NoC architecture is

partitioned into several regions. Then, based on the number of simultaneous running applications, a re-partitioning of NoC
architecture is established to adjust the number of partitions as much possible to the number of applications. Finally, the task
mapping is executed, taking into account the processing elements inside the dedicated partition, otherwise, outside the partition
based on the minimum path load criteria. This algorithm is specified only for irregular 3D wireless NoC architecture.
Tosun31 proposed CastNet, a heuristic algorithm for mapping tasks onto mesh-based NoCs. The tasks are selected based

on their communication weights and mapped to the shorted distance of the mapped tasks. Moreover, the approach mapping is
applied on more than one partition based on the symmetry properties of the mesh. The mapping with minimum total energy
consumption is selected as the final solution. CastNet has been extended to 3D NoC in the work26. As a result of its greedy
performance, this mapping algorithm has a short execution time. But, it is limited in terms of scalability and generalization.
A dynamic incremental application-mapping algorithm for regular 3D NoC (we refer to this mapping technique as INC), is

proposed in the work17. Here, the algorithmmaps the tasks of a given application in a cuboid region while exploiting the vertical
links as much as possible. However, the algorithm is divided into three steps: NoC region selection, which selects a convex
region to map the requested application, then set matching step which allocates the most intensives communicating tasks to the
vertical links and finally the mapping of tasks into the selected region while minimizing the communication power. The main
drawback of this approach is that a single-task mapping is considered.
Singh et al32 presented an efficient mapping algorithm for 3D video on 3Dmulticore intending to reduce the peak temperature

and the consumption under throughput constraint of the application. First, the characteristics of the 3D video application and
3D architecture are extracted by using an offline analysis strategy. Then, according to this information, the tasks are mapped on
cores based on the power distribution of cores and the thermal analysis. The proposed algorithm is based on application-driven
methodology but without considering the mapping of multiple applications.
Synthesis.
Table 1 summarizes the reviewed works regarding the task mapping into 3D NoC. The reported works are classified according
to the mapping nature (static or dynamic), the number of tasks allowed per PE, the target architecture’s type and nature, NoC
architecture’s management and their mapping algorithm’s optimization goal. We refer to the NoC architecture’s management to
the existence of any clustering or partitioning approach of NoC architecture for the parallel mapping and execution of multiple
applications.

4 GAFFOUR ET AL

Table 1 highlights that most of the proposed works use static mapping algorithms13,14,23,24,27,28,31. Some of them13,14,23 are
based on GA, BB, PSO and SA . Although these methods are considered optimal mapping approaches, they impose very high
execution time and computational complexity for large-scale graphs. Moreover, these methods are not able to manage dynamic
workloads. To deal with these issues, heuristic-based dynamic mapping approaches can be used. Since, they require much lower
computing time with dynamic mapping of tasks considering the run-time environments. Moreover, most of the reviewed works
use a single-task mapping algorithm. But with the increasing number of processing elements and their capacities, the multi-task
mapping approaches are required to handle the parallel execution of multiple applications. Also, few works have addressed the
problem of mapping multiple applications in 3D NoC by investigating in the NoC architecture’s management17,19 to reduce the
interference and the fragmentation between applications. On the other hand, the mapping algorithm targeting a regular 3D NoC
should take advantage of the vertical links due to its high communication efficiency. Only one work17 has devoted to the task
mapping on regular 3D NoC taking into account the benefits of vertical links with the management of NoC architecture.
The present work proposes a multi-task applications mapping for regular 3D NoC with homogeneous cores. The proposed

mapping algorithm allows an incremental mapping of multiple applications, using amanagement technique to allocate efficiently
the placement of applications. Besides, a decomposition of the application’s task graph is applied to create a communicating-
groups set where each group’s tasks will be mapped on the same PE. Our mapping algorithm tries placing the communicating
groups close to each other, in order to reduce the network traffic and minimize communication power. Also, the proposed
mapping explores accurately the vertical links use.

3 SYSTEMMODEL

This section introduces some definitions for a proper understanding of the proposed mapping strategy.

3.1 NoC architecture and application model
A three-dimensional Network-on-Chip topology structure consists of several tiles (processing elements, routers and wire links)
connected in a grid-like fashion. 3D NoC with dimension N × M × K consists of stacking multiple 2D mesh layers with
dimension N ×M connected by vertical links. Whereas, the length of vertical links between tiles in adjacent layers is shorter
than horizontal links between neighbouring tiles in the same layer. A 3D NoC is defined by the network architecture graph.
Definition 1: A 3D NoC topology TP (N,M,K) is represented by a network architecture graph ARG = (L,E), where

vertices L are the tiles set, with |L| = N ×M ×K and the edge eij ∈ E presents the physical channel between tile (li, lj).

Application is a set of tasks where each task needs to be mapped in NoC architecture. Each application is characterized by
the task graph defined below.
Definition 2: An application task graph is represented as a directed acyclic graph ATG = (T ,D), where T and D are the set

of all tasks and edges in the application, respectively. A task tu is defined by the parameters (tid , REQu), where tid represents
the task identifier and each requv ∈ REQu determines the number of cycles to be executed by the task tu before it sends the data
to its subsequent task tv. The task tv start its execution after it receives the complete amount of data. Each directed arc duv ∈ D
designates the existence of data communication between the two tasks tu and tv, and the size of data to be transferred between
them is represented by the weight Quv. For example, the graph of tasks VOPD is illustrated in Figure 1.

3.2 Energy model
The overall NoC system energy is composed of computation energy and communication energy. The computation energy is the
energy consumed by the PEs, whereas, the communication energy is the energy consumed by network resources in the traffic
transmission. In this study, we focus on minimizing the communication energy since it has a significant impact on the total
energy33.

Etotal = Ecomp
total + E

comm
total (1)

GAFFOUR ET AL 5

10

6

21

12

5

3

14

13

16

4

7

8 9

11 15

70 362 362

353 357 27

362 49

157

300

500

313 16 16

16 16

16 1694
313

16

FIGURE 1 VOPD application task graph

3.2.1 Computation energy
We have estimated the computation energy consumed by using the model proposed in the work34.

Epei = (nruni × Erun) + (nidlei × Eidle) (2)
Where nruni represents the number of cycles in which the pei is in runningmode and nidlei corresponds to the number of cycles in

which the pei is an idle mode. Whereas,Erun andEidle are the energy consumption of PE in running and idle mode, respectively.
The total computation energy consumption is measured as the sum of the energy consumption of all the PEs.

Ecomp
total =

|L|
∑

i=1
Epei (3)

3.2.2 Communication energy
The communication energy consumption of transfer of one bit of data is given by:

Ebit = ER
bit + E

B
bit + E

W
bit + E

L
bit (4)

Where ER
bit, EB

bit, EW
bit , and EL

bit denote the energy consumed by the routers, buffers, internal wires, and the links, respectively.
Actually, the energy consumption EB

bit and EW
bit are negligible compared to ER

bit and EL
bit, hence, Equation (4) can be reduced to:

Ebit = ER
bit + E

L
bit (5)

According to Equation (5), the energy consumption of transmitting a single bit from source tile (ls) to destination tile (ld) can
be computed using the following equation:

Els,ld
bit = (MDls,ld + 1) ⋅ ER

bit +NH ⋅ EHL
bit +NV ⋅ EV L

bit (6)
EHL
bit and EV L

bit are the energy consumed on horizontal and vertical links in data transmission. MDls,ld is the Manhattan
distance from tile ls to ld , whileNH andNV represent the number of horizontal and vertical links that have passed. As described
in35, EL

bit can be computed as: EL
bit = dV 2Cwire∕2, where d is wire length, V is power supply and Cwire is link capacitance.

