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ABSTRACT
Many-core systems connected by 3D Network-on-Chips (NoC) are
emerging as a promising computation engine for systems like cloud
computing servers, big data systems, etc. Mapping applications at
runtime to 3D NoCs is the key to maintain high throughput of the
overall chip under a thermal/power constraint. However, the goals
of optimizing both the communication latency and chip peak tem-
perature are contradicting due to several reasons. Firstly, exploiting
the vertical TSV links can accelerate communications, while low
peak temperature prefers that the tasks to be mapped closer to the
heat sink, instead of using the vertical links. Secondly, mapping
tasks in close proximity can reduce communication latency, but at
the cost of poor heat dissipation. To address these issues, in this pa-
per, we propose an efficient runtime mapping algorithm to reduce
both communication latency and overall application running time
under thermal constraint. In essence, this algorithm first selects a
3D cuboid core region of a specific shape for each incoming applica-
tion by setting the region’s number of occupied vertical layers and
its distance to the heat sink, in order to optimize its communication
performance and peak temperature. Next, the exact locations of the
core regions in the chip are determined, followed by a task-to-core
mapping. The experimental results have confirmed that, compared
to two recently proposed runtime mapping algorithms, our pro-
posed approach can reduce the total running time by up to 48% and
communication cost by up to 44%, with a low runtime overhead.
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1 INTRODUCTION
Many-core systems have been widely used as an engine to provide
sufficient computation power in cloud computing servers, big data
systems, etc. In these systems, multiple applications with various
workload characteristics arrive and leave the system at runtime.
Mapping tasks to cores online is the key to improve system perfor-
mance.

3-Dimensional (3D) integration can improve the system inte-
gration and reduce global wire length. Through-Silicon-Via (TSV)
is one of the popular approaches among various 3D integration
techniques [13, 16]. 3D networks-on-chip (NoC) adopting the TSV
technique has lower network latency and power consumption, and
higher bandwidth [18, 19]. However, as more dies stacked vertically,
power density (W /m2) increases, and the length of heat conduction
path increases, resulting in higher propagation delay and higher
leakage power [4]. The major challenge of runtime application map-
ping in 3D NoC is to achieve the contradicting goals of optimizing
communication and temperature, which requires to address the
following two aspects:

1) Whether to exploit the vertical links or not leads to different
communication and temperature behaviors. Lower communication
latency requires that the tasks of an application to exploit the TSV
connections as much as possible. That is, the tasks with high com-
munication volume should be mapped crossing multiple vertically
adjacent layers in the same column, as TSVs provide high band-
width and shorter distance as in Fig. 1(a). On the other hand, lower
temperature requires that the tasks to be mapped to the layer close
to the heat sink as in Fig. 1(b), instead of crossing multiple layers.

https://doi.org/10.1145/3130218.3130228
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Figure 1: (a)Mapping tasks to exploit vertical wire for higher
communication efficiency. (b) Mapping tasks close to heat
sink for lower temperature. (c) Free cores scattered. (d) Free
cores packed in close proximity.

2) For an application with some running applications, whether
to map tasks in scattered or close proximity might lead to fragmen-
tation or high temperature. A phenomenon called “fragmentation”
often occurs causing free cores scattered (not forming a contigu-
ous region). Fragmentation increases communication distance and
latency for tasks of incoming application as they are mapped to
noncontiguous free cores regions [17], as in Fig. 1(c). Mapping tasks
in close proximity alleviates fragmentations. However, if we take
thermal effect into consideration, mapping tasks in close proximity
accumulates heat faster and tends to have high peak temperature
as in Fig. 1(d), where the peak temperature is 2℃ higher than that
in Fig. 1(c)1.

In this paper, we proposed an algorithm to address the above
challenge, in order to optimize the communication and computation
performances under a thermal constraint in 3D NoC systems. The
algorithm has two steps. First, a 3D cuboid core region of a specific
shape is selected for each application. Second, the exact locations
of the core regions in the chip are determined, followed by a task-
to-core mapping.

