
IEEE TRANSACTIONS ON COMPUTERS 1

On Performance Optimization and Quality
Control for Approximate-communication-enabled

Networks-on-Chip
Siyuan Xiao, Xiaohang Wang, Member, IEEE, Maurizio Palesi, Senior Member, IEEE, Amit Kumar

Singh, Member, IEEE, Liang Wang and Terrence Mak, Senior Member, IEEE

Abstract—For many applications showing error forgiveness, approximate computing is a new design paradigm that trades application
output accuracy for mitigating computation/communication effort, which results in performance/energy benefit. Since networks-on-chip
(NoCs) are one of the major contributors to system performance and power consumption, the underlying communication is
approximated to achieve time/energy improvement. However, performing approximation blindly causes unacceptable quality loss. In
this paper, first, an optimization problem to maximize NoC performance is formulated with the constraint of application quality
requirement, and the application quality loss is studied. Second, a congestion-aware quality control method is proposed to improve
system performance by aggressively dropping network data, which is based on flow prediction and a lightweight heuristic. In the
experiments, two recent approximation methods for NoCs are augmented with our proposed control method to compare with their
original ones. Experimental results show that our proposed method can speed up execution by as much as 29.42% over the two
state-of-the-art works.

Index Terms—approximate computing, many-core system, networks-on-chip

F

1 INTRODUCTION

MANY-CORE systems have been widely used for run-
ning machine learning and multimedia applications.

Many of them, classified as recognition, mining, and synthe-
sis (RMS) applications, are intrinsically error forgiving [1].
There are no golden results for these applications. Therefore,
trade-offs between accuracy and other metrics (e.g. execu-
tion time, power consumption) can be made. Approximate
computing [2], which exploits the error-resilience of these
applications, introduces new opportunities for system de-
sign. In approximate computing, the computation effort is
reduced (e.g. using low precision adder/multiplier [3], loop
perforation [4], load value approximation [5], etc.) to either
accelerate execution or reduce power consumption. Each of
the approximators that actually performs the approximate

• Siyuan Xiao and Xiaohang Wang are with the School of Software En-
gineering, South China University of Technology, Guangzhou, China,
510006. Xiaohang Wang is the corresponding author.

• Maurizio Palesi is with Department of Electrical, Electronics and Com-
puter Engineering, University of Catania, Catania 95124, Italy. E-mail:
maurizio.palesi@dieei.unict.it.

• Amit Kumar Singh is with the School of Computer Science and Electronic
Engineering, University of Essex, Colchester CO4 3SQ, United Kingdom.
E-mail: a.k.singh@essex.ac.uk.

• Liang Wang is with the Institute of Microelectronics, Tsinghua Univer-
sity, Beijing, China. Email: wl23189@163.com.

• Terrence Mak is with the School of Electronics and Computer Science, Uni-
versity of Southampton, Southampton SO17 1BJ, United Kingdom, and
with the Guangzhou Institute of Advanced Technology, CAS, Guangzhou,
511458, China. E-mail: tmak@ecs.soton.ac.uk.

This research program is supported by the Natural Science Foundation of
Guangdong Province No. 2018A030313166, Pearl River S&T Nova Program
of Guangzhou No. 201806010038, the Fundamental Research Funds for the
Central Universities No. 2019MS087, Open Research Grant of State Key
Laboratory of Computer Architecture Institute of Computing Technology
Chinese Academy of Sciences No. CARCH201916, and the Natural Science
Foundation of China No. 61971200.

Fig. 1. Execution time at varying data drop rate for different applications.

computation/communication works with a quality control
method. A quality control method is designed to make good
use of the approximator such that the final quality loss is
within a user-defined bound. If a quality control method is
not well-designed, it results in either approximation under-
utilization (performing approximation conservatively such
that the performance improvement is not fully exploited) or
overutilization (performing approximation too aggressively
which leads to unacceptable quality degradation in the
application output).

Among various on-chip hardware components,
networks-on-chip (NoCs) have a large impact on
system performance and power consumption. Therefore,
approximate NoCs become an attractive design, which
drop data packets before they are injected into the network
and recover them at the destination to reduce network
workloads. In an approximate NoC, each network interface
(NI) is equipped with a data dropper and a recoverer, used
for data dropping and recovering, respectively.

A motivational experiment is presented in Figure 1 to
show the feasibility of improving system performance by
dropping network traffic. We define drop rate as the pro-
portion of data that are discarded at each NI, which never

2 IEEE TRANSACTIONS ON COMPUTERS

(a) (b)

Fig. 2. The output errors under different data drop rates for two applica-
tions (a) Blackscholes and (b) Sobel.

enter the network. In this example, the on-chip network
of a full-system many core simulator [6] is modified to
change the size of data packets uniformly according to
a given drop rate, right before they are injected into the
network. The drop rate varies from 0% (undropped) to
98% (almost dropped). As shown in Figure 1, dropping
data can significantly reduce execution time. For example,
dropping 60% data speeds up the execution by as much as
25.77% compared to the case of only dropping 20% data, on
average. The reason is that more communication workloads
lead to longer execution stalls, and the overall performance
is thus degraded.

However, previous works on approximate NoCs [7], [8],
[9] are unable to maximize the performance gain intro-
duced by approximation. [7], [9] do not consider network
congestion. Since network latency is sensitive to network
congestion, dropping data without congestion awareness
causes approximation underutilization (performing approx-
imation on non-critical packets such that the benefit is less
significant). Moreover, dropping data without estimating
the application-specific quality loss leads to approximation
overutilization (unacceptable error).

Besides performance optimization, [7], [8], [9] do not
have an accurate quality model for applications. The quality
models of [8], [9] assume that output error grows linearly
with respect to input data error. However, this linearity
assumption does not hold for many applications, which is
shown in Figure 2.

In Figure 2, quality loss results are collected using
the data dropping method ABDTR [8], with ”data1” and
”data2” being output error results with two different input
data, respectively. The dashed line ”linear” is obtained by
linear regression. For Blackscholes, as stated in the previous
work [9], it is almost linear. On the contrary, for Sobel, it
shows non-linearity. Besides, Figure 2(b) indicates that the
output error depends not only on data drop rate, but also
input data. Previous works [8] [9] [10] neglect this important
factor, which leads to inaccuracy in their quality models.

Therefore, in this paper, we first propose an accurate
quality model. We formulate the performance optimization
problem for approximate NoCs, followed by proposing
ACDC (Accuracy- and Congestion-aware Dynamic traffic
Control), a lightweight control mechanism to solve it.

The main contributions of this paper are as follows:

1) Quality loss, network congestion, and zero load
latency are analyzed and modeled. An optimization

problem is formulated to minimize network latency,
subject to a user-defined error bound.

2) A lightweight control mechanism is proposed to
solve the problem, which consists of a periodically-
triggered global controller and local controllers.
Based on the flow prediction, the global controller
first solves the congestion minimization problem,
followed by exploiting the opportunity to reduce
zero load latency.

3) Compared against two recent works [7], [8], experi-
mental results show that ACDC mitigates approx-
imation underutilization and overutilization. For
some applications (e.g., Sobel, Blackscholes), ACDC
achieves execution speedup and energy saving by
more than 20% over the two recent works.

In this paper, our previous work [10] has been signifi-
cantly extended as follows:

1) Quality loss of different applications are examined
by a motivational experiment. Experimental results
show that quality loss also depends on input data.
Besides, in some applications, quality loss does not
increase linearly with respect to data drop rate. We
update the quality model to include these factors.

2) We have analyzed the flow changes, and enhanced
the runtime control method to handle bursty com-
munications, which start suddenly with a high traf-
fic volume.

3) Another state-of-the-art work APPROX-NoC [7] is
compared with our proposed method. Experimental
results show that half of the applications violate
the quality loss constraint using APPROX-NoC, but
none of them violate the constraint using our pro-
posed method.

4) The rest of the paper has also been substantially
extended. For example, we have included runtime
drop rate computation. We have also evaluated the
congestion changes caused by approximate commu-
nication, and the quality impact on Sobel with a real
image.

The rest of this paper is organized as follows. We first
survey related work in Section 2. The optimization problem
is formulated in Section 3. After that, we elaborate our
proposed control method in Section 4. Experimental results
are evaluated in Section 5. Finally, we conclude our work in
Section 6.

2 RELATED WORK

Approximate computing [11], as an emerging powerful
compute paradigm, trades application output quality for
energy-efficiency based on error forgiveness in applications.
Approximate computing approaches span from application
layer to circuit layer.

