
Efficient Heuristics for Minimizing Communication Overhead
in NoC-based Heterogeneous MPSoC Platforms

Amit Kumar Singh, Wu Jigang, Alok Prakash, Thambipillai Srikanthan (Senior Member, IEEE)
Centre for High Performance Embedded Systems, Nanyang Technological University, Singapore

{amit0011, asjgwu, alok0001, astsrikan}@ ntu.edu.sg

Abstract

 The number of tasks executing in MPSoC platform can
exceed the available resources, requiring efficient run-time
mapping strategies to meet the real-time constraints of the
applications. This paper describes two new run-time map-
ping heuristics for mapping applications onto NoC-based
Heterogeneous Multiprocessor Systems-on-Chip (MPSoC).
The heuristics proposed in this paper attempt to map the
tasks of an application in close proximity to each other so
as to minimize the communication overhead. In addition,
they have been shown to alleviate NoC congestion bottle-
necks to maximize overall computation performance. Based
on our evaluations to map applications with varying num-
ber of tasks onto an 8× 8 platform, we demonstrate that the
new mapping heuristics are capable of reducing the total
execution time, channel load and latency of applications
when compared to state-of-the-art run-time mapping heu-
ristics reported in the literature. Moreover, we show that
the proposed heuristics are highly scalable and provide for
high-speed realization justifying their applicability to com-
plex MPSoC platforms.

Keywords: Mapping heuristic, multiprocessor system-on-
chip (MPSoC) design, run-time mapping, NoC

1 Introduction

 Single general purpose processor may be sufficient for
small and less complex applications but the complexity of
embedded software applications and their performance re-
quirements have increased substantially. Thus, there is an
inevitable need for high performance computing platforms.
Thankfully, the significant advancements in Nanotechnolo-
gy have made it feasible to integrate several embedded pro-
cessors on a single chip creating a high performance multi-
processor system-on-chip (MPSoC). MPSoC is being in-
creasingly used to meet the higher computing demands of
the real world complex applications [1].
 There are several issues while designing an MPSoC. The
communication infrastructure is one of the important issues
and it can be bus-based, point-to-point or Networks-on-
Chip (NoCs)-based [2]. NoCs have several advantages over
others, such as scalability and shorter wires, which mini-
mizes power consumption. NoCs can integrate instruction

set processors (ISPs), specialized processing elements like
Digital Signal Processors (DSPs), FPGA fabric tiles, dedi-
cated intellectual property cores (IPs) and specialized
memories on a single chip to make a NoC-based Heteroge-
neous MPSoC in order to meet the ever-rising performance
constraints [3] [4].
 The applications can be mapped by static or run-time
mapping techniques. Static mapping techniques [5] [6] cov-
er only certain scenarios and find the best placement of
tasks at design-time and hence these are not suitable for
dynamic workloads. In Heterogeneous MPSoCs, task mi-
gration [3] [7] [8] is also used at run-time to improve the
performance. Task migration relocates the tasks from one
processing element to another processing element when a
performance bottleneck is detected or when the workload
needs to be distributed more homogeneously.
 Embedded applications like multimedia and networking
contain dynamic workload of tasks. So at any point, the
number of tasks running on the MPSoC platform may ex-
ceed the available resources, requiring the tasks to be
mapped at run-time to meet the real-time constraints.
 This work describes two new run-time mapping heuris-
tics based on our packing strategy and their performance
evaluation for a NoC-based heterogeneous MPSoC. State-
of-the-art run-time mapping heuristics do not perform well
when applied to different scenarios. The new presented
heuristics give better performance compared to state-of-the-
art mapping heuristics. The MPSoC platform that we con-
sider is almost similar to that described in [9]. The tasks of
an application are mapped in close proximity within a par-
ticular region in order to reduce the communication over-
head between the communicating tasks, to improve the per-
formance.
 The rest of the paper is organized as follows: Section 2
describes related work on task mapping. Section 3 describes
the MPSoC architecture. In Section 4, we present our novel
task mapping algorithms. Experimental setup and the re-
sults are presented in Section 5, with Section 6 concluding
the paper.