The rest of paper is organized as follows. Related work is re-
viewed in Section 2. The problem is formulated in Section 3. The
proposed runtime mapping algorithm is detailed in Section 4. Ex-
perimental results are evaluated in Section 5. Finally, Section 6
concludes the paper.

2 RELATEDWORK
Existing runtime application mapping algorithms in NoC can be
classified into 3 categories: 1) communication, 2) temperature, and
3) both communication and temperature.

Mapping algorithms in the first category focus on communi-
cation optimization, improving system throughput by reducing
network latency [2, 7–9, 28]. Most of the algorithms in this cat-
egory target 2D NoC systems as in [2, 7–9]. These approaches
map communicating tasks to cores close to each other so that com-
munication latency and power are reduced. For example, in [8],
Mohammad el al. proposed a stochastic hill climbing algorithm
that starts from a first node and maps the tasks to a set of nodes
forming a contiguous region around it. A few of them target the
1The Experimental setup is described in Section V.A

Figure 2: An example of 3D mesh NoC architecture

3D NoC system as in [28]. In [28], Ziaeeziabari et al. proposed a
latency-aware task mapping algorithm. It divides communications
of a given application graph into low volume and high volume
communication subgraphs. Then it maps application subgraphs
one by one based on their total intra communications considering
where the vertical channels are located in the network. However,
these approaches do not consider thermal aspects.

Mapping algorithms in the second category focus on temper-
ature optimization [6, 11, 20, 25, 26]. In [6], Cui et al. proposed a
B2T algorithm that maps all the tasks to the bottom layer which
is close to the heat sink, followed by a second step which moves
low-power tasks to the top layer. In [26], Zhu et al. proposed the
TAPP (Temperature-Aware Partitioning and Placement) algorithm
to reduce on-chip hotspots. TAPP spreads high-power cores and
routers across the chip by performing a hierarchical bi-partitioning
of the cores and concurrently conducting placement of the cores
onto tiles, and achieves high efficiency and scalability. These al-
gorithms ignore communication distance, which might lead to a
higher network latency. In [11], Hamedani et al. explored the tem-
perature constraints for thermal aware mapping of 3D networks
on chip, focusing on the design of thermal management algorithm.

Mapping algorithms in the third category focus on jointly opti-
mizing communication latency and temperature [1, 5, 14, 15, 23, 27].
In [15], Mosayyebzadeh el al. proposed an algorithm using fuzzy
logic to adjust the impact of heat emission capability, inter-task
distance inside application, and distance from hot spot. It reduces
the communication delay by mapping tasks with large communi-
cation volumes to cores close to each other. It also reduces power
consumption and peak temperature by mapping tasks to cores that
are close to the heat sink. However, this method does not fully
exploit the vertical links to optimize latency. Further, all these ap-
proaches do not consider fragmentation [17], which might lead to
high communication latency after running many applications.

3 PROBLEM FORMULATION
3.1 System Model
In this work, we adopt the 3D NoC system model as that of [6]. Fig.
2 shows the architecture of a 3Dmesh NoCwith TSVs as the vertical
links.The 3D NoC is modeled as a directed graph G(C,L), where C
is the set of cores and L is the set of links connecting the cores. The
cores of the system model support various voltage/frequency (V/F)
levels. The deterministic XYZ routing is used. The layer which lies
next to the heat sink is referred to as the bottom layer and the most
distant one from the heat sink is referred to as the top layer. A
centralized platform resource manager is designed to monitor the
arrival of application, manage resources and perform application
mapping. Table 1 summarizes the definition of symbols used in this
paper.
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Table 1: Symbol Definition

Symbol Definition

G(C,L) A 3D mesh NoC system
Gw X dimension (width) of the 3D NoC
Gl Y dimension (length) of the 3D NoC
Gh Z dimension (height) of the 3D NoC
C The set of cores in a 3D NoC system
L The set of links connecting the cores

in a 3D NoC system
S The set of applications
Ai Application i
Ti The set of tasks of Ai
Ei The set of edges of Ai

e(i, j) Edge e between two tasks
M(t) = c A mapping function binding task t to core c
TT (e) The transmission time of data

between two communicating tasks
V (i, j) The traffic volume between two communicating tasks
D(i, j) The Manhattan distance between two cores
P(c) The power of the core c
PM (c) The thermal power capacity of the core c
σ (S) The overall running time of applications in the set S
CVi The average communication volume of each task in Ai
RP Reference point
CIi The corner index for Ai
NOLi The number of occupied layers of an application
MDi The minimal distance to heat sink of an application
RTi The running time of an application
ERTi The estimated running time of an application
σ̂ (S) The estimated overall running time of a set applications
σ̂ ∗(S) The minimum overall running time of a set applications