In the application layer, loop perforation [4] reduces
computation effort by selectively skipping some iterations,
while SAGE [12] generates a set of CUDA kernels with vari-
ous levels of approximation. At the architecture level, EnerJ
[13] enhances the Java programming language with approx-
imate annotations, along with several approximation-aware
instruction set architecture (ISA) extensions.

ON PERFORMANCE OPTIMIZATION AND QUALITY CONTROL FOR APPROXIMATE-COMMUNICATION-ENABLED NETWORKS-ON-CHIP 3

Esmaeilzadeh et al. [14] proposed a general purpose
approximate computing approach that transforms and maps
the computational intensive kernels of an application onto
an energy-efficient accelerator. Approximate memory was
proposed in [5] [15] [16] [17]. For instance, for a cache miss,
load value approximation [15] avoids remote cache accesses
by predicting the miss value locally. In the circuit layer, re-
searchers proposed imprecise logic [3], voltage overscaling
[18], and frequency tuning [19].

Quality control is a crucial component in approximate
computing. A lot of works are devoted to designing qual-
ity control mechanisms. OPPROX [20] aims at maximizing
performance improvement. MEANTIME [21] leverages ap-
proximate computing to meet realtime requirement. Rumba
[22], CoAdapt [23], and PowerDial [24] propose power-
aware quality controls. DES [25] tries to maximally exploit
error resilience under quality limitation, while AdAM [26]
considers memory lifetime. Moreover, several works [27]
[28] [29] discuss about quality modeling, and AxGames [30]
designs several Web games to model users’ sensitivity to
quality loss.

Since the underlying interconnect is an important com-
ponent of a many-core system [31] [32] [33], recent studies
try to drop data in NoCs. The runahead NoC [34] relaxes the
constraint of lossless communication by using an additional
low-latency lossy network, and retransmits the dropped
packets by the regular lossless network. Though data pack-
ets are occasionally dropped, the communication remains
lossless thanks to the retransmission.

On the contrary, other works [7] [8] [9] [35] [36] [37]
[38] [39] apply approximate computing to NoCs. APPROX-
NoC [7] allows more data to be compressed using existing
pattern-based NoC compression techniques, by compress-
ing similar patterns into a shorter word. ABDTR [8] drops
data with a fixed interval, while recovering the lost data
based on linear interpolation. Data are dropped according
to the runtime buffer utilization of each router. [9] directly
truncates the Least Significant Bits (LSBs) to reduce net-
work traffic, and the number of truncated bits for each
single value is decided with respect to the relative error.
To guarantee quality safety, [9] uses a linear model to
estimate output error at runtime. A dual-voltage router
architecture was proposed in AxNoC [35], which tolerates
bit flips running in a low-power mode. In DAPPER [36],
similar data flits can be transferred simultaneously using an
auxiliary network. Ascia et al. [37] proposed a method to
save energy consumption by reducing the voltage swing of
links, which in effect introduces some bit flips. They also
proposed approximate wireless-NoCs which consider long-
distance wireless communication [38] [39]. These works
about approximate NoCs either perform approximation
conservatively or are not well-guided (lacking application-
specific quality loss models), thus result in approximation
underutilization/overutilization.

3 PROBLEM FORMULATION

In this section, we first introduce the preliminaries, followed
by modeling important metrics of approximate NoCs. Fi-
nally, an optimization problem is formulated to optimize
network performance, subject to a quality loss bound.

TABLE 1
Notations

Name Description
n The number of nodes
m The number of links, depending on topology
ω The size of each data packet, in bits
fij The flow from nodes i to j
vij The lossless communication volume of fij , in bits
pij The proportion of approximable data in fij
c Link capacity, in bits, which is the maximum

amount of data communication that do not
cause a link to be congested

rijk rijk =

{
1 if fij passes through link k
0 otherwise

X = A set of data drop rate options in an ascending
{π1, . . . , πd} order
xij Data drop rate for fij , in fraction
qa (π) The quality model for application a,

which returns quality loss given a data drop rate
θa The quality requirement of application a,

defined as the maximum acceptable error
g The total error budget, in bits, which is the

maximum amount of data that can be dropped
µ The error budget for congestion minimization,

in bits
µi The portion of µ allocated to node i, in bits
ν The error budget for reducing serialization

latency, in bits
νi The portion of ν allocated to node i, in bits
clink
k The link congestion metric of link k, in bits
cflow
ij The flow congestion metric of fij , in bits

3.1 Preliminaries

Notations used throughout this paper are listed in Table 1.
Let n denote the number of network nodes. The number

of links is denoted by m, which is topology-dependent.
A flow fij is defined as the communication between a

pair of a source and a destination. vij , the volume of fij ,
is defined as the amount of data communication along that
flow. Link capacity c is defined as the maximum amount of
data communication that a link can afford. rijk is a binary
value indicating whether fij passes through link k or not,
which depends on the underlying routing algorithm.

A set of the available drop rate options is defined as
X = {π1, . . . , πd}, where πi ∈ [0, 1], πi < πi+1, i = 1, . . . , d.
Dropping data under a drop rate πi ∈ X indicates that the
amount of data after dropping is (1− πi) of the original
one. A quality model qa(·) is built for each application
a, which estimates the quality loss caused by dropping a
certain proportion of approximable data. θa is a user-defined
quality requirement (quality loss upper-bound), indicating
the maximum acceptable error for application a.

The proportion of data that can be dropped is q−1a (θa),
where q−1a (·) is the inverse function of qa(·). The to-
tal flow volume of the whole network is written as∑n
i=1

∑n
j=1,i6=j (pijvij), i.e., summing the approximable vol-

umes of all n (n− 1) flows. The total error budget g is

g = q−1a (θa)
n∑
i=1

n∑
j=1,i6=j

(pijvij) (1)

which is the maximum amount of flow volume allowed to
be dropped, according to the user-defined quality require-
ment.

4 IEEE TRANSACTIONS ON COMPUTERS

3.2 The Quality Model

Approximation level and input data influence output qual-
ity loss. In this paper, we propose a lightweight quality
model considering both of these two factors. It is built by
offline profiling as follows:

1) Approximable data in source code (e.g., the pix-
els of input images in the application Sobel) of
an application are figured out. The source code is
modified such that the original data are replaced by
approximated (lossy) version, which are generated
by a piece of code that mimics the approximator.

2) The approximator provides a set of d data drop
rate options X = {π1, . . . , πd}. An input dataset is
provided for each application. For each instance of
input data, the application runs d times by varying
the data drop rate π, and the corresponding quality
loss ε is collected. That is, for the ith input data
instance, the jth application execution generates a
pair of 〈πi,j , εi,j〉.

3) Three statistical features of input data are used as
input variables to the quality model, which are
mean value, Mean Absolute Error (MAE), and Rel-
ative Mean Square Error (RMSE), denoted by ξmean,
ξMAE, and ξRMSE, respectively. For a data vector
{s1, s2, . . . , sns

} with ns values, these features are
calculated as

ξmean =

∑ns

i=1 si
ns

ξMAE =

∑ns

i=1 |si − ξmean|
ns

ξRMSE =

√∑ns

i=1 (si − ξmean)
2

ns

Statistical features of all the instances are calculated,
for training the quality model in the next step.

4) The quality model takes the statistical features of
input data and drop rate as input, and quality loss
as output. The quality model can be fitted using a
polynomial regression model h(·) of order η.

h(π, ξmean, ξMAE, ξRMSE) =

η∑
i=1

(φ1i · πi

+φ2i · ξmean
i + φ3i · ξMAE

i + φ4i · ξRMSE
i) + φ0

(2)

In Equation 2, π is the data drop rate, while ξmean,
ξMAE, and ξRMSE are the three statistical features
of input data. {φ11, φ21, . . . , φ3η, φ4η} and φ0 are
regression coefficients. Based on the training data
collected in steps 2 and 3, this polynomial model is
fitted using the Gradient Descent method with L1
and L2 regulations [40].

3.3 The Congestion Model

The link capacity c, which is the upper limit of data com-
munication on a single link, can be used as a congestion
threshold. If the total volume of flows passing through a
link exceeds c, this link is regarded as congested. Moreover,
the exceeded flow volume indicates the level of congestion.

For link k, originally (without any approximation), its link
congestion can be written as

max

0,
n∑
i=1

n∑
j=1,i6=j

(rijkvij)− c

 (3)

where rijk is 1 if flow fij passes through link k, and 0
otherwise. That is, rijkvij = 0 if fij does not pass through
link k, i.e., this flow is not counted when calculating flow
volume on this link.

By using data dropping, we define xij as the data drop
rate for fij , and pij as the proportion of approximable data
in fij . pij is a feature of an application, which can be profiled
offline. The link congestion model is updated to be

clink
k = max

0,
n∑
i=1

n∑
j=1,i6=j

(rijk (1− xijpij) vij)− c

 (4)

where (1− xijpij) vij is the flow volume after data drop-
ping.