2 Related Work

Several static (design-time) mapping techniques have

been proposed to solve the problem of mapping tasks to
their respective processing elements. Static mapping algo-

2009 IEEE International Symposium on Rapid System Prototyping

1074-6005/09 $25.00 © 2009 IEEE

DOI 10.1109/RSP.2009.18

55

2009 IEEE/IFIP International Symposium on Rapid System Prototyping

1074-6005/09 $25.00 © 2009 IEEE

DOI 10.1109/RSP.2009.18

55

rithms for NoC-based and bus-based MPSoCs are presented
in [5] [6] and [10]. These mapping algorithms are not suita-
ble for dynamic workloads.

Carvalho et al. [9] present heuristics for run-time task
mapping in NoC-based heterogeneous MPSoCs. Tasks are
mapped on the fly, according to the communication re-
quests and the load in the NoC links. The performance of
the mapping heuristics with dynamic workloads, targeting
NoC congestion minimization to optimize the NoC perfor-
mance is investigated.

Nollet et al. [11] describe a run-time task assignment
heuristic for efficiently mapping the tasks in a multiproces-
sor systems-on-chip containing FPGA fabric tiles. With the
presence of FPGA fabric tiles, algorithm is capable of man-
aging a configuration hierarchy and this improves the task
assignment success rate and quality.

Smit et al. [4] present a run-time task assignment algo-
rithm to map the task-graph on a heterogeneous MPSoC
platform. The algorithm maps a task before all other task
that needs a scarce resource by taking availability of re-
sources into account. In [12] authors have presented effi-
cient heterogeneous multi-core architectures for streaming
applications and run-time mapping of these applications
onto these multi-core architectures.

Holzenspies et al. [13] present a run-time spatial map-
ping technique to map the streaming applications onto a
heterogeneous MPSoC. The mapping technique contains
four steps and is applied to a HIPERLAN/2 receiver exam-
ple that takes less than 4 ms to run on an ARM926 running
at 100 MHz.

Faruque et al. [14] describe run-time agent based distri-
buted application mapping techniques for NoC-based hete-
rogeneous MPSoCs. To map applications first a cluster
negotiation algorithm is used to find the most suitable vir-
tual cluster for each application and then a mapping algo-
rithm is used to map the tasks of each application into their
corresponding virtual clusters.

In [15] and [16] run-time mapping techniques to map the
tasks onto MPSoC platforms are presented. The MPSoC
platform in [15] is homogeneous (all IPs of same type)
while in [16], it is heterogeneous.

In [9], five mapping heuristics, First Free (FF), Nearest
Neighbor (NN), Minimum Maximum Channel Load
(MMC), Minimum Average Channel Load (MAC) and Path
load (PL) with their performance evaluation are described.
Authors in [9] have combined NN search strategy and PL
computation approach to find the best neighbor (BN)
among all the nearest neighbors. For each mapping z, PL is
computed from equation 1, where ratec(i,j) and ratec(j,i) are
the rates in the individual channels, from the master to the
new slave and the rates of the channels in opposite direc-
tion. This latest heuristic (BN) is presented in [17]. NN and

BN are taken for performance comparison with our map-
ping heuristics.

∑ ∑+=),(),(cos ijcjicz rateratet (1)

3 System Description

 The MPSoC architecture model used in this work con-
tains a set of processing nodes which interact via a commu-
nication network composed of routers (R) as shown in fig-
ure 1. Processing nodes may support either software or
hardware task. Software tasks execute in instruction set
processors (ISPs) and hardware tasks execute in reconfigur-
able logics (reconfigurable area-RA) or in dedicated IPs.
The RA allows run-time mapping of hardware tasks through
dynamic reconfiguration. The communication network uses
message passing protocol for inter-task communication.