3.2 Application Model
Each application is modeled as a directed graph A = (T ,E), where
T is the set of tasks of the application and E is the set of directed
edges representing data communication amongst the tasks. Each
task ti ∈ T , where i = 1, 2 , ..., n, has a weight equal to its execution
time. For Each edge e ∈ E, where j = 1, 2, ..., m, has a weight
corresponding to data volume between the two communicating
tasks, representing traffic.

A mapping functionM(t) = c , for each t ∈ Ti , each c ∈ C binds
tasks to the cores, such that task t is mapped to core c . Each edge e ∈
Ei has a weight of transmission time, after the two communicating
tasks are mapped. The transmission time between two tasks i and
j depends on the communication distance between the cores to
which they are mapped, and their traffic volume. For each edge
e = (i, j), the transmission time can be modeled by Equation 1.

TT (e) = α ·V (i, j) + β · D(z, j) (1)

where V (i, j) is the traffic volume between the two tasks i and j,
and D(i, j) is the distance between two cores to which the two
tasks are mapped. α and β are regression coefficients of the linear
regression model, which can be computed using the maximum
likelihood method in [10]. The running time of each application i
is the makespan of task graph, denoted as RTi .

3.3 The Thermal Power Capacity Model
We adopted the thermal power capacity model (TPC) of [21]. As in
[21], we define the TPC of a core as the maximum power the core
can consume, given the power consumptions of other cores. It is
used at runtime to estimate the power of a core given the power
consumption of its neighboring eight cores with low computing
cost. The TPC of each core can be determined offline. In the rest
of the paper, we use PM (c) and PM (x ,y, z) to denote the power
capacity of the core c at the location (x ,y, z) interchangeably. The
TPC of a core is bounded by the cooling capacity of the system, and
the power consumption or temperature of other cores, i.e., thermal
correlation. The TPC of a core c can be found as,

PM (x ,y, z) = θ [P(x ± l1,y ± l2, z
′)] =

∑
q

αq · P(c) (2)

where P(x ± l1,y ± l2, z′) is the power consumption of the core
c located at (x ± l1,y ± l2, z′), which is thermally correlated with
core c . The function θ (·) can also be found by linear regression,
using the lasso method [10]. In particular, for each core at (x ,y, z)
we only keep the coefficients of (1) adjacent cores and (2) those
with the same Z coordinate as non-zero. That is, (x ± l1,y ± l2, z′)
with l1, l2 = 0, 1, refering to cores that are neighboring to the core
(x ,y, z), and z′ = 0, 1, ...Gh and z′ , z, refering to cores that have
the same Z coordinate as core c . These cores have the highest
thermal correlations with the core (x ,y, z). We set the coefficients
of other cores to be 0, for core c .

3.4 Problem Description
The thermal- and communication-aware mapping problem is define
as:

Given a set of n applications in the system.
Find a task-to-core mapping M(Ai ) for each application Ai in

the 3D NoC system.
Such that the overall running time of these applications is min-

imize while the system peak temperature is below threshold.
Mathematically, the objective of our proposed algorithm is:

min σ (S) = Al f −Af a (3)
subject to P(c) ≤ PM (c), ∀c ∈ C (4)

where σ (S) is the overall running time of the application set S , Al f
and Af a are the finish time of the last application and the arrival
time of the first application in the set, P(c) is the power of a core
and PM (c) is the maximum power a core can consume which is
computed from the TPC model.

4 THE PROPOSED THERMAL- AND
COMMUNICATION-AWARE MAPPING
ALGORITHM

4.1 Overview
The proposed algorithm has two steps:

(1) Finding a 3D cuboid core region of a specific shape for every
application.