3.4 The Zero Load Latency

When the network is not severely congested, the most
critical factor of network performance is not the queueing
latency, but the packet zero load latency. The zero load
latency of a packet transmitted from nodes i to j is

Lzero
ij = Lh

ij + Ls
ij (5)

where Lh
ij is the latency for the header flit to reach the desti-

nation depending on communication distance (hop count),
and Ls

ij is the serialization latency, i.e., the latency that the
body and tail flits have to reach the destination. Thus the
serialization latency can be written as

Ls
ij ∝

⌈
ω(1− xij)

ωflit

⌉
(6)

where ω is the packet size, ωflit is the flit size. This serial-
ization latency can be reduced by decreasing the number of
body/tail flits.

3.5 Problem Formulation

Based on the above models, we define an optimization prob-
lem to minimize network latency by selecting an optimal
data drop rate xij for each fij with xij ∈ X , while satisfying
the quality requirement.

The optimization problem can be formulated as

min σ1
m∑
k=1

clink
k + σ2

n∑
i=1

n∑
j=1,i6=j

(
Lzero
ij ·

pijvij
ω

)

⇒
min σ1

m∑
k=1

max

0,
n∑
i=1

n∑
j=1,i6=j

(rijk (1− xijpij) vij)− c


+σ2

n∑
i=1

n∑
j=1,i6=j

((1− xij)pijvij) ,

(7)

subject to

ON PERFORMANCE OPTIMIZATION AND QUALITY CONTROL FOR APPROXIMATE-COMMUNICATION-ENABLED NETWORKS-ON-CHIP 5

offline profiling

runtime quality control

global controller

local controller

annotate

approximable data

simulate behaviors of

the approximator

quality model

flow prediction model

trace network flow

Fig. 3. An overall flow for the proposed framework.

n∑
i=1

n∑
j=1,i6=j

(xijpijvij) ≤ g (8)

for each xij∈X .
Equation 7 is to minimize the accumulated congestion

on all of the m links and packet zero load latency, biased
by their respective weights σ1 and σ2. The values of σ1 and
σ2 depend on their contributions to network performance.
Equation 8 guarantees that the amount of dropped data
is under the total error budget g, which is the maximally
allowed amount of data to be dropped. g can be computed
by Equation 1, which involves the user-defined quality
requirement.

4 ACDC: THE QUALITY CONTROL METHOD

4.1 Overview

As shown in Figure 3, the proposed framework has the
following steps. First, the approximable data must be an-
notated in the source code. At the same time, the ap-
proximator of the target system is also implemented as
a software library, which can simulate the data variation
caused by approximation. By offline profiling, these two
together generate data for quality loss modeling. To train
a flow prediction model, the target application is executed
to get the network flow traces.

After the offline profiling, an error budgeting heuristic
manages quality loss at runtime. The quality requirement is
transformed into error budget, that is, the amount of data
allowed to be dropped. Since approximating a data packet
results in some data being dropped, each data approxi-
mation consumes some error budget. To guarantee quality
safety, data approximation is not allowed when the error
budget is insufficient. To optimize network performance by
dropping data while satisfying the quality requirement, we
propose a two level control system as in Figure 4.

Figure 4(a) shows the components of a node. The control
system includes a global controller, together with a local
controller at each node. Each network interface (NI) is
equipped with a data dropper and a recoverer. A data drop-
per drops part of data in a packet (see Section 4.3) according
to the given drop rate, before the packet is injected into
the network. After receiving such an incomplete packet, the
data recoverer recovers the missing data, according to the
received data. Same as in [7], the packet header is extended
with an approximable flag and a data type field, for network
routers to identify whether a packet is approximable.

The drop rate optimization is shown in Figure 4(b). In
Equation 7, the optimization objective is defined as the sum

NIR

C M

NIR

C M Global

Controller

M Cache R RouterC Core

L Local Node

NI Network Interface

G Global Node

G

L LL

L L

LLL

Local Controller

Data Recoverer

Data Dropper

Flow Prediction

G

Control Information

L LL

G

L LL

Total Error Budget g

Congestion

Minimization

Reducing Packet

Serialization Latency

Step 1 Step 2

(a)

(b)

(c)

Fig. 4. An overview of ACDC. (a) Components of a node, (b) two steps
of optimization, and (c) control data transmitted in the network.

of weighted combination of network congestion and zero
load (serialization) latency. In most cases, as network perfor-
mance is sensitive to congestion, we assume that σ1 � σ2,
i.e., congestion is the first consideration in optimization.

In the global optimization, first of all, the total error
budget g is estimated to support these two steps of opti-
mization. In step 1, an algorithm is proposed to determine
a baseline setting of drop rates that minimizes network con-
gestion. During this process, part of the total error budget
is allocated since performing approximation consumes error
budget. In step 2, if the error budget is not used up in step 1,
the remaining error budget is assigned to the nodes. A drop
rate higher than the baseline is set to further reduce packet
serialization latency using this remaining error budget.

Because of the variation of application workloads in
different execution phases, this runtime control is performed
periodically. At time t,

1) Flow prediction (see Section 4.4) is performed in a
distributed way that each local node i predicts the
flow volumes at t + 1 whose source node is node
i, and sends them to the global controller node,
as shown in Figure 4(c). After receiving these flow
predictions, the global controller triggers the global
optimization.

2) In the global optimization, first, a lightweight
heuristic is performed to calculate a baseline
congestion-minimizing setting of flow drop rates,
and to estimate the error budget that this setting
is going to consume. Part of the total error budget
is allocated according to this estimation. Second, the
remaining error budget is assigned to each node for

6 IEEE TRANSACTIONS ON COMPUTERS

Partition 1 Partition 2 Partition npart

1.Even

2.Random

Samples

n
sample

n
data

k

Fig. 5. Two runtime sampling methods.

further reducing serialization latency. The control
information delivered to each node, as shown in Fig-
ure 4(c), includes the baseline flow drop rate setting,
the error budgets for congestion minimization and
serialization latency reduction.

3) The local controller of each node determines the
data drop rate for each approximable data packet.
The data dropper drops data according to this data
drop rate, before the packet is being injected into the
network.

4.2 Drop Rate Computation
Given the quality requirement θa and the statistical features
(ξmean, ξMAE, ξRMSE) of input data, the maximum allowable
drop rate π∗ should be calculated at runtime according to
the quality model. That is,

h(π∗, ξmean, ξMAE, ξRMSE) = θa (9)

To make the computation low-overhead, the following
optimizations are performed. First, when the size of appli-
cation input data is large, calculating the statistical features
can be costly. Therefore, instead of computing over the entire
input data vector, only a subset of sampled data is used. To
sample nsample data out from the entire ndata input data, two
methods are used as shown in Figure 5.

1) The first method (termed as Even) divides the input
data vector evenly into npart partitions of the same
length. For each partition, the first k values are used.
In total, nsample = npartk.

2) The second method (termed as Random) collects
the nsample samples randomly from the input data
vector.

The method Even is able to get good samples when the
input data have strong locality (e.g., in image data, adjacent
pixels tends to be similar).

Given a quality requirement, the following steps are
used to compute the maximum allowable drop rate in a
low-overhead manner.

Notice that the polynomial model h(·) in Equation 2 can
also be written as

h(π, ξmean, ξMAE, ξRMSE) =

η∑
i=1

(φ1j · πi)+

η∑
i=1

(φ2j · ξmean
i + φ3j · ξMAE

i + φ4j · ξRMSE
i) + φ0

(10)

0 31 33

E
rr

o
r

(A
p

p
il

ca
ti

o
n

-s
p

e
c
if

ic
)

Data Drop Rate (%)

30 32

Discrete points generated based on offline knowledge

Estimated based on the discrete points

qa(30%)

qa(31%)

qa(31.5%)

qa(32%)

qa(33%)

Indicating the linear interpolation between two points

Fig. 6. An example of the resulting quality model for non-integer valued
data drop rate.