Assuming that the coordinates of source and destination tiles are (xs,ys,zs) and (xd ,yd ,zd) respectively, thenMDls,ld can be
calculated as:

MDls,ld = |xs − xd| + |ys − yd| + |zs − zd| (7)
Let ti and tj are the tasks mapped on tile ls and ld , thus, the total communication energy is :

Els,ld
comm = Qij ⋅ E

ls,ld
bit (8)

Finally, the network total energy’s consumption with traffic ofN communication transactions is :

Ecomm
total =

N
∑

1
Els,ld
comm (9)

6 GAFFOUR ET AL

3.3 Execution time model
The execution time of given application Tapp is computed from root to leaf task based on the critical branch of the ATG. Hence,
to compute the total execution time, we have considered the configuration time and time executions of tasks including mapping
time, the computation time and the communication time. The execution time for each task is calculated recursively as follows:

T imeti = T timap + T
ti
s + T tic +

|subti |
∑

j=1
MAX {T imetj} (10)

Where T timap is the time to find a placement, T tis is the time needed to processes the task ti and T tic is the communication time
spent of task ti with its subsequent tasks subti .The overall execution time of multiple applications corresponds to the highest execution time among all applications running
in parallel. In the case of unavailability of free resources, the waiting time Tw is also considered.

T imetotal = MAX
i=1 to |applications|

{Tapp} + Tw (11)

3.4 Application mapping
The application mapping problem is defined as follows:
Problem: Given an application task graph ATG = (T ,D) and NoC architecture graph ARG = (L,E) those satisfy:

|T | ≤ |D| (12)
Find a mapping function map ∶ T → L with the optimization function:

min ∶ {
|D|

∑

m=1
Qij ⋅ E

map(ti),map(tj)
bit } (13)

Such that:
∀ti ∈ T , map(ti) ∈ L (14)

4 PROPOSED MAPPING APPROACH

In this section, we describe in details our proposed multi-task 3D mapping approach that aims at reducing the network traffic
and communication energy. The approach is constituted of three steps dynamic 3D NoC partitioning, application task graph
decomposition and multi-task groups mapping algorithm. The main parameters used in the proposed approach are described in
Table 2.
Step 1. Dynamic 3DNoC partitioning: Define a 3D contiguous partition intended for themapping, according to the application’s

characteristic.
Step 2. Application task graph decomposition: Divide the application task graph into a set of groups while minimizing the

inter-group communication.
Step 3. Multi-task groups mapping algorithm: Map the group of tasks into the selected partition’s tiles with minimized

communication energy.

4.1 Dynamic 3D NoC partitioning
The mapping and the execution of multiple applications require a partitioning mechanism in order to reduce the interference
between them. All the tasks of the same application are mapped in the same partition. Let’s suppose that the NoC partitioning
is not carried out, in this case, the communicating tasks of an application will be mapped in sparse tiles, which increase the cost
of communication. Besides, in the case of complex applications containing a large number of tasks, the multi-task mapping is
needed to improve the running of the applications. Instead of work17, we use the dynamic 3D NoC partitioning considering a
multi-task operating system.

GAFFOUR ET AL 7

Application 1

Application 2

Application 3

Free core

TSV

FIGURE 2 Dynamic 3D NoC partitioning step where applications 1, 2 and 3 contains 16, 28 and 8 tasks respectively

In the proposed algorithm, for each incoming application, a contiguous partition with dimension � × � ×K should be located
satisfying the following two conditions:

min ∶ {� ⋅ � ⋅K − |T |} (15)

� ⋅ � ⋅K ≥ |T | (16)
Three metrics are used to define the partition’s shape: the number of tasks allowed per PE, the number of layers and the

number of application’s tasks. The algorithm retrieves the application’s information by offline profiling. The step’s details of
dynamic 3D NoC partitioning are given in Algorithm 1. First, the size and the dimension of the partition � ⋅ � in one layer is
computed (lines 1-8). Next, a search process for free tiles is established starting by the bottom layer (lines 9-11). Then, the full
partition with dimension � ⋅ � ⋅ K will be determined (line 12). The goal of starting the search process by the bottom layer is
the creation of a partition that contains the greatest possible number of vertical links. Finally, the algorithm keeps track of free
tiles by updating the unpartitioned nodes list after the creation of each partition (line 13).

Figure 2 illustrates the running of the proposed partitioning algorithm in regular 3D NoC architecture including three layers,
where 3 tasks are allowed per each PE considering three applications task graphs with 16, 26 and 8 tasks. The applications 1,
2 and 3 are mapped into NoC partitions with sizes 1x2x3, 3x1x3 and 1x1x3 respectively. As we can see, all applications are
mapped in contiguous partition, which decreases significantly the communication cost and enhances the system’s performance.

4.2 Application task graph decomposition
To reduce communication overheads, complex applications with a large number of tasks should be partitioned and mapped
efficiently. Therefore, this step’s goal is the decomposition of the application task graph into a set of groups where the most
communicating tasks are in the same group and the inter-group communications are minimized.
The proposed algorithm divides the application task graph ATG = (T ,D) into a set of disjoint communicating multi-task

groups CG = {'0, '1, ..., 'NG−1}, such that:
NG ≤ |L′

| (17)

1 ≤ NTG ≤ �PE (18)

∀'i, 'j ∈ CG and i ≠ j, 'i ∩ 'j = ∅ (19)
WhereNG andNTG are the number of groups and the number of tasks in each group respectively.

8 GAFFOUR ET AL

Algorithm 1 Dynamic 3D NoC partitioning
Input: ATG = (T ,D) : Application task graph of the requested application

ARG = (L,E) : Network architecture graph
�PE : Maximum number of tasks allowed per PE
UNP_List : The list of unpartitioned tiles

Output: PR = (L′, E′) : Resulted partition intended for the mapping
⊳ Step1: compute the size and the dimension of the partition in one layer

1: � = |T | / (�PE ×K); ⊳ Compute the number of tiles needed
2: for � = 1 to �∕2 do ⊳ Compute the size of the partition in one layer
3: for � = 1 to �∕2 do
4: if � × � ≥ � then
5: Break from � loop;
6: end if
7: end for
8: end for

⊳ Step2: find the partition with the dimension (�, �,K)

⊳ We assume the coordinate of Pi is (x, y, 0)
9: for all Pi ∈ UNP_List do, select Pi where: ⊳ Search for free tiles in the bottom layer
10: bottom_partition ← select_free_partition(x + �, y + �, 0) or select_free_partition(y + �, x + �, 0);
11: end for
12: PR← get_full_partition(bottom_partition); ⊳ Determine the full partition

⊳ Step3: Update the list of unpartitioned tiles

13: Update(UNP_List);