(2) Determining the exact location of each application’s core
region.

4.2 Finding the Shape of 3D Cuboid Core
Regions

4.2.1 Characterizing the Shape of A Core Region. Two metrics,
the minimal distance to heat sink (MD) and the number of occupied
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Figure 3: An example of minimal distance to heat sink (MD)
and the number of occupied layers (NOL) values of a core
region.

layers (NOL), are used to characterize the shape of a core region
Layers closer to the heat sink have better cooling effect, which
implies that cores in such layers can run with a higher V/F level
and power consumption without violating the thermal constraint.
Therefore, the distance to heat sink of a core region decides the peak
temperature and computation performance. We use the minimal
distance to heat sink defined below to reflect the average distance
to heat sink of a core region. For example, theMD value of the core
region for the 8-task application in Fig. 3 is 1.

Definition 4.1. The minimal distance to heat sink (MD) is the
index of the lowest layer of Ai ’s core region.

On the other hand, the number of occupied layers of a core region
decides the number of TSV links in a core region corresponding
to how many vertical links are used in a core region to accelerate
communication. For an application whose number of tasks is fixed,
a “taller” core region has more TSV links than a “shorter” one. Thus,
a taller core region has lower network communication latency. That
is, a larger “NOL” indicates a lower communication latency. For
example, the NOL of the 8-task application in Fig. 3 is 2.

Definition 4.2. The number of occupied layers value NOLi of
application Ai ’s core region equals to its number of layers.

4.2.2 Estimation of an Application’s Running Time. The running
time of an application depends on the execution time of each task
and the communication latency. The execution time of each task
can be modeled by theMD metric and the communication latency
can be modeled by the NOL metric as discussed in Section 4.2.1.
Consider the trade-off between model accuracy and algorithm run-
time overhead, the running time of core region could be estimated
by a linear regression model ofMD and NOL as in Equation 5,

ERTi = a0 + a1 × |Ai | + a2 ×CVi + a3 × NOLi + a4 ×MDi (5)

where |Ai | is the number of tasks in application Ai , CVi is the
average communication volume of each task in Ai , NOLi is the
number of occupied layers of the core region, andMDi is theMD
of the core region. To find the coefficients a0, a1, a2, a3, a4, the
maximum likelihood methods can be used [10].

In this step, a core region of a specific shape is selected for each
application, by tuning its MD and NOL values according to its
communication and computation demands. The branch-and-bound
algorithm is used to find the best tree node corresponding to the
best combination of shapes of core region for this set of application
set.

4.2.3 Search tree definition. Assume n applications are to be
mapped, a tree node is defined as a 2n-vector. A tree node is de-
fined by Nm = ⟨NOL0,MD0, ...,NOLn ,MDn⟩, corresponding to

the NOL andMD metrics of each application’s core region.The tree
is grown by branching new nodes from the the root down to the
leaves level by level, corresponding to setting theMDi and NOLi
values for each application’s core region. Each non-leaf tree node
Nj is associated with σ̂ (S)min

j , indicating the minimal estimated
running time of Nj . The weight σ̂ (S) of each leaf node can be com-
puted as σ̂ (S) = maxAi ∈S {ERTi } for all applications, that is, the
time when the last application in set S finishes execution.

The basic operations for the search tree include branch and cut.

Branching of the search tree. If a tree node is a leaf node, all the
applications are mapped. We compare the σ̂ (S) of this tree node
with σ̂ ∗(S). If this tree node is not a leaf node, a new tree node
should be created. TheMDi and NOLi of new application Ai are
grounded by the following max and min NOLs andMDs.

NOLmin
i =

⌈
|Ai |

Gw×Gl

⌉
(6)

NOLmax
i = min {Gh , |Ai |} (7)

MDmin
i = Gh − NOLmax

i (8)

MDmax
i = Gh − NOLmin

i (9)
where |Ai | is number of tasks of Ai and Gw , Gl and Gh are the
width, length and height of the 3D NoC system, respectively.