Except
∑η
i=1(φ1j · πi), other terms do not depend on

data drop rate. Therefore, those terms are grouped into a
constant cfeature, as shown in Equation 11.

h(π, ξmean, ξMAE, ξRMSE) =

η∑
i=1

(φ1j · πi) + cfeature (11)

cfeature is calculated once per execution since the input
data do not change during execution. Now the problem is
simplified to solve the following one,

η∑
i=1

(φ1j · π∗i) = θa − cfeature (12)

To reduce the computation overhead at runtime, we
build a lookup table Ta(π), which takes the quantized drop
rates 1%, 2%, . . . , 100% as input and the quality loss as
output. This table is trained offline. At runtime, to solve
Equation 12, the table is retrieved. Now, given the input
data, the quality model qa(·) is

qa(π) = Ta(π) + cfeature (13)

Note that for a drop rate not recorded in this table (e.g.,
a drop rate of 3.5%), the quality loss is estimated by linear
interpolation, as shown in Figure 6. Furthermore, Algorithm
1 describes that given the quality requirement, how the
maximum allowable drop rate is calculated. This function
can be denoted as qa−1(·), i.e., the inverse function of the
quality model qa(·). When calculating Equation 1, the target
quality loss ε is the given quality requirement θa.

4.3 Data Dropper and Data Recoverer
The proposed control mechanism is designed to exploit the
full power of data dropping methods. In this paper, we

Algorithm 1: Find the target data drop rate
Input : ε: the target quality loss.
Output : π: the corresponding data drop rate

1 for i from 0 to 99 do
2 if ε ≥ qa(i%) and ε ≤ qa((i+ 1)%) then
3 π = i% + ε−qa(i%)

qa((i+1)%)−qa(i%) ;
4 break;
5 end
6 end

ON PERFORMANCE OPTIMIZATION AND QUALITY CONTROL FOR APPROXIMATE-COMMUNICATION-ENABLED NETWORKS-ON-CHIP 7

adopt the data droppers and recoverers proposed in ABDTR
[8] and APPROX-NoC [7]. A brief introduction of these
methods is given in this subsection.

4.3.1 Data Dropper and Recoverer in ABDTR
Figure 7 shows how data are changed during the process of
approximation, i.e., being dropped and then recovered. Data
payload of a packet is formated as a vector of data units (e.g.,
a 32-bit integer), denoted as β1, β2, · · · .

The process of data dropping is similar to sampling,
which skips one data unit after scanning every l data units.
These skipped data units are dropped. Besides the short-
ened data vector, the skipping interval l is encapsulated
together with other meta-data in the header flit.

After receiving a lossy packet at the destination, the
data recoverer recovers the dropped data units. Inversely, it
recovers the dropped data units (βl+1, β2l+2, . . .) based on
the skipping interval l, i.e., inserting one recovered data unit
after every l received data units. For a dropped data unit βi
in the source node, the corresponding recovered data unit
β′i in the destination node is calculated as the average of its
neighboring units

β′i = (βi−1 + βi+1) /2 (14)

For a special case that a data unit has only one neighbor
(e.g., the last data unit is dropped), the value of its neighbor
is copied.

4.3.2 Data Dropper and Recoverer in APPROX-NoC
APPROX-NoC is based on frequent pattern compression,
which replaces the hardcoded frequently-appearing data
patterns by shortened words. An overview of APPROX-
NoC is shown in Figure 8, which summarizes how data are
processed by the data dropper.

For floating-point data, only the mantissa part is ex-
tracted and word-completed by filling 0’s in the most signif-
icant bits. The sign and exponent bits are kept unchanged.
For data units larger than a word (double, long, etc.), they
are processed word-by-word.

After that, the word is processed by the approximate
logic. Before doing the frequent pattern compression, the
original data pattern should be transformed into an approx-
imate pattern with some don’t care bits (wildcards in the
least significant bits). Given the error threshold, the number
of don’t care bits is blog2(value × error threshold)c, based
on the value of the word. The approximate pattern is formed
once the number of don’t care bits is determined. Then

l l

drop

recover

ll 2ll 2 2 1l2 1l2 12 12 12 12 12 11ll 111 2 2l2 2l2 22 22 22 22 22 2

1lllll 11 2 2l2 22 22 22 22 22 2llll2 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 2ll 2ll 2 2 1l2 1l2 12 12 12 12 12 111

ll 2ll 2 2 1l2 1l2 12 12 12 12 12 111

Fig. 7. How a data vector changes during approximation in ABDTR.

TABLE 2
Frequent Pattern Compression in APPROX-NoC

Index Pattern encoded Data size
000 Zero run 3 bits
001 4-bit sign-extended 4 bits
010 One byte sign-extended 8 bits
011 Halfword sign-extended 16 bits
100 Halfword padded with a zero halfword 16 bits
101 Two halfwords, each a byte sign-extended 16 bits
111 Uncompressed word 32 bits

the frequent pattern compression is done by sequentially
matching the approximate pattern to one of the patterns pre-
defined in Table 2, and replacing it into the corresponding
pattern-indexing and compressed data bits.

Data recovery is performed in reverse. It scans the 3-
bit indices serially. For each of them, the original data are
recovered according to its corresponding pattern in Table 2.

4.4 Flow Prediction

To predict flow volumes at the next time unit, they are
treated as time series variables, which can be predicted from
history.

In this paper, the autoregressive (AR) model is used. An
AR model is

yAR (t) = λ1yt−1 + λ2yt−2 + · · ·+ λbyt−b + µ+ λ0 (15)

where yAR (t) is the flow volume prediction based on b
previously observed values. yt is the actual flow volume
at time t. The model order b is selected using Bayesian
information criterion (BIC) [41].

The AR model is trained offline. In the offline profiling,
training samples are collected by monitoring the traffic of
each network flow at each time unit. Then the parameters
are estimated using the least square method [40].

Furthermore, the flow prediction is corrected using a
runtime feedback,

ŷt = yAR (t) + ∆t,

∆t = ∆t−1 + α (yt−1 − ŷt−1)
(16)

where α is the learning rate, and ∆t is the feedback term.

Approximate Logic

Approximate

Pattern

Compute Logic

Mantissa Extraction

Error

Threshold

original

word

Word

Completion

Frequent Pattern

Compression

compressed word

int

float

mantissa
exponent & sign

approximate

pattern

Int or float?

Fig. 8. The lossy compression mechanism used in APPROX-NoC.

8 IEEE TRANSACTIONS ON COMPUTERS

4.5 The Global Controller
First, given the total error budget, the global controller
finds a congestion-minimizing setting of flow drop rates.
At the same time, it estimates and allocates the error budget
for serialization latency reduction. Second, the remaining
error budget is assigned to each node, to further reduce
serialization latency.

4.5.1 Congestion Minimization

Algorithm 2: Network congestion minimization

Input : {v11, v12, . . . , vnn−1}: a set of flow
volumes.

Output : {x11, x12, . . . , xnn−1}: a set of flow data
drop rates.

Function: Find a flow drop rate setting that
minimizes congestion.

1 Initialize each xij to be 0;
2 Initialize total error budget g (see Equation 1);
3 Initialize each clink

k to be
max

(
0,
∑n
i=1

∑n
j=1,i6=j (rijkvij)− c

)
;

4 Initialize each cflow
ij to be

∑m
k=1

(
rijkc

link
k

)
;

5 Initialize each eij to be 1;
6 (i∗, j∗) = arg max(i,j)

(
eijc

flow
ij

)
;

7 while ei∗j∗ = 1 and cflow
i∗j∗ > 0 and g > 0 do

8 k∗ = arg maxk
(
ri∗j∗kc

link
k

)
;

9 xi∗j∗ = min
(
πd,min

(
clink
k∗ , g

)
/ (pi∗j∗vi∗j∗)

)
;

10 ei∗j∗ = 0;
11 g = g − xi∗j∗pi∗j∗vi∗j∗ ;
12 for k′ that ri∗j∗k′ = 1 do
13 clink

k′ = max
(
0, clink

k′ − xi∗j∗pi∗j∗vi∗j∗
)
;

14 for (i, j) that rijk′ = 1 and eij = 1 do
15 cflow

ij =
∑m
k=1

(
rijkc

link
k

)
;

16 end
17 end
18 (i∗, j∗) = arg max(i,j)

(
eijc

flow
ij

)
;

19 end

The decision space of the optimization problem for-
mulated in Section 3.5 is O

(
|X|n(n−1)

)
, since there are

n (n− 1) variables (one for each flow) and xij∈X .
When the network size scales up, the optimal decision

cannot be efficiently found at runtime.
We propose a lightweight heuristic to solve the optimiza-

tion problem in Section 3.5, as detailed in Algorithm 2. The
input of this algorithm is the predicted flow volumes, and
the output is the congestion-minimizing drop rates for each
fij . We define two vectors, clink and cflow, to indicate conges-
tion statuses of the flows and links, respectively. Initially, the
drop rates are set to be 0. After that, the total error budget
is initialized, and congestion of each link is calculated by
Equation 3. The congestion of each flow is initialized as
the sum of the link congestions along its path. Each flow
fij is associated with a label eij indicating whether it is
unprocessed or not. As in line 5, those labels are initialized
to be 1 (unprocessed).