Algorithm 2 shows the pseudo-code of the application task graph decomposition. In this algorithm, for given application task
graph and a number of tasks allowed per PE represented by �PE , the communicating multi-task groups will be generated. The
algorithm tries including up to �PE tasks with a minimum of one task in each group as described by the equation 18. Initially,
the edges of the task graph are sorted on decreasing order of their communication weight and all tasks are labelled as unmarked
(lines 1-3). Then, for each edge in sorted order (duv), a multi-task group is created including the unmarked tasks tu and tv (lines
7-8). In order to select the other tasks to integrate into the multi-task group created, first the neighbour’s tasks are found (line
10) and they are chosen in descending order by their communication volume. Two cases must be considered: in the case of
�PE = 2, the selection for other tasks is not performed and the creation process for the current edge is stopped. Otherwise, the
most communicating tasks will be assigned to the created group one by one according to their communication volume with
tasks in the group until the number of tasks in the created group reaches the value �PE (lines 9-20). In the situation, if more
than one communicating task having the same communication volume are selected, then the algorithm chooses the task having
the minimum number of unmarked neighbours (lines 15-17). The aim of this decision of selection is to retain the tasks with
a large number of unmarked neighbours in order to select them for the creation of other multi-task groups. Tasks are labelled
as marked since they are assigned to a multi-task group (line 19). Finally, each created multi-task group is inserted into the
communication group list CG (line 22).

We illustrate the functioning of our proposed application tasks graph decomposition with an example in Figure 3. Considering
the VOPD application graph with 16 tasks given in Figure 1 and NoC platform with 3 tasks allowed per PE. The sorted edges
list of ATG is: {(8,10), (9,10), (2,3), (3,4), (4,5), (5,6), (6,7), (8,9), (7,8), (13,14), (1,2), (4,16), (16,5), (11,12), (12, 9), (12,6),
(12,13), (14,15), (15,16)}. The edge (8, 10) has the highest communication weight, thus, a multi-task group is created containing
the tasks t8 and t10. Since the maximum task allowed per PE is greater than the size of the created group, the most unassigned
communicating tasks with t8 and t10 are added. Therefore, the first group '1 contains the tasks {t8, t10, t9} as depicted in Figure
3(1). In step 2, the edge (2, 3) is selected for the creation of the second multi-task group. We note that the edge (9, 10) is bypassed
since the tasks t9 and t10 are already assigned. The most communicating task with tasks t2 and t3 is task t4. Thus, the second
group '2 includes the tasks {t2, t3, t4}. In step 3, the edges (3, 4) and (4, 5) are bypassed as the tasks t3 and t4 are assigned,

GAFFOUR ET AL 9

therefore, the edge (5, 6) is selected. The third multi-task group '3 includes the tasks {t5, t6, t7}. The same strategy is followed
for creating the multi-task group in step 4. In step 5, the edge (11, 12) is selected and the edges (1, 2), (4, 16), (16, 5) are bypassed.
The fifth multi-task group '5 contains only the tasks {t11, t12} because all their communicating tasks are already attributed in
other groups. At this stage, only the tasks t1 and t16 are not assigned. Therefore, the sixth and the seventh groups contain the
task {t1} and {t16} respectively (steps 6 and 7).

Algorithm 2 Application task graph decomposition
Input: ATG = (T ,D) : Application task graph of the requested application

�PE : Maximum number of tasks allowed per PE
Output: CG : List of communicating multi-task groups
1: Unmark all tasks in ATG;
2: Put each task (∀ti ∈ T) in separate group �i;
3: Sort all edges of ATG in descending order according to their communication weight;
4: for each duv = (tu, tv) ∈ D do
5: '← ∅ ⊳ Initialization of the group '
6: if (tu and tv are not marked) then ⊳ Checking each edge if it is labelled as unmarked
7: '← �u ∪ �v
8: mark(tu and tv);
9: while (|'| < �PE) do ⊳ Assignment of tasks in the group until their number reaches the value �PE
10: candidate_task_list ← get the list of unmarked tasks which communicate with tasks in ';
11: for all (cti ∈ candidate_task_list) do ⊳ Selection of the dominant task among all neighbours of tasks in '

12: comm_volcti ← communication volume of cti with tasks in ';
13: Select dominant task ti or tasks which have the maximum comm_volcti ;
14: end for
15: if more than one task is selected then
16: ti ← choose the task which has a minimum of unmarked neighbours.
17: end if
18: '← ' ∪ �i;
19: mark(ti); ⊳ Each assigned task is labelled as marked
20: end while
21: end if
22: insert (' to CG); ⊳ Update the list of communicating multi-task groups
23: end for

4.3 Multi-task groups mapping algorithm
After the decomposition of application tasks graph into multi-task communicating groups, the step of the mapping is carried
out. Differently from the state-of-the-art algorithms, the proposed approach can handle multiple tasks simultaneously by taking
mapping decisions for each group of tasks instead of each task separately. As mentioned in the second step, highly communi-
cating tasks are collected in the same groups. Therefore, the algorithm tries to map the communicating groups close to each
other while the tasks of each group are mapped in the same tile. The placement of the most communicating tasks into the same
tile will reduce the communication overhead significantly due to their fast communication. Further, we consider that the length
of the vertical links is shorter and faster than horizontal links. Hence, for the intensive inter-group communications the vertical
links are favoured over horizontal links.
The proposed mapping described in Algorithm 3 takes the NoC partition architecture graph (PR), application task graph

(ATG) and the list of decomposed groups of tasks (CG) as inputs and efficiently performs the mapping of the groups of tasks
on the free tiles of the NoC partition. First, the algorithm searches and selects the initial multi-task group to be mapped (line 5).

10 GAFFOUR ET AL

10

6

21

12

5

3

14

13

16

4

7

8 9

11 15

70 362 362

353 357 27

362 49

157

300

500

313 16 16

16 16

16 1694
313

16

10

6

21

12

5

3

14

13

16

4

7

8 9

11 15

70 362 362

353 357 27

362 49

157

300

500

313 16 16

16 16

16 1694
313

16

6

21

12

5

3

14

13

16

4

7

11 15

70 362 362

353 357 27

362 49

157

300

16 16

16 16

16 16

16

8,9,10

6

1

12

5

14

13

167

11 15

70

353 357 27

362
49

157

300

16 16

16 16

16 16

16

8,9,10

2,3,4 1

12

14

13

16

11 15

70

27

362 49

157

300

16
16

16 16

16 16

16

5,6,7

8,9,10

13,14,

 15

-0- -1- -2-

-3- -4- -5-

1

12

16

11

70

27

362 49

300

16
16

16

16

16

5,6,7

8,9,10

13,14,15

1

16

70

27

362 49

300

16

16
16

16

5,6,7

8,9,10

-6-

11,12

13,14,15

1

16

70

27

362 49

300

16

16
16

16

5,6,7

8,9,10

-7-

11,12

13,14,15

1

16

70

27

362 49

300

16

16
16

16

5,6,7

8,9,10

-8-

11,12

FIGURE 3 Application task graph decomposition step

Then, the multi-task groups are mapped one by one in descending order, according to their total inter-communication volume
with mapped one (lines 6-43).
The multi-task groups are distinguished based on their total intra-communication and inter-communication. We assume that

each group 'i ∈ CG is a connected sub-graph of application task graph, ATG = G(T,D). The following equations are used to
compute the total intra-communication �'i and inter-communication �'i for each multi-task group.