NOLmin
i is the minimum number of occupied layers of a core

region for an application such that the application’s tasks can be
accommodated in the core region. NOLmax

i is the upper limit of
the core region’s number of occupied layers, which is bounded by
the maximum number of vertical layers in the 3D NoC. MDmin

i
andMDmax

i are the maximum and minimumMD values of a core
region. Once NOLmin

i and NOLmax
i are determined, they can be

computed in a manner such that the core region can fit inside
the 3D NoC. In total, for each non-leaf tree node, a maximum of
NOLmin

i × NOLmax
i × MDmin

i × MDmax
i tree nodes in the next

level can be created.

Cutting. To reduce the search space and speed up the tree search
process, some tree branches should be cut. For each of the newly
created tree node, we check whether they should be discarded or
not according to the following two cut rules.

Rule 1) Cut infeasible nodes. An infeasible tree node refers to a
setting ofMD and NOL of the core regions that they do not fit into
the 3D NoC, e.g., the number of cores of a region in a layer is larger
than the total available cores in that layer. The number of available
cores in each layer is maintained and updated at runtime to test the
feasibility. Once some applications are mapped to run, the number
of available cores in each layer is subtracted by the amount equal
to the core count occupied by the applications in that layer. For the
vertical direction, it is feasible if the sum of MD and NOL is less
than or equal to Gh .

Rule 2) Cut by node dominance. Once a new tree node Nj is
created, its σ̂ (S)min

j is compared with σ̂ ∗(S). If its σ̂ (S)min
j is larger

than σ̂ ∗(S), which means the minimum overall application running
time of Nj is longer than the best overall running time found so far
among all the tree nodes, the new tree node is discarded.

Algorithm 1 shows how the search works. The tree nodes are
stored in a working queue. A dummy root node is pushed to the
queue at the start. In each iteration, new tree nodes are created by
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Algorithm 1 Finding the Shape of Core Region for Each Applica-
tion
Input: S , the set of unmapped applications
Output:MDi and NOLi values of each application Ai
WQ : A working queue, initialized empty;
NBN : The newly branched node
BN : The best node during search;
σ̂ ∗(S): A value keeps the minimum overall running time over all
the tree nodes searched so far;

whileWQ is not empty do
pop the top node Nq out ofWQ ;
if Nq is not a leaf node then

branch new tree nodes;
for each newly branched nodes NBN do

if no cutting rules are met for NBN andWQ is not full
then

store NBN inWQ ;
end

else
if σ̂ (S)q < σ̂ ∗(S) then

σ̂ ∗(S) = σ̂ (S)q ;
BN = Nq ;

end

Figure 4: Four corners in one layer of a 3D NoC system

assigning different MDi and NOLi values to a new application’s
core region. In total NOLmin

i ×NOLmax
i ×MDmin

i ×MDmax
i new

tree nodes are created. For each of these tree nodes, if they do not
meet the above two cutting rules, they are pushed to the queue.
The length of the queue can be tuned to trade off the running speed
and result optimality of the search algorithm. In this search process,
applications with more traffic are possibly assigned with a region
with larger NOL, while the computation intensive applications are
possibly assigned with a region with smallerMD.

4.3 Finding the Locations for the 3D Cuboid
Core Regions

In this step, the exact location of each core region in the chip
is found. The goals in this step are to 1) keep the applications
scattered to reduce peak temperature, and 2) reduce fragmentation.
To achieve these goals, the core regions are placed at one of the four
corners of the chip in a round-robin manner. Algorithm 2 shows
how the location finding step works.

First, the applications are sorted according to their number of
tasks in a descending order, i.e., applications with more tasks are
treated earlier. Next, the applications’ core regions are placed in
a round-robin manner to one of the four corners as in Fig. ?? at
each iteration. We use CIi as the corner index for application Ai .
Each corner is associated with a reference point, RP , indicating its
start point coordinate. Starting from RP , we first scan along the

Algorithm 2 Finding the Exact Location of Core Regions
Input: S , the set of unmapped applications
Output:M(Ai ) ∀Ai ∈ S , the task to core mapping for each

application
sort applications in S according to their number of tasks in a
descending order;
set CIi as 1;
for the core region of each Ai ∈ S do

select RP , and scan along the X and Y directions according to
the above four rules, with the constraint that it fits inside the
3D NoC;
map the tasks of the application to the cores in that region;
CIi = CIi % 4 + 1;

end

X dimension, then the Y dimension, until a region is found that
has ⌈ |Ai |

NOLi ⌉ free cores at layersMDi , ...,MDi + NOLi , detailed as
follows.