After initialization, drop rates for the flows are set iter-
atively. Before each iteration, the most congested flow fi∗j∗

is selected from the unprocessed ones (see line 6). The most
congested link k∗ along the path of this selected flow is
figured out (see line 8).

For fi∗j∗ , if the exceeded flow volume (i.e., the level
of congestion, as in Section 3.3) equals to the amount of
dropped data, i.e., clink

k∗ = xi∗j∗pi∗j∗vi∗j∗ , the drop rate
xi∗j∗ = clink

k∗ / (pi∗j∗vi∗j∗) can be set to offset this congestion.
However, the amount of dropped data must be smaller than
the error budget, thus xi∗j∗ = min

(
clink
k∗ , g

)
/ (pi∗j∗vi∗j∗).

This drop rate cannot be larger than the maximum drop rate
πd. Therefore, xi∗j∗ = min

(
πd,min

(
clink
k∗ , g

)
/ (pi∗j∗vi∗j∗)

)
as in line 9.

Next, fi∗j∗ is marked as processed, and the available
error budget g is updated to be g − xi∗j∗pi∗j∗vi∗j∗ , i.e.,
subtracting the amount of dropped data estimated in this
iteration. Since the flow volume is reduced, all the links
along this flow are affected, and so are the flows passing
through those links. Congestion statuses of the affected links
and flows are updated, except the flows already processed.
The loop terminates when there is no unprocessed flow, or
the congestion is eliminated, or the error budget is used
up. By analyzing the innermost loop, the worst case time
complexity of Algorithm 2 is O(mn3).

Denote the estimated error budget allocated for conges-
tion minimization as µ, and the portion of µ assigned to
node i as µi. µi can be calculated as

µi =
n∑

j=1,i6=j
(xijpijvij) (17)

which is the estimated amount of dropped data for all flows
starting from node i, when using the congestion-minimizing
flow drop rates for approximation. µ is the sum of all µi’s

µ =
n∑
i=1

µi (18)

4.5.2 Reducing Serialization Latency
Denote the remaining error budget as ν, and the portion of
ν assigned to node i as νi. After running Algorithm 2, ν is
calculated as

ν = g − µ (19)

If ν is larger than zero, higher drop rates can be used
to further reduce serialization latency. We define ρi as an
indicator of the ability to drop more data for node i. It is
measured by

ρi =
n∑

j=1,i6=j
((πd − xij) pijvij) (20)

For each flow fij , xij is a congestion-minimizing drop
rate. The gap between the maximum drop rate πd and
the congestion-minimizing drop rate xij is πd − xij . By
multiplying the approximable flow volume pijvij , the value
of (πd − xij) pijvij indicates the potential to perform ap-
proximation more aggressively on flow fij . ρi is the sum of
them for all flows starting from node i. In this way, νi is
calculated as

νi = ν · ρi∑n
j=1 ρj

(21)

The global controller then sends control information, i.e.,
µi, νi and {xi1, xi2, . . . , xin}, to node i. At each node, the

ON PERFORMANCE OPTIMIZATION AND QUALITY CONTROL FOR APPROXIMATE-COMMUNICATION-ENABLED NETWORKS-ON-CHIP 9

local controller dynamically decides the final data drop rate
for each incoming data packet, based on the received control
information.

4.6 The Local Controllers

Algorithm 3: Local controller in node i
Input : j: the destination of the incoming packet.
Output : γ: the data drop rate for the incoming

packet.
Function: Decide the drop rate γ for the incoming

packet.
1 Initialize γ to be 0;
2 if µi > 0 then
3 µi = µi − xijω;
4 γ = xij ;
5 end
6 if νi > 0 then
7 νi = νi − (πd − γ)ω;
8 γ = πd;
9 end

In node i, after receiving control information from the
global controller, the two local error budgets (µi and νi)
and congestion-minimizing drop rates for its n − 1 flows
are updated to be the values received from the global
controller. The local controller decides the data drop rate for
injecting an incoming approximable packet, corresponding
to a reduction in error budget. If the error budget is reduced
to 0, approximation is not allowed until the error budget is
updated to be non-zero, to guarantee quality safety.

The local controller in node i works as in Algorithm 3.
For an approximable packet being sent to node j, the process
of local control consists of the following two steps:

1) A temporary drop rate γ is initialized to be 0. If the
error budget µi is larger than 0, γ is temporarily
set to be the congestion-minimizing setting xij . The
amount of dropped data xijω must be subtracted
from µi, where ω is the size of each data packet.

2) If the error budget νi is larger than 0, the maximum
drop rate πd is used for injecting this packet. νi
is decreased by (πd − γ)ω, where (πd − γ) is the
increment of data drop rate.

4.7 Handling Bursty Communications
Let ytij and ŷtij denote the actual and predicted flow volumes
of flow fij at time t, respectively. Figure 9 shows an example
of the two values for the benchmark Sobel. One can see from
Figure 9 that, the flow prediction model is erroneous when
1) yt−1ij is low, and 2) ytij is high (bursty communication).

1) Before time t−1, the flow volume increases steadily.
Therefore, the model keeps predicting the increasing
trend at time t − 1, as shown in Figure 9. It fails
to respond to the sudden decrease of yt−1ij , as indi-
cated by the red shadowed area. The predicted flow
volume ŷt−1ij is erroneous if ŷt−2ij − ŷt−1ij < 0 and
yt−2
ij −y

t−1
ij

yt−2
ij

> 0.5, i.e., when yt−4ij , yt−3ij , yt−2ij keep

increasing but yt−1ij suddenly decreases.

Algorithm 4: Handling bursty communications in
the global controller

Input :
{
ŷt−111 , ŷt−112 , . . . , ŷt−1nn−1

}
: the predicted

volume of each flow at time t− 1.{
ŷt−211 , ŷt−212 , . . . , ŷt−2nn−1

}
: the predicted

volume of each flow at time t− 2.{
yt−111 , yt−112 , . . . , yt−1nn−1

}
: the actual

volume of each flow at time t− 1.{
yt−211 , yt−212 , . . . , yt−2nn−1

}
: the actual

volume of each flow at time t− 2.
Output : {µburst

1 , µburst
2 , . . . , µburst

n }: bursty budget
assigned to each node.

Function: Calculate the bursty budget assigned to
each node.

1 /* After initializing the total error budget g */
2 for i from 1 to n do
3 for j from 1 to n (i 6= j) do
4 µburst

i = 0;

5 if ŷt−2ij − ŷ
t−1
ij < 0 and

yt−2
ij −y

t−1
ij

yt−2
ij

> 0.5 then

6 µburst
i = zburstg

n ;
7 g = g − µburst

i ;
8 break;
9 end

10 end
11 end

2) Due to the runtime feedback correction, at time t, ŷtij
decreases due to the decrease of yt−1ij at time t − 1.
However, ytij becomes high (bursty communication)
and thus the flow prediction model is erroneous
again, as indicated by the blue shadowed area.

In condition 1, a drop rate higher than the optimal one
may be used. However, yt−1ij is low and the influence on
quality loss is trivial. On the contrary, the influence of
condition 2 on performance is non-negligible, since ytij is
high.

Therefore, an enhancement is made to handle bursty
communications. If condition 1 occurs at a node, part of the
total error budget, termed as ”bursty budget”, is assigned
to it. It leads to decreases in others’ error budgets. Since the
total bursty error budget is bounded, the impact is negligible

bursty

communication

Fig. 9. Flow changes in the benchmark Sobel.

10 IEEE TRANSACTIONS ON COMPUTERS

TABLE 3
System Configuration

System Parameters
Number of processors 64 (Alpha 21264 ISA)
Fetch/Decode/Commit size 4 / 4 / 4
L1 D cache (private) 16 KB, two-way, 32B line, two

cycles, two ports, dual tags
L1 I cache (private) 32 KB, two-way, 64B line, two

cycles
L2 cache (shared) MESI 64 KB slice/node, 128B line, six
protocol cycles, two ports
Main memory size 2 GB, latency 200 cycles

NoC Parameters
NoC flit size 48 bits
Data packet size 15 flits, 28 flits
Control packet size 2 flits
NoC latency two cycles for router, one cycle

for link
Virtual channel 2 VCs/VN, 3 VNs
NoC buffer 5× 12 flits
Routing algorithm XY routing

TABLE 4
Benchmark Configuration

Application Quality Metric QR1 QR2
Blackscholes Average relative error of output 0.05 0.1

prices
Swaptions Average relative error of the output 0.2 0.5

prices
Canneal Relative error of the final routing 0.01 0.05

cost
Ferret Percentage of images not being 0.2 0.5

searched out in original results
Fluidanimate Percentage of particles not in same 0.2 0.5

cell as in original results
Sobel Average relative error of the output 10 20

images

on other nodes. Therefore, it leads to little or no impact
if condition 2 (bursty communication) does not happen.
However, if condition 2 does occur, the bursty budget can
help mitigate the high communication workloads.