�'i =
∑

∀duv∈'i

Quv, 1 ≤ i ≤ NG (20)

�'i =
∑

∀tu∈'i
tv∈'j
i≠j

duv∈D

Quv, 1 ≤ i, j ≤ NG (21)

The selection and the mapping of the first multi-task group are explained with Procedure 1. For this selection, the group with
the highest total inter-communication is selected as the initial multi-task group to be mapped. If multiple groups are selected,
then the algorithm chooses the group which has the maximum intra-communication (lines 1-4).
The selection of the initial tile depends on the total number of horizontal and vertical links that the initial multi-task group

requires for inter-communication (lines 5-13 in Procedure 1). Hence, the algorithm computes the intra-communication volume
between the initial multi-task group and its neighbour’s groups (line 7 in Procedure 1). If the communication volume is greater

GAFFOUR ET AL 11

than or equal to the average communication, the number of vertical links is increased (lines 8-9). Otherwise, the number of
horizontal links is increased (lines 10-11). The average communication volume is computed as follow:

Ācomm =
∑

∀duv∈D
u≠v

Quv∕|D| (22)

Then, the algorithm searches for a suitable tile inside the selected partition, with the same computed number of vertical and
horizontal links (line 14). If the tile is not found, the required number of horizontal links is minimized, until a suitable tile is
found. Otherwise, the required number of vertical links is minimized. For example, let NH = 1 and NV = 2 where NH and
NV denote the required number of horizontal and vertical links respectively. In the search process, the algorithm evaluates the
following combination until a suitable tile (L) is found: {LNH=1

NV =2
, LNH=0

NV =2
, LNH=1

NV =1
}. Finally, each task in the initial multi-task

group will be mapped to the initial tile and resources statue are updated (lines 15-17).
After the initial mapping has been executed, the algorithm maps the remaining multi-task groups one by one. Among the

unmapped multi-task groups, the algorithm selects the group with highest inter-communication volume with its mapped neigh-
bour’s groups. If more than one multi-task group is selected, the group with the maximum intra-communication �'i is chosento be mapped (lines 7-10).
The proposed algorithm is based on a two-search process to select the most suitable tile for the chosen multi-task group.When

the multi-task group has only one communicating neighbour group already mapped, the algorithm tries to map the tasks of the
chosen multi-task group on the same tile as of its communicating neighbour group. If the resource at the same tile is not able to
support the tasks, the algorithm computes the communication volume between the target multi-task group and its communicating
neighbour group. If the computed communication volume is greater or equal to the average communication Ācomm, a search for
free vertical tile at one hop distance from already mapped communicating neighbour is carried out. Otherwise, the algorithm
searches for horizontal tile at one hop distance (lines 13-25). If the multi-task group to be mapped has multiple neighbours
groups already mapped, then the search process takes the location of all its communicating groups to find a suitable tile (lines
27-41). Thus, each free tile of NoC partition is examined and the tasks of the selected group will be placed onto the tile that
minimizes the communication cost with mapped groups. The communication cost is computed by Equation 8. Note that, after
each mapping, the status of the resources is updated (line 43). The same strategy as described above is applied until no unmapped
multi-task group remain in the CG list.
For multiple applications mapping, the steps described above are applied for each application. First, a suitable NoC partition

is found by Algorithm 1. Then, the application graph is decomposed into communicating multi-task groups by Algorithm 2.
Finally, the tasks of each group are mapped as described by Algorithm 3.

An example of our proposed mapping algorithm is shown in Figure 4. We use the decomposed VOPD task graph resulted
from the execution of step 2 as shown in 3. A 3x3x3 NoC is used with 3 tasks allowed per each PE. As the number of VOPD tasks
is 16, a NoC partition with size 1x2x3 is selected for the mapping. In Figure 4, at step 1, the first multi-task group to be mapped
is '3, since, it has the highest inter-communication. The multi-task group '3 needs two vertical links and one horizontal link to
communicate with their neighbours as explained in Procedure 1. Thus, the tasks {t5, t6, t7} are mapped to tile L′

9. In step 2, thenext multi-task group to be mapped is '2 as it is the most communicating group with group '3. As the communication volume
between '2 and '3 is greater than the average communication volume, then, a vertical link is needed. So, the tasks of group '2
are mapped to tile L′

0. In the same manner, in step 3, the tasks of group '1 are mapped to tile L′
18. In step 4, the group '7 is

selected to be mapped. Then we find the candidate tile location on the mesh partition. The group '7 has two mapped neighbours
groups '2 and '3. According to the equation 8, the best tile location to map the tasks of group '7 is L′

1. In the same manner,
we map the tasks of groups '6, '5 and '4 in tile L′

1, L′
10 and L′

19 respectively as shown in steps 5, 6 and 7.

5 COMPLEXITY ANALYSIS

In this section, we present the complexity analysis of our proposed approach composed of three Algorithms.
In Algorithm 1, there are three main loops which must be considered in the worst-case analysis of this algorithm. The run time

for the first set of nested for loop depends on the number of NoC tiles in the bottom layer. Hence, the complexity of lines 2 to 8
is (|L|∕|K|)2. The second for loop (Lines 9 to 11) consists of searching free tiles in the bottom layer. For that, the complexity
is (|L|∕|K|). However, in the worst case, the complexity of the Algorithm 1 is (max(|L|∕|K|, (|L|∕|K|)2) = (|L|∕|K|)2.

12 GAFFOUR ET AL

Procedure 1 Initial mapping
Input: ATG, PR,CG
Output: map ∶ ∀ti ∈ ctgfirst → tilefirst ∈ L′

1: ctgfirst ← select a dominant 'i ∈ CG wich has maximum �'i ; ⊳ Select a dominant group according to the total inter-communication

2: if more than one 'i is selected then ⊳ If multiple dominant groups, the selection is according to their total intra-communication
3: choose 'i which has a maximum �'i ;
4: end if
5: ← get_neighbours(ctgfirst); ⊳ Get all neighbours groups of the initial multi-task group
6: for all cgi ∈ do ⊳ Compute the required number of horizontal and vertical links
7: comm_volcgi ← compute_comm(cgi, ctgfirst);
8: if comm_volcgi ≥ Ācomm then ⊳ Case of intensive communication
9: NV ← NV + 1; ⊳ The number of vertical links is increased
10: else ⊳ Case of low communication
11: NH ← NH + 1; ⊳ The number of horizontal links is increased
12: end if
13: end for
14: tilefirst ← search_tile(PR,NV , NH); ⊳ Search of the corresponding tile
15: Map each task ti of group ctgfirst to tile tilefirst;
16: insert(tilefirst to map) and update(resource by map); ⊳ Update the status of the resources

Algorithm 2 has partial dependency on the complexity of the sorting process Line 3 which is (|D| log2 |D|). On the other
hand, the for loop (Lines 4 to 23) has a nested for loop inside while loop (Lines 11 to 14 and Lines 9 to 20). The run time
of while loop depends on �PE , whereas the inner and the outer loop depend on the number of tasks and edges, respectively.
Considering the worst case, the while loop (Lines 9 to 23) runs (�PE × |T |). As the value of �PE is constant, the outer for loop
(Lines 4 to 23) has a complexity of (|T ||D|). Therefore, in the worst case, the complexity of Algorithm 2 is (|T ||D|) since
the complexity of sorting process is lower.
In Algorithm 3, the step of computing the total inter and intra-communication (Lines 1 to 4) is of the order (NG). The

Procedure initial_mapping consists of selecting the initial multi-task group and searching a suitable tile for the mapping inside
the selected partition (Line 5). The selection of dominant multi-task group takes(NG), and the selection of tile depends on the
number of horizontal and vertical links that the selected group requires for inter-communication. For that, the Procedure checks
only the edges set of the selected group, which means that it has the worst time complexity of (|D|). Moreover, there are three
main loops which must be considered in the worst-case analysis of the Algorithm 3 which consist of mapping the remaining
multi-task groups. Hence the complexity of the nested loops (Lines 6 to 44) is(|NG||L||D|). In the worst case, the complexity
of Algorithm 3 is (|NG||L||D|).
Therefore the complexity of the proposed approach (Algorithm1 + Algorithm 2 + Algorithm 3) is(|T ||D|+ |NG||L||D|).