Fig 1: Conceptual Heterogeneous MPSoC Architecture

One of the processing node is used as the Manager Pro-
cessor (MP) which is responsible for task scheduling, task
binding, task placement (mapping), task migration, resource
control and reconfiguration control. The MP starts the ini-
tial task of each application and new tasks are loaded into
the MPSoC from the task memory when a communication
to them is required and they are not already mapped.

This work focuses on resource control, task binding and
task placement (mapping). The MP takes the mapping deci-
sion according to the PE and NoC use. The resources status
is updated at run-time to provide the MP with accurate in-
formation about the resource occupancy. There are three
queues, one for each type (i.e. hardware, software and ini-
tial) of task and task scheduling is based on queue strate-
gies. If there are no free resources in the system the task
enters into the queue and waits until this condition changes.

4 Proposed Algorithms

This section discusses our packing strategy and two run-
time task mapping heuristics based on it.

4.1 Definitions

5656

 Definitions necessary to explain our run-time mapping
heuristics based on packing strategy are as follows:
Definition 1: An application communication task graph is
an acyclic directed graph ATG = (T, E) as shown in figure 2
(a), where T is set of all tasks of an application and E is the
set of all edges in the application. Out of all the tasks
present in T, one task is the initial task. The initial task has
no master, so it can not be the end point of any edge in E.
All the elements present in E belongs to a pair of communi-
cating tasks as a master-slave pair as in figure 2 (b). E is
represented as (tidm, tids, (Vms, Rms, Vsm, Rsm)), where tidm
represents the master task identifier, tids represents the slave
task identifier; Vms and Rms are the data volumes and data
rate sent from master to slave respectively; Vsm and Rsm are
the data volumes and data rate sent from slave to master
respectively. The message rate is described as percentage of
available link bandwidth.

(a) (b)

Fig 2: Application Modeling and Master-Slave pair

Definition 2: A NoC-based heterogeneous MPSoC archi-
tecture is a directed graph AG = (P, V), where P is the set
of tiles pi and vi,j є V presents the physical channel between
two tiles pi and pj. A tile pi є P consists of a router, a net-
work interface, a heterogeneous processing element, local
memory and a cache.
Definition 3: The application mapping is represented by
mpng : ti (∈T) |→ pi (∈ P) to map the tasks of the applica-
tion onto the NoC-based heterogeneous MPSoC.

4.2 Initial Task Mapping
 Initial tasks can only be mapped onto software
processing elements as they are software tasks. The way in
which initial tasks of each application are mapped has a
significant impact on the performance of run-time mapping.
The initial tasks can be mapped in two different ways. In
one way, the initial tasks are mapped on the first free posi-
tion found in the network. This may cause the initial tasks
to be placed very close to each other. Now, when rest of the
tasks of different applications are mapped, the applications
need to share the same NoC region, resulting in longer
waiting time for a resource to become free for task map-
ping, and increased channel congestion. In the second way,
virtual clusters are found by partitioning the NoC into re-
gions. One initial task is placed into each virtual cluster.
This work considers the clustering approach.

 The MP does not know the whole application graphs. It
knows only the initial tasks. When initial tasks start their
execution, the slave tasks are mapped dynamically, accord-
ing to the communication request, sent to the MP. A run-
time mapping heuristic is required to map these new tasks.
In next sub-sections our packing strategy and run-time
mapping heuristics based on packing are presented.