The proposed method is shown in Algorithm 4, which
calculates the bursty budget assigned to each node. Let
µburst
i be the bursty budget assigned to node i. Parameter
zburst is the maximum proportion of the total error budget
g in bursty budget allocation (thus zburstg is the maximum
amount). For node i, if a flow fij satisfies ŷt−2ij − ŷ

t−1
ij < 0

and
yt−2
ij −y

t−1
ij

yt−2
ij

> 0.5, the global controller assigns bursty

budget to it (see line 5). Since there are n nodes in the
system, the bursty budget assigned to a node is set to be
zburstg
n , indicating zburstg is divided equally for the n nodes

(see line 6). After that, g is updated to be g − µburst
i (see line

7).

Before being sent to node i, the error budget µi is
updated by adding the assigned bursty budget

µi = µi + µburst
i (22)

5 EVALUATION

5.1 Experimental Setup

In this section, our proposed control method ACDC aug-
ments the data droppers and recoverers in ABDTR [8] and
APPROX-NoC (FPVAXX) [7]. Experiments were designed
to compare ABDTR+ACDC and FPVAXX+ACDC with the
original ABDTR and FPVAXX. Experiments were evaluated
using a cycle-accurate full-system many-core simulator [6],
with system configurations listed in Table 3. The simulator
consists of two models, i.e., a functional model and a timing
model. The functional model guarantees data correctness
during the simulation and thus the program executes cor-
rectly, while the timing model estimates the target architec-
ture performance. To evaluate how approximations influ-
ence application output, in the functional model, lossy out-
puts are generated under different drop rates by dropping
data/variables and recovering them, which is similar to the
offline profiling. In the timing model, the corresponding
data packets are dropped and the timing impact of data
packet dropping is estimated. This drop rate connects the
two models and thus a corresponding lossy output can be
given after the simulation.

Six applications selected from PARSEC [42] and AxBench
[43] are used for evaluation. The quality metrics and quality
requirement (QR) settings of these applications are listed
in Table 4. Two quality requirement settings are used for
evaluation, with QR1 being strict and QR2 loose. These QR
settings are not used when evaluating the original FPVAXX
method since it is not able to estimate the application-
specific output error. Instead, as the counterparts of QR1
and QR2, error thresholds of FPVAXX are set to be 0.2 and
0.4, respectively.

To build the quality model, an input dataset must be
provided for each application.

- For Sobel, the dataset from AxBench is used.
- For each of the other applications, the ”simnative”

input data from PARSEC are divided into 100 in-
stances, each of which has a size of ”simlarge”. As a
result, a dataset of 100 instances is created.

70% of the instances are used for building the quality model,
as stated in Section 3.2.

Parameters in ACDC for each application are deter-
mined by offline profiling. Besides, we tested the perfor-
mance of ACDC by varying the length of control time unit to
be 2000, 5000, and 10000 cycles. The results show that, using
different lengths of control time unit leads to no significant

Fig. 10. The quality loss estimations for applications Canneal and Ferret.

ON PERFORMANCE OPTIMIZATION AND QUALITY CONTROL FOR APPROXIMATE-COMMUNICATION-ENABLED NETWORKS-ON-CHIP 11

Fig. 11. R2 score of the proposed model for the methods ABDTR and
FPVAXX.

difference in performance. Thus, it is set to be 10000 cycles
in the following experiments due to the low overhead.

5.2 Experimental Results
The quality loss estimations on the test data for applications
Canneal and Ferret are depicted in Figure 10, using the
FPVAXX approximator. Figure 10 shows that the proposed
quality model fits these test data well, even if they are highly
non-linear. As shown in Figure 11, we have presented the
R2 score [40] of the quality model for all the applications,
where an R2 score close to 1 indicates lower regression error.
On average, the R2 scores of the proposed quality model
for ABDTR and FPVAXX are 0.963 and 0.971, respectively,
which indicates good data fitting.

For each application, the execution time, energy con-
sumption, and average latency are normalized to those of
ABDTR in Figures 12-13, and to FPVAXX in Figures 14-
15. Besides, the quality loss is also normalized. In each
figure, the dashed line in quality loss evaluation is the
quality requirement, which is set to be baseline. Quality
requirement is not satisfied if a bar goes beyond the dashed
line.

Figures 12 and 13 compare ABDTR with ACDC ABDTR
in terms of execution time, energy consumption, average
latency, and quality loss. When the quality requirement is
QR1, on average, ACDC accelerates execution by 8.79% and
reduces energy consumption by 5.95% over ABDTR. For
QR2, on average, ACDC accelerates execution by 13.90%
and reduces energy consumption by 13.23% over ABDTR.
For some applications (e.g., Sobel), ACDC achieves as much
as 29.42% execution speedup over ABDTR.

Fig. 12. Comparison of ABDTR QR1 and ACDC ABDTR QR1. ABDTR
is the original implementation in [8], and ACDC ABDTR augments
ABDTR with ACDC, evaluated under quality requirement QR1.

Fig. 13. Comparison of ABDTR QR2 and ACDC ABDTR QR2. ABDTR
is the original implementation in [8], and ACDC ABDTR augments
ABDTR with ACDC, evaluated under quality requirement QR2.

The main reason is that ABDTR suffers from approx-
imation underutilization, i.e., the resulting quality loss is
much lower than is allowed in all cases. On the other hand,
ACDC ABDTR performs approximation more aggressively.
The reason is that the per-packet quality control of AB-
DTR only guarantees quality safety for each approximation,
whereas the quality control of ACDC optimizes perfor-
mance based on global network status.

In some applications (e.g., Ferret), approximation is not
fully exploited. The reasons are as follows:

1) Since these applications are sensitive to input data
loss, they have low error tolerance. Take Ferret as
an example. In Ferret, instead of using the original
image, the pre-calculated image features are used
as input data. These data, however, have more
critical information than the original image. Such
input data also show lower locality, i.e., similarity
in consecutive data units, which influences the per-
formance of the ABDTR approximator negatively.
Therefore, Ferret is sensitive to input data loss.

2) Some applications do not suffer from severe NoC
congestion, e.g., Swaptions. There is less opportu-
nity to improve network performance by the global
optimization, while the extra overhead must be
paid.

Fig. 14. Comparison of FPVAXX QR1 and ACDC FPV QR1. FPVAXX
is the original implementation in [7], and ACDC FPV augments FPVAXX
with ACDC, evaluated under quality requirement QR1.

12 IEEE TRANSACTIONS ON COMPUTERS

Fig. 15. Comparison of FPVAXX QR2 and ACDC FPV QR2. FPVAXX
is the original implementation in [7], and ACDC FPV augments FPVAXX
with ACDC, evaluated under quality requirement QR2.

3) Another factor is the approximator, i.e., the compres-
sion method itself. In the ABDTR approximator (see
Section 4.3), the highest data drop rate provided
by this approximator is 50%. Even if the quality
requirement is extremely loose, the quality control
method can only approximate less than 50% of data.

Figures 14 and 15 compare FPVAXX with ACDC FPV. A
severe problem in APPROX-NoC is over-approximation, i.e.,
it fails to satisfy the quality requirement. It is mainly caused
by these reasons:

1) FPVAXX does not have an application-specific out-
put error model. It drops data according to the
input data error only, without estimating the output
quality loss. With a quality model, our proposed
method guarantees quality safety.

2) When approximating floating point data, a small
change in mantissa leads to a large variation in the
data value. However, when deciding the number
of approximate bits, FPVAXX considers the error
in mantissa only. That is why Ferret, Fluidanimate
(single-precision), and Swaptions (double-precision)
are less tolerable to approximation. Even though
error-resilience is low in these applications, our
proposed method does not violate the given quality
requirements.

For applications whose quality requirements are satisfied
by both methods, on average, ACDC reduces execution

Fig. 16. Performance comparison when flit size is set to be different
values.

time and energy consumption by 13.75% and 23.25% over
FPVAXX under QR1, respectively. Similarly, on average,
ACDC improves execution time and energy consumption by
11.65% and 26.43% over FPVAXX under QR2. For Blacksc-
holes, ACDC achieves as much as 20.44% execution speedup
over FPVAXX.

The sensitivity of flit size is studied. The performance
evaluation under QR2 is performed with different flit sizes.
ABDTR is chosen as the baseline in normalization. In this
new experiment, different flit sizes are evaluated to show
how flit size influences our proposed method. The experi-
mental results are shown in Figure 16. These results indicate
that ACDC achieves similar performance improvement on
both longer (32 bits) and shorter packets (64 bits and 80 bits).