6 EXPERIMENTAL RESULTS AND ANALYSIS

6.1 Simulation Setup
The performance of our proposed algorithm was evaluated on a modified version of Noxim simulator. Noxim is a cycle-accurate
event-based NoC simulator developed in SystemC. We have conducted two sets of experiments. In the first set, a single appli-
cation is mapped to 3D NoC including random and real ones. In the second set, multiple random and real applications are
incrementally mapped to a 3D NoC.
We have used the task graph for free benchmark (TGFF)36 to generate six random applications task graphs namely G1-G6

and six real-life applications: Video Object Plane Decoder (VOPD), Multi-Window Display (MWD), Picture in Picture (PIP),
263 encoder (263 Enc), 263 decoder (263 Dec) and MP3 encoder (MP3 Enc) from37. In the random applications, the depen-
dencies between tasks are varying from 200 to 400 packets with a size of 8 flits and each flit has 128-bit. The characteristics of

GAFFOUR ET AL 13

Algorithm 3 Application mapping algorithm
Input: PR = (L′, E′) : NoC partition intended for the mapping

ATG = (T ,D) : Application task graph of the current application
CG : List of communicating multi-task groups

Output: map ∶ T → L′

1: for all 'i ∈ CG do ⊳ Compute the total inter and intra-communication for all groups
2: �'i ← compute the total inter-communication;
3: �'i ← compute the total intra-communication;
4: end for
5: intial_mapping(ATG, PR,CG); ⊳ Selection and mapping of the initial multi-task group
6: while (still exist unmapped uctgi ∈ CG) do ⊳ Mapping of the remaining multi-task groups
7: best_uctg ← find group uctgi doing a maximum inter-communication volume with mapped one; ⊳ Choosing a dominant

multi-task group to be mapped
8: if multiple uctgi are selected then
9: choose uctgi with maximum �uctgi ;
10: end if
11: best_tile ← −1;
12: ← find mapped neighbours groups of best_uctg;
13: if (size() == 1) then ⊳ Case of one mapped neighbour group
14: mst_tile ← get the tile of the mapped neighbor group;
15: if resource available at mst_tile then ⊳ Test of PE occupation
16: best_tile← mst_tile ;
17: else
18: comm_vol ← communication volume between groups best_uctg and ;
19: if comm_vol ≥ Ācomm then ⊳ Search for horizontal or vertical tile according to the communication volume
20: best_tile← searcℎ_vt_oneHop(mst_tile); ⊳ Search for vertical tile at one hop distance
21: else
22: best_tile← searcℎ_ℎt_oneHop(mst_tile); ⊳ Search for horizontal tile at one hop distance
23: end if
24: end if
25: end if
26: if (size() > 1) OR (best_tile == −1) then ⊳ Case of multiple mapped neighbours groups
27: min_cost← ∞ ⊳ Initialization of cost with highest value
28: for all pei ∈ L′ do
29: if resource available at pei then ⊳ Test of PE occupation
30: total_cost← 0;
31: for all cgi ∈ do ⊳ Compute the communication cost
32: mst_tile← get_tile(cgi);
33: total_cost← total_cost + compute_comm(cgi, best_uctg) × compute_energy(pei, mst_tile);
34: end for
35: if (total_cost < min_cost) then ⊳ Set the minimum cost and the target PE
36: min_cost← total_cost;
37: best_tile← pei;
38: end if
39: end if
40: end for
41: end if
42: Map each task ti of group best_uctg to tile best_tile;
43: insert(best_tile to map) and update(resource by map); ⊳ Update the status of the resources
44: end while

14 GAFFOUR ET AL

-1-

13,14,15

1

16

70

27

362 49

300

16

16

16

16

5,6,7

8,9,10 11,12

2,3,4

L'0 L'1

5,6,7

L'9

L'18

L'10

L'19

�1

�2

�3

�4

�5

�6

�7

-2-

13,14,15

1

16

70

27

362 49

300

16

16

16

16

5,6,7

8,9,10 11,12

2,3,4

L'0 L'1

5,6,7

L'9

L'18

L'10

L'19

2,3,4

�6 �2

�4

�3

�1

�7

�5

-3-

13,14,15

1

16

70

27

362 49

300

16

16

16

16

5,6,7

8,9,10 11,12

2,3,4

L'0 L'1

5,6,7

L'9

L'18

L'10

L'19

2,3,4

8,9,10

�6 �2

�4

�3

�1

�7

�5

13,14,15

1

16

70

27

362 49

300

16

16

16

16

5,6,7

8,9,10 11,12

2,3,4

-4-

L'0

5,6,7

L'9

L'18

L'10

L'19

2,3,4

8,9,10

16

L'1

�6 �2

�4

�3

�1

�7

�5

-5-

13,14,15

1

16

70

27

362 49

300

16

16

16

16

5,6,7

8,9,10 11,12

2,3,4

L'0 L'1

5,6,7

L'9

L'18

L'10

L'19

2,3,4

8,9,10

16,1

�6 �2

�4

�3

�1

�7

�5

-6-

13,14,15

1

16

70

27

362 49

300

16

16

16

16

5,6,7

8,9,10 11,12

2,3,4

L'0 L'1

5,6,7

L'9

L'18

L'10

L'19

2,3,4

8,9,10

16,1

11,12

�6 �2

�4

�3

�1

�7

�5

-7-

L'0 L'1

13,14,15

1

16

70

27

362 49

300

16

16

16

16

5,6,7

8,9,10 11,12

2,3,4

5,6,7

L'9

L'18

L'10

L'19

2,3,4

8,9,10

16,1

11,12

13,14,15

�6 �2

�4

�3

�1

�7

�5

13,14,15

1

16

70

27

362 49

300

16

16

16

16

5,6,7

8,9,10 11,12

2,3,4

�1

�2

�3

�4

�5

�6

�7

- 3D NoC -

-3D NoC partition-

- Decomposed VOPD task graph -

L'0 L'1

L'9

L'18

L'10

L'19

: Horizontal link

: Vertical link

FIGURE 4Multi-task groups mapping step

random and real applications in terms of the number of tasks and edges are shown in Table 3.

For evaluation, the platform chosen is 8x8x3 3D NoC, where full channel bandwidth has been allocated to each channel. We
assume that each core is able to execute up to three tasks and to transfer a flit over a channel one cycle is needed. All experiments
are run on a PC Intel i5-4310U 2.00 GHz dual-core processor. The system simulation configuration is outlined in Table 4.