(1) corner 1:RP = (0, 0,MDi ). Search location along x+ direction,
followed by y+ direction.

(2) corner 2: RP = (Gw ,Gl ,MDi ). Search location along x- di-
rection, followed by y- direction.

(3) corner 3: RP = (0,Gl ,MDi ). Search location along x- direc-
tion, followed by y+ direction.

(4) corner 4: RP = (Gw ,Gl ,MDi ). Search location along x+ di-
rection, followed by y- direction.

Then, tasks of the application are mapped to each of the cores inside
the free core region using existing mapping algorithms, for exam-
ple, the one in [23]. This algorithm results in a contiguous free core
region in the center of the chip as in Fig. ??. Therefore, fragmenta-
tion is alleviated. Besides, since the applications are mapped such
that they are separated in the four corner, the peak temperature is
also reduced.

4.4 Example
There are 2 applications A0 and A1 in a 2×2×2 3D NoC system to
be mapped. Fig. 4.4 (c) is a snapshot of a search tree for finding the
shapes of core regions for A0 and A1. Each tree node is represented
by a 4-element vector < NOL0,MD0,NOL1ThMD1 >. A dummy
root node is first created. For A0, a new tree node N0 in level 1 is
created from the root withMD0 = 0 and NOL0 = 1. Since A0 has
3 tasks, it have 3 cores in layer 0. Next, a new node N1 in level 2
is created for A1 from N0, withMD1 = 0 and NOL1 = 2. Since A1
has 2 tasks, it has 1 core in both layers 0 and 1. Since the system
has 4 cores in each layer, A0 and A1 fit into the system. Fig. 4.4(d)
shows an infeasible tree node N2 in level 2. It requires 5 cores in
layer 0 and thus exceeds the maximum number of available cores
in layer 0. Thus, N1 is kept as the result of searching.

Next, the locations of the applications’ core regions are found
with theMD0,NOL0,MD1,NOL1 shown in N1. Since A0 has one
more tasks thanA1,A0 is mapped first. SinceMD0 = 0 and NOL0 =
1, layer 0 needs 3 free cores forA0. Starting from corner 1, i.e., RP is
(0, 0, 0), then scan by X+ direction and 3 available cores are found
for A0’s core region. Now, for A1, it needs 1 available core in both
layers 0 and 1 for A1. This time we start from corner 2, i.e., RP is (1,
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Figure 5: (a) Two applications (A0, A1) to be mapped. (b) The
ranges of MD and NOL values of the two applications. (c)
Search tree in step 1. (d) An infeasible tree node. (e) System
after mapping.

1, 0) and an available core is found in each of the two layers for A1.
The locations of the the two core regions are shown in Fig. 4.4(e).

4.5 Cost Analysis
The worse case complexity of the first step of the algorithm is
O(F ), where F = min{|WQ |,G2n

h }, and |WQ | is the maximum
length of the working queueWQ . The complexity of the second
step includes the complexity of finding core region locations and
that of mapping n applications, which are O(n × Gw × Gl ) and
O(∑∀Ai ∈S |Ai |2 × |E | × |C |), respectively.

Overall, the complexity of the whole algorithm is O(B), where
B = max{F ,

∑
∀Ai ∈S

|Ai |2 × |E | × |C |}.