Moreover, an experiment is performed to evaluate con-
gestion change caused by approximate communication.
Congestion of a packet is measured by 1− Lzero

Ltotal , where Lzero

is the zero load latency and Ltotal is the total latency. As
shown in Figure 17, there are two configurations for appli-
cation Sobel, i.e., with and without approximate commu-
nication, termed as ”approximate” and ”lossless”, respec-
tively. The average congestion metric of finished packets is
calculated every 10,000 cycles. The approximate execution
uses ACDC ABDTR and QR2. One can see from Figure 17
that congestion in the approximate execution is mitigated,
compared to the lossless execution.

To see the impacts on actual output, Figure 18 shows the
edge detection results from Sobel with accurate (lossless)
execution, and by running ACDC ABDTR (approximate)
under QR1 and QR2, respectively. The object edges are
recognizable in the two approximate outputs. They show
no significant difference from the accurate one.

5.3 Overhead

The global controller is implemented as software codes
running on the global controller core, whereas each local
controller is designed as a hardware circuit.

The energy overhead of the ACDC control information
transmission is found to be 6.92% of the total system energy
consumption, on average. As the experiments have shown,
this energy overhead is offset by the energy reduction ob-
tained by our proposed optimization. The average execution
time of the global controller is 419 cycles, which is much
shorter than the length of control time unit.

According to the synthesis result reported by Synopsys
Design Compiler and PrimePower targeting a 45 nm TSMC

Fig. 17. Evaluation of congestion changes in lossless and approximate
executions.

ON PERFORMANCE OPTIMIZATION AND QUALITY CONTROL FOR APPROXIMATE-COMMUNICATION-ENABLED NETWORKS-ON-CHIP 13

(a) (b) (c)

Fig. 18. The resulting approximated outputs of Sobel. (a) The accurate
(lossless) result, (b) approximate result under QR1, and (c) approximate
result under QR2.

library, a local controller has an area of 968 µm2 and power
consumption of 0.636 mW . Using DSENT [44] with a 45 nm
CMOS technology, a router with the configurations in Table
3 consumes 145 mW power, and its area is 462,965 µm2.
The power and area of an ACDC controller are only 0.44%
and 0.21% of a router, respectively. Therefore, the overhead
of ACDC is low.

6 CONCLUSION

In this paper, we proposed an accuracy- and congestion-
aware dynamic traffic control (ACDC) method for approxi-
mate NoCs. A network performance optimization problem
for approximate NoCs is formulated. To solve this prob-
lem, a lightweight mechanism is proposed. An application
quality model and a flow prediction model are built by
offline profiling. At runtime, based on the models, ACDC
manages quality loss through error budgeting. Congestion-
aware data approximations are performed according to
the predicted flow volumes. Experimental evaluations con-
firm that, ACDC significantly outperforms two state-of-the-
art approaches in terms of both performance and energy
consumption. ACDC improves approximation underutiliza-
tion/overutilization existed in these approaches.

REFERENCES

[1] Y. Chen, J. Chhugani, P. Dubey, C. J. Hughes, D. Kim, S. Kumar,
V. W. Lee, A. D. Nguyen, and M. Smelyanskiy, “Convergence
of recognition, mining, and synthesis workloads and its implica-
tions,” Proceedings of the IEEE, vol. 96, no. 5, pp. 790–807, 2008.

[2] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate Computing: a
survey,” IEEE Design & Test, vol. 33, no. 1, pp. 8–22, 2016.

[3] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu, “On reconfiguration-
oriented approximate adder design and its application,” in Pro-
ceedings of the IEEE/ACM International Conference on Computer-Aided
Design, pp. 48–54, 2013.

[4] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. C.
Rinard, “Managing performance vs. accuracy trade-offs with loop
perforation,” in Proceedings of ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pp. 124–134, 2011.

[5] J. S. Miguel, M. Badr, and N. D. E. Jerger, “Load value approxima-
tion,” in Proceedings of the IEEE/ACM International Symposium on
Microarchitecture, pp. 127–139, 2014.

[6] X. Wang, M. Yang, Y. Jiang, P. Liu, M. Daneshtalab, M. Palesi, and
T. Mak, “On self-tuning networks-on-chip for dynamic network-
flow dominance adaptation,” ACM Transactions on Embedded Com-
puting Systems, vol. 13, no. 2s, pp. 73:1–73:21, 2014.

[7] R. Boyapati, J. Huang, P. Majumder, K. H. Yum, and E. J. Kim,
“APPROX-NoC: a data approximation framework for network-
on-chip architectures,” in Proceedings of the International Symposium
on Computer Architecture, pp. 666–677, 2017.

[8] L. Wang, X. Wang, and Y. Wang, “ABDTR: approximation-based
dynamic traffic regulation for networks-on-chip systems,” in Pro-
ceedings of the IEEE International Conference on Computer Design,
pp. 153–160, 2017.

[9] Y. Chen and A. Louri, “An online quality management frame-
work for approximate communication in network-on-chips,” in
Proceedings of the ACM International Conference on Supercomputing,
pp. 217–226, 2019.

[10] S. Xiao, X. Wang, M. Palesi, A. K. Singh, and T. Mak, “ACDC: an
accuracy- and congestion-aware dynamic traffic control method
for networks-on-chip,” in Proceedings of the Design, Automation and
Test in Europe, pp. 630–633, 2019.

[11] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan,
“Approximate computing and the quest for computing efficiency,”
in Proceedings of the Design Automation Conference, pp. 120:1–120:6,
2015.

[12] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. A. Mahlke,
“SAGE: self-tuning approximation for graphics engines,” in Pro-
ceedings of the IEEE/ACM International Symposium on Microarchitec-
ture, pp. 13–24, 2013.

[13] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “EnerJ: approximate data types for safe and general
low-power computation,” in Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pp. 164–174, 2011.

[14] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural ac-
celeration for general-purpose approximate programs,” in Proceed-
ings of the IEEE/ACM International Symposium on Microarchitecture,
pp. 449–460, 2012.

[15] A. Yazdanbakhsh, B. Thwaites, H. Esmaeilzadeh, G. Pekhimenko,
O. Mutlu, and T. C. Mowry, “Mitigating the memory bottleneck
with approximate load value prediction,” IEEE Design & Test,
vol. 33, no. 1, pp. 32–42, 2016.

[16] J. S. Miguel, J. Albericio, A. Moshovos, and N. D. E. Jerger, “Dop-
pelgänger: a cache for approximate computing,” in Proceedings of
the International Symposium on Microarchitecture, pp. 50–61, 2015.

[17] M. Imani, A. Rahimi, and T. S. Rosing, “Resistive configurable
associative memory for approximate computing,” in Proceedings of
the Design, Automation and Test in Europe, pp. 1327–1332, 2016.

[18] D. Mohapatra, V. K. Chippa, A. Raghunathan, and K. Roy, “Design
of voltage-scalable meta-functions for approximate computing,” in
Proceedings of the Design, Automation and Test in Europe, pp. 950–955,
2011.

[19] Y. Wang, J. Deng, Y. Fang, H. Li, and X. Li, “Resilience-aware fre-
quency tuning for neural-network-based approximate computing
chips,” IEEE Transactions on Very Large Scale Integration Systems,
vol. 25, no. 10, pp. 2736–2748, 2017.

[20] S. Mitra, M. K. Gupta, S. Misailovic, and S. Bagchi, “phase-
aware optimization in approximate computing,” in Proceedings of
the International Symposium on Code Generation and Optimization,
pp. 185–196, 2017.

[21] A. Farrell and H. Hoffmann, “MEANTIME: achieving both min-
imal energy and timeliness with approximate computing,” in
Proceedings of USENIX Annual Technical Conference, pp. 421–435,
2016.

[22] D. S. Khudia, B. Zamirai, M. Samadi, and S. A. Mahlke, “Rumba:
an online quality management system for approximate comput-
ing,” in Proceedings of the International Symposium on Computer
Architecture, pp. 554–566, 2015.

[23] H. Hoffmann, “CoAdapt: predictable behavior for accuracy-aware
applications running on power-aware systems,” in Proceedings of
the Euromicro Conference on Real-Time Systems, pp. 223–232, 2014.

[24] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agar-
wal, and M. C. Rinard, “Dynamic knobs for responsive power-
aware computing,” in Proceedings of the international conference on
architectural support for programming languages and operating systems,
pp. 199–212, 2011.