6.2 Simulation Results
The evaluated parameters are the average execution time, the communication cost, the average network latency and energy
consumption.

GAFFOUR ET AL 15

6.2.1 Single application mapping
In this experiment, both randomly generated graphs and real benchmarks are evaluated. The proposed algorithm is compared
against INC17, Nmap24, Castnet31 and Crinkle28 algorithms. We have extended the algorithms Nmap, CastNet and Crinkle to
support 3D NoC. The algorithms Nmap 3D, Castnet 3D, Crinkle 3D and INC support only the mono-tasking. As our knowledge,
there are not any 3D multi-task applications mapping algorithm for regular 3D NoCs targeting our same optimization goals.
In addition, to assess the efficiency of our proposed algorithm, the step of dynamic 3D NoC partitioning is not performed in
Nmap 3D, Castnet 3D and Crinkle 3D algorithms. The INC algorithm uses the dynamic 3D partitioning with mono-tasking.
The results will be compared to:

• Compare the results of the proposed algorithmwith Nmap 3D, Castnet 3D and Crinkle 3D algorithms (algorithms without
dynamic 3D NoC partitioning using different single-task mapping strategies).

• Compare the results of the proposed algorithm with INC algorithm (algorithm using dynamic 3D NoC partitioning using
single-task mapping strategy).

Figure 5 and Figure 6 show the comparison result for the execution time and energy consumption using random and real appli-
cations. The total execution time is the time taken by the application as shown in Equation 10. As illustrated in Figure 5(a) and
Figure 6(a), the proposed approach reduces the execution time when compared to the algorithms Nmap 3D, Castnet 3D, Crinkle
3D and INC for random and real applications. This result is explained by the fact that in our proposed approach, each processor
can execute more than one task while the most communicating tasks are grouped in the same processor, resulting in a reduction
of computation time and communication time. Moreover, the multi-task group mapping is carried out based on 3D NoC par-
titioning where the communicating groups of tasks are mapped in close proximity in order also to reduce the communication
time. Our mapping strategy reduces the total execution time on average by 46.4715% and 12.40% for real and random applica-
tions respectively compared to INC algorithm. On the other hand, it reduces the execution time by (46.47%, 14.54%), (46.55%,
11.85%), (46.47%, 13.78%) for real and random applications compared to Nmap 3D, Crinkle 3D and Castnet 3D algorithms,
respectively.
The total energy consumption is shown in Figure 5(b) and Figure 6(b) for random and real applications mapping, respectively.

The energy consumption is greatly reduced in our proposed mapping strategy when compared to other heuristics. The total
energy consumption is proportional to the average traffic in the network. Therefore, in our proposed algorithm the total traffic
is well minimized as the most communicating task are in the same processor. Also, the most communicating groups of tasks
are allocated to the vertical links which further reduce the energy consumption. The average reduction in energy consumption
is 58.37% and 52.22% for real and random applications as compared to INC algorithm. Compared to Nmap 3D, Castnet 3D and
Crinkle 3D, the average energy consumption reduction is (58.37%, 45.17%), (56.98%, 42.90%), (56.68%, 61.98%) for real and
random applications, respectively.
In Table 5, we present the communication cost and the average network latency results obtained by our proposed algorithm

compared with INC, Nmap 3D, Castnet 3D and Crinkle 3D algorithms. The communication cost refers to the amount of traffic
in the network multiplied by the average hop count. In our proposed algorithm, the produced traffic in the network is reduced
using a multi-task approach, which leads to the reduction of communication cost. Furthermore, it tries to minimise the distance
between communicating group of tasks. The communication cost reduction of our proposed algorithm is (78.50% and 50.62%),
(77.28%, 47.09%), (75.06%, 40.76%), (76.91%, 71.36%) for real and random applications compared to INC, Nmap 3D, Castnet
3D and Crinkle 3D algorithms, respectively. The network latency is the average time taken between packet injection in the local
port and tail flit consumption in the local port of the destination node. Compared to the non-partitioning algorithms that use the
total NoC space, our proposed algorithm has little increase in the average network latency in some cases, since the XYZ routing
algorithm is based on shortest paths and in the partition space, the number of available network paths is in a lower number
compared to NoC space. This is a small overhead since it not affect the performance of the system and the execution time, the
communication cost and energy consumption are considerable better than the other algorithms.

6.2.2 Multiples applications mapping
In this experiment, multiple random and real applications are incrementally mapped to a 3D NoC. The proposed algorithm is
compared against random, Nmap 3D and INCmapping algorithms. In the randommapping algorithm, the tasks of an application
are mapped to the tiles randomly. The experiments are performed for different scenarios. In each scenario, 10 applications are
mapped and executed.

16 GAFFOUR ET AL

(a) (b)

FIGURE 5 Execution time and energy consumption resulting from random single applications mapping

(a) (b)

FIGURE 6 Execution time and energy consumption resulting from single multimedia applications mapping

• Scenario 1: Four repeats of G2 and three repeats of G4 and three repeats of G1.
• Scenario 2: Five repeats of G3 and two repeats of G5 and three repeats of G2.
• Scenario 3: VOPD, five repeats of 263 Dec and four repeats of PIP.
• Scenario 4: Four repeats of 263 Enc and four repeats of MP3 Enc and two repeats of MWD.
Figures 7 and 8 show the average execution time and energy consumption resulting from the execution of random applications

(scenario 1 and scenario 2) and real applications (scenario 3 and scenario 4) using Random, Nmap 3D and INC mapping
algorithm. In comparison with mono-taskmapping algorithm using the total NoC space, our multi-task mapping algorithm using
3D NoC partitioning has less execution time and energy consumption. The reduction of execution time is (28.88%, 57.59%) and
(13.93%, 44.95%) for random and real applications compared to Random and Nmap 3D algorithms, respectively. On the other
hand, our proposed multi-task mapping reduces the execution time over INC algorithm by 13.43% and 44.19% for random and
real applications. The reduction in the execution time against Random and Nmap 3D algorithm is due to 3D NoC partitioning
which allows the execution of more applications simultaneously. Moreover, compared to INC algorithm, our proposed algorithm
is based on a multi-task approach that group the most communicating task in the same processor which reduce greatly the
communication time and consequently the execution time.

GAFFOUR ET AL 17

On the other hand, it is obvious that energy consumption is reduced in our proposed multi-task algorithm by reducing the
traffic and the hop in the network. In addition, most intensive communications are allocated to vertical links that consume less
energy than horizontal ones. The energy consumption reduction is (79.38%, 83.39%), (45.55%, 44.24%) and (41.61%, 40.64%)
compared to Random, Nmap 3D and INC algorithms for random and real applications considered in the scenarios cited above,
respectively.
Table 6 shows the communication cost and latency results for the mapping of random and real applications considered in the

scenarios 1, 2, 3 and 4. The communication cost is greatly reduced in our proposed algorithm compared to other heuristic algo-
rithms by (80.39%, 93.80%), (31.63%, 71.90%) and (42.66%, 75.58%) for random and real application compared to Random,
Nmap 3D, and INC algorithms. Based on our proposed 3D NoC partitioning, the hop distance between the tasks of the same
applications is minimized. In addition, as mentioned above, in our proposed algorithm, the traffic in the network is well min-
imized using the multi-task approach where the most communicating task are grouped together. However, the communicating
tasks in each application are located in lower hop distance. Regarding the average latency, when compared to non-partitioning
algorithm Nmap 3D, the latency overhead is 3.4%, 3.7% and 4.2% for scenario 1, scenario 2 and scenario 3 while it reduces the
latency by 12% for scenario 4. On the other hand, the proposed algorithm reduces the latency by (57.89%, 69.4%), (12.53%,
4%) for random and real applications considered in the scenarios cited above when compared to Random and INC algorithms.
We conclude that using the multi-task mapping heuristics with 3D NoC partitioning obtain better results (execution time,
communication cost, energy consumption) than single mapping algorithms with small overhead in latency for some cases.