5 EXPERIMENTAL RESULT
5.1 Experimental Setup
Experiments are performed on an event-driven C++ NoC simulator,
with DSENT integrated as the power model. The simulator mod-
els the packet latency of the communications in a cycle accurate
manner. The horizontal and vertical link bandwidth considered for
simulation are 10 and 200. For example, to finish 200 units com-
munication volume, horizontal link needs 20 cycles and vertical
link needs 1 cycle. For processor-to-memory latency, we assumed
the code and data are stored in the L1 cache and this latency is
ignored considering it will be very small. The experiments are car-
ried out on various 3D NoC systems. In the experiments, we used
two kinds of benchmarks: benchmarks whose task graphs are ran-
domly generated and real benchmark. The task graphs of the real
applications are generated from the traces of SPLASH-2 [24] and
PARSEC [3], which are collected by executing these applications in

Table 2: Configurations of the Simulation

Network Parameters

Flit size 128 bits
Latency Router 2 cycles, link 1 cycle
Buffer depth 4 flits

Routing algorithm XYZ routing
Baseline topology 8 × 8 × 4

Random Benchmark Parameters

Number of tasks [15, 45]
Communication volume [10, 200] (Kbits)

Degree of tasks [1, 15]
Task number distribution Bimodal, uniform

Configuration of the Extracting Trace Many-core Simulator

Core Architecture 64 bit Alpha 21264
Baseline Frequency 3GHz

Fetch/Decode/Commit size 4/4/4
ROB size 64

L1 D cache (private) 16KB, 2-way, 32B line
2 cycles, 2 ports, dual tags

L1 I cache (private) 32KB, 2-way
64B line, 2 cycles

L2 cache (shared) MESI protocol 64KB slice/core, 64B line
6 cycles, 2 ports

Main memory size 2GB
Task Graphs of Real Applications

Barnes, Canneal, Raytrace, Dedup, Ferret, Freqmine
Streamcluster, Fluidanimate, Swaptions, Blackscholes

Hotspot Parameters

Die size [mm] 0.5 × 0.5
Specific heat capacity [J/(m3 × K)] 1.75e6

Resistivity [(m-K)/W] 0.01
Layer 0 thickness [mm] 0.10
Layer 1 thickness [mm] 0.12
Layer 2 thickness [mm] 0.14
Layer 3 thickness [mm] 0.16

a 8×8 NoC-based cycle accurate many-core simulator in [22]. The
configuration of random benchmarks, real benchmarks, and the 3D
NoC system are listed in Table 2. The temperature threshold is 60 ℃.
It is acceptable to take any reasonable temperature threshold with
a re-train thermal model. HotSpot [12] is used as the temperature
simulator. We used different layer thickness to simulate the differ-
ent heat transmit capacity, the Hotspot parameters are showed in
Table 2.

We compare our approach with the following two runtime map-
ping approaches, the Bottom-2-Top (B2T) method [6] and the fuzzy
logic (FL) method [15]. The B2T scheme first maps all the tasks
to the bottom layer in a 3D NoC to make the power consumption
of cores in each vertical stack (cores with the same Z coordinate)
identical as possible, and then moves low power tasks to the top
layer to reduce the execution time [6]. FL defines three variables,
i.e. heat transfer, distance from source core, and distance from hot
spot and used rules to set the priorities of them. “Distance from
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source core” represents the distance inter tasks within the appli-
cation. “Heat transfer” is the heat transfer capability of specific
core. “Distance from hot spot” is the distance between the hottest
core and specific core. During the experiment, we set the rules as
considering “distance from source core” first, then “heat transfer”,
and finally “distance from hot spot”. That is, FL maps tasks within
application to cores of shorter distance first. If shorter distance
cores are not available, then it uses the cores near the heat sink. If
shorter distance cores and near heat sink cores are not available, it
uses cores far from the hot spot.

5.2 Validating the Application Running Time
Estimation Model

The error of each application’s running time estimation model is
defined as follow,

ϵ =
|RT − ERT |

RT
× 100% (10)

where RT and ERT are the running times obtained from the simu-
lator and the estimation model in Equation 5 for each application,
respectively. The error of this estimation model is 4.82% on average,
for the applications used in the experiments. Thus, the estimation
is fairly accurate.