[25] V. K. Chippa, A. Raghunathan, K. Roy, and S. T. Chakradhar, “Dy-
namic effort scaling: managing the quality-efficiency tradeoff,” in
Proceedings of the Design Automation Conference, pp. 603–608, 2011.

[26] M. T. Teimoori, M. A. Hanif, A. Ejlali, and M. Shafique, “AdAM:
adaptive approximation management for the non-volatile memory
hierarchies,” in Proceedings of the Design, Automation and Test in
Europe, pp. 785–790, 2018.

[27] T. Wang, Q. Zhang, N. S. Kim, and Q. Xu, “On effective and
efficient quality management for approximate computing,” in

14 IEEE TRANSACTIONS ON COMPUTERS

Proceedings of the International Symposium on Low Power Electronics
and Design, pp. 156–161, 2016.

[28] C. Xu, X. Wu, W. Yin, Q. Xu, N. Jing, X. Liang, and L. Jiang, “On
quality trade-off control for approximate computing using itera-
tive training,” in Proceedings of the Design Automation Conference,
pp. 52:1–52:6, 2017.

[29] D. Mahajan, A. Yazdanbakhsh, J. Park, B. Thwaites, and H. Es-
maeilzadeh, “Towards statistical guarantees in controlling qual-
ity tradeoffs for approximate acceleration,” in Proceedings of
the ACM/IEEE International Symposium on Computer Architecture,
pp. 66–77, 2016.

[30] J. Park, E. Amaro, D. Mahajan, B. Thwaites, and H. Esmaeilzadeh,
“AxGames: towards crowdsourcing quality target determination
in approximate computing,” in Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 623–636, 2016.

[31] X. Wang, B. Zhao, T. Mak, M. Yang, Y. Jiang, and M. Daneshtalab,
“On fine-grained runtime power budgeting for networks-on-chip
systems,” IEEE Transactions on Computers, vol. 65, no. 9, pp. 2780–
2793, 2016.

[32] J. Ng, X. Wang, A. K. Singh, and T. Mak, “Defragmentation for
efficient runtime resource management in NoC-based many-core
systems,” IEEE Transactions on Very Large Scale Integration Systems,
vol. 24, no. 11, pp. 3359–3372, 2016.

[33] L. Wang, X. Wang, and T. Mak, “Adaptive routing algorithms
for lifetime reliability optimization in network-on-chip,” IEEE
Transactions on Computers, vol. 65, no. 9, pp. 2896–2902, 2016.

[34] Z. Li, J. S. Miguel, and N. D. E. Jerger, “The runahead network-on-
chip,” in Proceedings of the IEEE International Symposium on High
Performance Computer Architecture, pp. 333–344, 2016.

[35] A. B. Ahmed, D. Fujiki, H. Matsutani, M. Koibuchi, and
H. Amano, “AxNoC: low-power approximate network-on-chips
using critical-path isolation,” in Proceedings of the IEEE/ACM Inter-
national Symposium on Networks-on-Chip, pp. 6:1–6:8, 2018.

[36] V. Y. Raparti and S. Pasricha, “DAPPER: data aware approximate
NoC for GPGPU architectures,” in Proceedings of the IEEE/ACM
International Symposium on Networks-on-Chip, pp. 7:1–7:8, 2018.

[37] G. Ascia, V. Catania, S. Monteleone, M. Palesi, and D. Patti, “Im-
proving energy consumption of NoC based architectures through
approximate communication,” in Proceedings of the Mediterranean
Conference on Embedded Computing, pp. 1–4, 2018.

[38] G. Ascia, V. Catania, S. Monteleone, M. Palesi, D. Patti, and J. Jose,
“Approximate wireless networks-on-chip,” in Proceedings of the
Conference on Design of Circuits and Integrated Systems, pp. 1–6, 2018.

[39] G. Ascia, V. Catania, S. Monteleone, M. Palesi, D. Patti, J. Jose, and
V. Salerno, “Exploiting data resilience in wireless network-on-chip
architectures,” ACM Journal on Emerging Technologies in Computing
Systems, vol. 16, no. 2, pp. 1–27, 2020.

[40] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical
learning: data mining, inference, and prediction. 2009.

[41] G. Schwarz, “Estimating the dimension of a model,” The annals of
statistics, vol. 6, no. 2, pp. 461–464, 1978.

[42] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC bench-
mark suite: characterization and architectural implications,” in
Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques, pp. 72–81, 2008.

[43] A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-
Kamran, “AxBench: a multiplatform benchmark suite for approx-
imate computing,” IEEE Design & Test, vol. 34, no. 2, pp. 60–68,
2017.

[44] C. Sun, C. O. Chen, G. Kurian, L. Wei, J. E. Miller, A. Agarwal,
L. Peh, and V. Stojanovic, “DSENT - a tool connecting emerging
photonics with electronics for opto-electronic networks-on-chip
modeling,” in Proceedings of the IEEE/ACM International Symposium
on Networks-on-Chip, pp. 201–210, 2012.

Siyuan Xiao received the bachelor degree
in Computer Science and Technology from
Guangdong Polytechnic Normal University,
Guangzhou, China. He is pursuing his master
degree in the School of Software Engineering,
South China University of Technology. His
research interests include approximate
computing and many-core systems.
E-mail: syxiao1337@gmail.com

Xiaohang Wang received the B.Eng. and Ph.D
degree in communication and electronic engi-
neering from Zhejiang University, in 2006 and
2011. He is currently an associate professor at
South China University of Technology. He was
the receipt of PDP 2015 and VLSI-SoC 2014
Best Paper Awards. His research interests in-
clude many-core architecture, power efficient ar-
chitectures, optimal control, and NoC-based sys-
tems.

Maurizio Palesi received the MSc and PhD de-
grees in computer science engineering from the
University of Catania, Italy, in 1999 and 2003,
respectively. He is an associate professor with
Department of Electrical, Electronics and Com-
puter Engineering University of Catania, Cata-
nia, Italy. He has published one book, six book
chapters, and more than 110 refereed interna-
tional journals and conference papers. His cur-
rent research interests include embedded sys-
tems design and single-chip implementations of

complete embedded systems known as system-on-chip. He was a re-
cipient of the Best Paper Award from DATE 2011. He is an associate
editor of eight publications. He has served as a guest editor for several
international journals. He is a senior member of the IEEE.

Amit Kumar Singh is a Lecturer (Assistant Pro-
fessor) at University of Essex, UK. He received
the B.Tech. degree from IIT, Dhanbad, India, in
2006, and the Ph.D. degree from Nanyang Tech-
nological University (NTU), Singapore, in 2013.
His current research interests are design and
optimisation of multi-core based computing sys-
tems with focus on performance, energy, temper-
ature, reliability and security. He has published
over 90 papers in reputed journals/conferences,
and received several best paper awards, e.g.

IEEE TC February 2018 Featured Paper, ICCES 2017, ISORC 2016,
PDP 2015, HiPEAC 2013 and GLSVLSI 2014 runner up. He has served
on the TPC of IEEE/ACM conferences like DAC, DATE, CASES and
CODES+ISSS.

Liang Wang received the BEng and MSc degree
in electronics engineering from Harbin Institute
of Technology, China, in 2011 and 2013 respec-
tively, and the Ph.D degree in Computer Science
and Engineering from The Chinese University of
Hong Kong, Hong Kong, in 2017. He is currently
a postdoctoral research fellow at Institute of Mi-
croelectronics, Tsinghua University, China. His
research interests include power-efficient and
reliability-aware design for network-on-chip and
many-core system.

Terrence Mak is an Associate Professor at
Electronics and Computer Science, University of
Southampton. Supported by the Royal Society,
he was a Visiting Scientist at Massachusetts
Institute of Technology during 2010, and also,
affiliated with the Chinese Academy of Sci-
ences as a Visiting Professor since 2013. Pre-
viously, He worked with Turing Award holder
Prof. Ivan Sutherland, at Sun Lab in California
and has awarded Croucher Foundation scholar.
His newly proposed approaches, using runtime

optimisation and adaptation, strengthened network reliability, reduced
power dissipations and significantly improved overall on-chip commu-
nication performances. Throughout a spectrum of novel methodolo-
gies, including regulating traffic dynamics using network-on-chips, en-
abling unprecedented MTBF and to provide better on-chip efficiencies,
and proposed a novel garbage collections methods, defragmentation,
together led to three prestigious best paper awards at DATE 2011,
IEEE/ACM VLSI-SoC 2014 and IEEE PDP 2015, respectively. More
recently, his newly published journal based on 3D adaptation and
deadlock-free routing has awarded the prestigious 2015 IET Computers
& Digital Techniques Premium Award. He has published more than 100
papers in both conferences and journals and jointly published 4 books.