4.3 Our Packing Strategy
 The state-of-the-art run-time mapping heuristics do not
perform well when applied to different scenarios. The
mapping heuristics (NN, BN) considered in this work for
comparison are not so efficient for scenarios, where num-
ber of tasks in an application is varied. The mapping heu-
ristics developed with our packing strategy give better per-
formance for all the scenarios when compared with the NN
and BN heuristics.
 In our packing strategy, all tasks of an application are
tried to be mapped close to each other within a particular
region. This strategy is applied to all the applications to be
mapped on to the MPSoC platform as shown in figure 3.
These regions can also be called as virtual clusters. The
initial task (starting task) of each application is mapped at
right-top position within the virtual clusters. New incoming
tasks of an application are mapped to left or down side
processing element (PE) around the node (PE) making the
request. If neither left nor down side PE is able to execute
the requested task, only then the task is tried to be mapped
on the top or right side PE. The same strategy is followed
for each application.
 The packing strategy tries to map each application within
a particular virtual cluster with initial task positions as spe-
cified above. The strategy tries to map the communicating
tasks of an application close to each other within a virtual
cluster in a compact manner, in order to avoid the commu-
nication overhead between the communicating tasks.

Fig 3: Initial tasks placement for mapping (packing) ap-
plications

5757

Fig 4: Our 8 x 8 NoC Model. Dashed lines denote the
cluster limits

 Execution time of an application depends on computation
time and communication time. By packing strategy we are
able to reduce the communication overhead, thus reducing
the communication time and hence the execution time. Av-
erage packet latency depends on the distance between the
source and target PEs and the congestion in the communi-
cation path. As packing strategy maps the tasks close to
each other, reducing the distance between source and target
PEs, resulting in reduced latency. Channel load also gets
reduced as it depends on the communication overhead.

4.4 Packing based run-time Mapping Algorithms
 Our run-time mapping heuristics are motivated by the
packing strategy as discussed in section 4.3. The given heu-
ristics are light-weight in terms of execution cycles, channel
load and latency.

4.4.1 Algorithm 1
 This algorithm is based on packing strategy along with
the search space (circular search space) of NN heuristic.
Similar to NN heuristic, a free node able to execute the re-
quested task around the node making the request is
searched. First the neighbors at hop distance one are
searched. If node(s) at hop distance one is(are) not able to
execute the requested task then nodes at hop distance two
are put in the search space and so on. The search space goes
on up to the NoC limit (step 6 in Algorithm 1). In our heu-
ristic same search strategy along with the packing strategy
is applied as explained in Algorithm 1.
 In order to map multiple applications at a time, algorithm
1 is applied for each application. First, suitable clusters for
applications are found and initial tasks are mapped as in
figure 4. Then new coming tasks (requested tasks) are
mapped dynamically, by applying packing strategy along
with NN search strategy explained in algorithm 1.

 The task is mapped in the same manner at each hop dis-
tances and platform resources are updated when a task gets
mapped. If none of the PEs in the NoC are able to execute a
task, then it is placed in its corresponding queue and waits
for a resource to become free that can execute the task.

Algorithm 1: Run-time mapping

Input: ATG(T,E), AG(P,V)
Output: mpng (mapping ATG(T,E) AG(P,V))
type (ti): type of task (HW, SW or INI)
type(pi): type of tile (HW, SW or INI)
NFR[type]: number of free resource(s) of type type in NoC
(1) Find a suitable cluster for the application (from figure 4)
(2) Map the initial task (INI) at right-top position in cluster
(3) for all ti є T (except INI, already mapped)
(4) for all unmapped ti that is requested
(5) if (NFR[type(ti)] != 0)
(6) for hop_distance = 1 to NoC limit
(7) Select left and down side node(s) (near requesting

node)
(8) if (node(s) supported)
(9) Select first free supported node pi є P to map ti
(10) insert(pi to mpng); update(resources by mpng)
(11) wait and go back to (4) if new task is requested
(12) else
(13) Select right and up side node(s) (near requesting

node)
(14) if (node(s) supported)
(15) Select first free supported node pi є P to map ti
(16) insert(pi to mpng); update(resources by mpng)
(17) wait and go back to (4) if new task is requested
(18) end for
(19) else
(20) insert(ti to Queue(type(ti)))
(21) wait until NFR[type(ti)] != 0 (updated at run-time)
(22) if (NFR[type(ti)] != 0)
(23) release(ti from Queue(type(ti))) and go back to (6)
(24) end for
(25) end for

4.4.2 Algorithm 2
 This algorithm is combination of the above algorithm
(Algorithm 1) and path load (PL) computation approach.