(a) (b)

FIGURE 7 Execution time and energy consumption resulting from scenario 1 and scenario 2 mapping

(a) (b)

FIGURE 8 Execution time and energy consumption resulting from scenario 3 and scenario 4 mapping

18 GAFFOUR ET AL

7 CONCLUSION

This paper proposes a multi-task applications mapping algorithm for regular 3D mesh-based NoCs aiming to minimize the
network traffic, the communication energy and enhance the performance. The proposed approach allocates a partition for each
application, to map all the tasks of the same application in the same partition aiming to minimize the communication overhead
and reduce the fragmentation. The application task graph is decomposed into multiple multi-task groups while the most intensive
communicating tasks are in the same group and the communication inter groups is minimized. The proposed approach tries
to map the communicating multi-task groups close to each other while the tasks of each group are mapped in the same PE.
For the mapping decision, our proposed approach uses the communication energy as a cost function and include the cost of
already mapped multi-task groups communicating with the multi-task group being mapped instead of considering only master-
slave pairs. Moreover, the proposed approach exploits accurately the use of vertical links due to their benefits over horizontal
ones. The experimental results disclose that our proposed mapping exhibits better performance in term of energy consumption,
communication cost and execution time compared to single-task 3D mapping algorithms.
In the future research work, we plan to integrate a routing algorithm with our proposed mapping approach, considering

heterogeneous NoC structures and thermal aspect are also topics for future studies.

References

1. Moore GE. Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April
19, 1965, pp. 114 ff. IEEE solid-state circuits society newsletter 2006; 11(3): 33–35.

2. Jerraya A, Wolf W. Multiprocessor systems-on-chips. Elsevier . 2004.
3. Benini L, De Micheli G. Networks on chips: A new SoC paradigm. computer 2002; 35(1): 70–78.
4. Jantsch A, Tenhunen H, others . Networks on chip. 396. Springer . 2003.
5. De Micheli G, Benini L. Networks on chips: 15 years later. Computer 2017(5): 10–11.
6. Tatas K, Siozios K, Soudris D, Jantsch A. Designing 2D and 3D network-on-chip architectures. No. IKEEBOOK-2017-

046Springer . 2014.
7. Pavlidis VF, Friedman EG. 3-D topologies for networks-on-chip. IEEE Transactions on very large scale integration (VLSI)

systems 2007; 15(10): 1081–1090.
8. Feero BS, Pande PP. Networks-on-chip in a three-dimensional environment: A performance evaluation. IEEE Transactions

on computers 2008; 58(1): 32–45.
9. Davis WR, Wilson J, Mick S, et al. Demystifying 3D ICs: The pros and cons of going vertical. IEEE Design & Test of

Computers 2005; 22(6): 498–510.
10. Benyamina AEH, Boulet P. Multi-objective Mapping for NoC Architectures.. Journal of Digital Information Management

2007; 5(6).
11. Ying H, Hollstein T, Hofmann K. Fast and optimized task allocation method for low vertical link density 3-dimensional

networks-on-chip based many core systems. In: IEEE. ; 2013: 1777–1782.
12. Wang J, Li L, Pan H, He S, Zhang R. Latency-aware mapping for 3D NoC using rank-based multi-objective genetic

algorithm. In: IEEE. ; 2011: 413–416.
13. Wadhwani P, Choudhary N, Singh D. Energy efficient mapping in 3d mesh communication architecture for NoC. Global

Journal of Computer Science and Technology 2013.
14. He H, Fang F, Wang W. Improved simulated annealing genetic algorithm based low power mapping for 3d NoC. In: . 232.

EDP Sciences. ; 2018: 02022.

GAFFOUR ET AL 19

15. Souza Carvalho dEL, Calazans NLV, Moraes FG. Dynamic task mapping for MPSoCs. IEEE Design & Test of Computers
2010; 27(5): 26–35.

16. Benhaoua MK, Singh AK, Benyamina A, Kumar A, Boulet P. Heuristic for accelerating run-time task mapping in NoC-
based heterogeneous MPSoCs. Journal of Digital Information Management 2014; 12(5): 293.

17. Wang X, Palesi M, Yang M, Jiang Y, Huang MC, Liu P. Power-aware run-time incremental mapping for 3-D networks-on-
chip. In: Springer. ; 2011: 232–247.

18. Ziaeeziabari H, Patooghy A. 3D-AMAP: a latency-aware task mapping onto 3D mesh-based NoCs with partially-filled
TSVs. In: IEEE. ; 2017: 593–597.

19. Kiani V, Reshadi M. Mapping multiple applications onto 3D NoC-based MPSoCs supporting wireless links. The Journal
of Supercomputing 2017; 73(5): 2187–2213.

20. Maqsood T, Tziritas N, Loukopoulos T, et al. Energy and communication aware task mapping for MPSoCs. Journal of
parallel and distributed computing 2018; 121: 71–89.

21. Jiang S, Wu Q, Chen S, et al. Optimizing dynamic mapping techniques for on-line NoC test. In: IEEE. ; 2018: 227–232.
22. Sharma PK, Biswas S, Mitra P. Energy efficient heuristic application mapping for 2-D mesh-based network-on-chip.

Microprocessors and Microsystems 2019; 64: 88–100.
23. Bhardwaj K, Mane PS. C3Map and ARPSO based mapping algorithms for energy-efficient regular 3-D NoC architectures.

In: IEEE. ; 2014: 1–4.
24. Murali S, De Micheli G. Bandwidth-constrained mapping of cores onto NoC architectures. In: . 2. IEEE. ; 2004: 896–901.
25. Manna K, Chattopadhyay S, Sengupta I. Through silicon via placement and mapping strategy for 3d mesh based network-

on-chip. In: IEEE. ; 2014: 1–6.
26. Agyeman MO, Ahmadinia A, Bagherzadeh N. Energy and performance-aware application mapping for inhomogeneous 3D

networks-on-chip. Journal of Systems Architecture 2018; 89: 103–117.
27. Dageleh MZ, Jamali MAJ. V-CastNet3D: A novel clustering-based mapping in 3-D Network on chip. Nano communication

networks 2018; 18: 51–61.
28. Saeidi S, Khademzadeh A, Vardi F. Crinkle: A heuristic mapping algorithm for network on chip. IEICE Electronics Express

2009; 6(24): 1737–1744.
29. Jha V, Deol S, JhaM, Sharma G. Energy and latency aware application mapping algorithm& optimization for homogeneous

3d network on chip. arXiv preprint arXiv:1404.2512 2014.
30. Jha V, Jha M, Sharma G. Estimation of optimized energy and latency constraints for task allocation in 3d network on chip.

arXiv preprint arXiv:1405.0109 2014.
31. Tosun S. New heuristic algorithms for energy aware application mapping and routing on mesh-based NoCs. Journal of

Systems Architecture 2011; 57(1): 69–78.
32. SinghAK, ShafiqueM,Kumar A, Henkel J. Analysis andmapping for thermal and energy efficiency of 3-D video processing

on 3-D multicore processors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 2016; 24(8): 2745–2758.
33. Huang J, Buckl C, Raabe A, Knoll A. Energy-aware task allocation for network-on-chip based heterogeneous multiprocessor

systems. In: IEEE. ; 2011: 447–454.
34. Atitallah RB, Niar S, Greiner A, Meftali S, Dekeyser JL. Estimating energy consumption for an MPSoC architectural

exploration. In: Springer. ; 2006: 298–310.
35. Matsutani H, Koibuchi M, Amano H. Tightly-coupled multi-layer topologies for 3-D NoCs. In: IEEE. ; 2007: 75–75.