5.3 Performance Comparison
5.3.1 Experiments with Random Benchmarks.

Experiments with Different Sizes of 3D NoC. To evaluate the pro-
posed algorithm, we changed the size of 3D NoC to evaluate the
overall running time and communication latency of the three algo-
rithms. Fig. 6 shows that our proposed algorithm outperforms the
other two when the network size increases. On average, the overall
running times of B2T and FL are 1.39× and 1.42× over our proposed
approach, respectively. Fig. 6 also shows that the communication
latencies of B2T and FL are 1.55× and 1.24× over our proposed
approach, respectively. The reason is that our algorithm can opti-
mize the communication and computation performances for each
application by selecting the appropriate MD and NOL values of
its core region, according to its communication and computation
demands. It can also reduce fragmentation and peak temperature
by the core region location finding step. For every application, the
B2T method makes maximum use of the layer that is close to the
heat sink and thus it might lead to a scenario that all the cores close
to the heat sink are occupied and the upcoming application has to
be mapped to other layers. Further, B2T maps applications in close
proximity, resulting in higher accumulated heat.

Experiments with Different Number of Tasks. In this set of experi-
ments, we changed the average number of tasks of the applications.
Fig. 7 shows that, when the average number of tasks is large, e.g.
128, the overall running time of B2T and FL are 1.29× and 1.39×
over our proposed approach, respectively. Fig. 6 also shows that
the communication latencies of B2T and FL are 1.42× and 1.38×
over our proposed approach, respectively.

Experiments with Different Communication Volumes. In this set
of experiments, we compared the performances with 4 different
communication volumes: 50, 100, 150, 200 (Kbits). Fig. 8 shows that,
when the communication volume is large, e.g. 200, the overall run-
ning time of B2T and FL are 1.38× and 1.25× over our proposed
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Figure 6: Comparison with different sizes of 3D NoC
Normalized Running Time

16 32 64 128

Average Task Number

0

0.5

1

1.5

N
o
rm

a
liz

e
d
 R

u
n
n
in

g
 T

im
e Normalized Communication Latency

16 32 64 128

Average Task Number

0

0.5

1

1.5

N
o
rm

a
liz

e
d
 C

o
m

m
u
-

n
ic

a
ti
o
n
 L

a
te

n
c
yB2T

Amin

Proposed

Figure 7: Comparison with different number of tasks of ap-
plications
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Figure 8: Comparison with different communication vol-
umes
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Figure 9: Comparison with real benchmarks

approach, respectively. Fig. 6 also shows that the communication
latencies of B2T and FL are 1.47× and 1.13× over our proposed
approach, respectively.

5.3.2 Experiments with Real Benchmarks. To evaluate the pro-
posed framework, we compared the performances on real bench-
marks with 4 different network sizes. Fig. 9 shows that, when the
network size is large, e.g. 20 × 20 × 4, the overall running time
of B2T and FL are 1.38× and 1.48× over our proposed approach,
respectively. Fig. 9 also shows that the communication latencies
of B2T and FL are 1.44× and 1.24× over our proposed approach,
respectively. Fig. 9 also compares the peak temperature of different
algorithms, showing that our algorithm reduces the peak temper-
ature for B2T and FL by 3oC and 7℃. All of the three mapping
algorithms are below the 60℃ thermal threshold.

We also captured the normalized communication cost and run-
ning time of each real benchmark application , as shown in Fig.
10. Numbers 0 to 9 represent barnes, blackscholes, canneal, dedup,
ferret, fluidanimate, freqmin, raytrace, streamcluster and swaptions
respectively.

5.3.3 Runtime Overhead of the Proposed Algorithm. The average
runtime overheads of B2T, FL and our algorithm are in the order of
3.5M, 5M and 4M cycles for one real benchmark, which are averaged
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Figure 10: Comparison for each real benchmark

by running each of the algorithms for fifty times with different real
benchmark applications. The execution times of the benchmark
applications are much longer than 4M cycles. Thus the overhead of
the proposed algorithm is acceptable.

6 CONCLUSION
In this paper, we proposed a runtime communication- and thermal-
aware mapping algorithm to optimize performance under the ther-
mal constraint in 3D NoCs. Experimental results show that our
proposed approach can reduce up to 48% overall running time
compared to existing mapping algorithms.
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