20 GAFFOUR ET AL

36. Dick RP, Rhodes DL, Wolf W. TGFF: task graphs for free. In: IEEE. ; 1998: 97–101.
37. Sahu PK, Shah T, Manna K, Chattopadhyay S. Application mapping onto mesh-based network-on-chip using discrete

particle swarm optimization. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 2013; 22(2): 300–312.

GAFFOUR ET AL 21

TABLE 1 Reviewed works on task mapping into 3D NoC

References Mapping
nature

Mono/Multi
task Target architecture Architecture model

Management
of NoC

architecture
Optimization Goal

Wadhwani et al13 Static Mono-task Regular Homogeneous No Energy consumption
Kiani et al19 Dynamic Multi-task Irregular wireless Heterogeneous Yes Improve system performances

Ziaeeziabari et al18 Dynamic Mono-task Irregular partially TSVs Homogeneous No Network latency
Dageleh et al27 Static Mono-task Regular Homogeneous No Execution time
Saeidi et al28 Static Mono-task Regular Homogeneous No Energy consumption, execution time
He et al14 Static Mono-task Regular Homogeneous No Energy consumption

Singh et al32 Hybrid Multi-task Regular Homogeneous No Peak temperature, energy
consumption

Wang et al17 Dynamic Mono-task Regular Homogeneous Yes Energy consumption
Bhardwaj et al23 Static Mono-task Regular Homogeneous No Energy consumption, network latency
Murali et al24 Static Mono-task Regular Homogeneous No Communication delay

Tosun31 Static Mono-task Regular Homogeneous No Energy consumption

This work Dynamic Multi-task Regular Homogeneous Yes
Communication volume, energy
consumption and improve system

performances

22 GAFFOUR ET AL

TABLE 2 List of parameters

Parameter Definition

Pi The tile
ti The task
'i The multi-task group
pei The processing element
uctgi The unmapped multi-task group
�PE Maximum number of tasks allowed per PE
|T | Number of tasks
NG Number of multi-task groups
NTG Number of tasks that each group can contain
�'i Total intra-communication of group 'i
�'i Total inter-communication of group 'i
Ācomm Average communication volume of task graph
NH Required number of horizontal links
NV Required number of vertical links

UNP_List The list of unpartitioned tiles
PR Partition graph
CG The list of communicating multi-task groups

GAFFOUR ET AL 23

TABLE 3 Specification of applications graphs

Application Number of tasks Number of edges

VOPD 16 21
MWD 12 12
PIP 8 8

263 Enc 12 12
263 Dec 14 15
MP3 Enc 13 13

G1 20 38
G2 48 87
G3 63 114
G4 84 168
G5 132 263
G6 190 391

24 GAFFOUR ET AL

TABLE 4 Simulation settings

Parameters Values

NoC size 8 x 8 x 3
Length of vertical links 60 um
Length of horizontal links 1 mm
Maximum tasks per PE 3 tasks
Buffer depth 4 flits
Packet size 8 flits
Flit size 128 bit
Routing XYZ

GAFFOUR ET AL 25

TABLE 5 Communication cost and average latency for random and real applications under different 3D mapping algorithms

Task Graph Communication cost (Mb/s) Average latency (cycles)
NMAP 3D CastNet 3D Crinkle 3D INC Proposed NMAP 3D CastNet 3D Crinkle 3D INC Proposed

VOPD 4135 4119 4157 4723 911 5.29 5.39 5.30 6.07 6.35
MWD 1248 1184 1472 1376 416 5.23 5.11 5.63 5.46 5.77
PIP 896 640 640 832 256 10.89 9.55 9.55 12.11 12.66
263 Enc 162.024 161.998 166.370 176.938 28.683 10.01 10.01 10.06 8.17 5
263 Dec 19.822 19.822 20.046 21.500 1.138 5.02 5.02 9.59 5.19 5.27
MP3 Enc 8.596 8.596 9.782 9.138 2.487 5.0074 5.0074 5.28 5.1339 5

G1 22.810 20.231 29.825 26.979 12.054 12.10 7.38 11.58 10.57 11.22
G2 56.797 46.334 88.042 59.184 27.947 11.94 11.36 17.93 14.28 13.08
G3 71.532 60.767 127.254 76.058 37.644 12.23 10.88 19.158 15.99 15.82
G4 74.962 65.623 136.723 79.326 38.580 13.18 11.41 20.21 17.39 16.88
G5 160.724 154.903 416.163 165.985 95.07 12.52 12.29 23.80 22.65 16.28
G6 232.994 227.261 637.297 248.181 121.487 12.79 12.15 21.94 21.22 16.66

26 GAFFOUR ET AL

TABLE 6 Performance parameters evaluation resulting from the mapping of scenarios 1, 2, 3 and 4

Task Graph Scenario 1 Scenario 2
NMAP 3D INC Random Proposed NMAP 3D INC Random Proposed

Avg. execution time (cycles) 256769 252157 322745 224508 373940 376624 435795 316757
Comm. cost (Mb/s) 643.28 710.82 2130 324.9 842.63 1053.55 3030.53 726.58
Avg. latency (cycles) 14.98 17.54 38.56 15.50 14.85 17.80 35 15.41
Energy consumption (×102 pJ) 840123 813546 2164680 449047 1130890 1018340 3060220 627144

Scenario 3 Scenario 4
NMAP 3D INC Random Proposed NMAP 3D INC Random Proposed

Avg. execution time (cycles) 8525098 8525103 10927212 5669929 2984573 2884616 3950491 1301282
Comm. cost (Mb/s) 7118.47 8928.8 32124.6 1944.7 3310.62 3534.24 15077.31 956.4
Avg. latency (cycles) 7.83 8.33 23.74 8.16 7.3 6.05 23.89 6.41
Energy consumption (×102 pJ) 11593300 11135100 39038500 7546920 5451070 4967290 18225500 2530070

	A new efficient multi-task applications mapping for three-dimensional network-on-chip based MPSoC
	Abstract
	Introduction
	Related work and motivation
	System model
	NoC architecture and application model
	Energy model
	Computation energy
	Communication energy

	Execution time model
	Application mapping

	Proposed mapping approach
	Dynamic 3D NoC partitioning
	Application task graph decomposition
	Multi-task groups mapping algorithm

	Complexity analysis
	Experimental results and analysis
	Simulation Setup
	Simulation Results
	Single application mapping
	Multiples applications mapping

	Conclusion
	References