Algorithm 2: Run-time mapping
In algorithm 1, path load computation is incorporated by
replacing the lines (9) and (15) both by:

• Calculate path load for node(s) (Eq. 1, Section 2)
• Select node pi with minimum path load

The rest of the lines remain same as in algorithm 1.

 In addition to mapping the tasks in close proximity to
avoid the communication overhead, this heuristic also tries
to distribute the channel load by considering the path load,

5858

 (a) Applications having 10 task each (b) Applications having 7 tasks each (c) Applications having 4 tasks each

Fig 5: Average Channel Load comparison of Algorithm 1 and Algorithm 2 with NN and BN respectively

 (a) Applications having 10 task each (b) Applications having 7 tasks each (c) Applications having 4 tasks each

Fig 6: Execution Time comparison of Algorithm 1 and Algorithm 2 with NN and BN respectively

resulting in reduced average channel load. Thus it is a con-
gestion aware mapping heuristic.

5 Experiments and Results
 All the experiments are performed by ModelSim co-
simulation (System-C for applications and VHDL for the
NoC). The results evaluated are average channel load, total
execution time and latency of applications.

5.1 Experimental Setup
 The simulation platform used for our experiments is sim-
ilar to that in [9] and [17]. This section describes the expe-
rimental set up used.
 All the applications are modeled as in figure 2 (a), with
initial tasks, hardware tasks and software tasks. The values
present on the edges represent the volume and rates of data
to be sent and received by the master as explained in defini-
tion 4.1. The NoC is modeled as in figure 4 with initial
tasks supported PEs at the top-right position in each cluster.
Number of initial tasks may be different for different scena-
rios.
 The experiments are performed for different scenarios. In
each scenario 20 applications are taken with varying injec-
tion rate (% of available channel bandwidth). The results
are shown for: (I) each application having 10 tasks (1initial,
6 software and 3 hardware tasks), (II) each application hav-
ing 7 tasks (1 initial, 4 software and 2 hardware) and (III)
each application having 4 tasks (1 initial, 2 software and 1
hardware tasks) simulation scenarios.

 Each task transmits from 200 to 500 packets with size
varying from 100 to 400 16-bit flits. The task processing
time is fixed.

5.2 Experimental Results
 Results obtained from our proposed heuristics are com-
pared with the state-of-the-art run-time mapping heuristics.
5.2.1 Channel Load
 The average channel load represents the NoC use. In our
mapping heuristics, first heuristic (based on NN) does not
consider traffic during mapping, but explores the proximity
of communicating tasks. In second heuristic (based on BN)
we consider the traffic as well during mapping, thus trying
to distribute the channel load more uniformly. As we
packed the communicating tasks as close as possible, hence
they don’t interfere with the channel of the other applica-
tions’ tasks, resulting in reduced average channel load.
 Graphs in figure 5 show that algorithm 1 and 2 present
less average channel load as compared to NN and BN heu-
ristics respectively. It can be observed that when number of
tasks in each application is reduced, NN and BN do not
perform well. In first scenario ((a)Applications having 10
tasks) algorithm1 and algorithm2 reduce the channel load
by 2.74% and 3.8%, in second scenario (b) by 14.88% and
15.84% and in third scenario (c) by 21.60% and 22.01%
when compared with NN and BN heuristics respectively.
Thus, our heuristics performs better when number of tasks

5959

in each application is less because of better packing of
tasks.
5.2.2 Total Execution Time
 Total execution time for each task comprises of commu-
nication time and computation time. The allocation time
(the time to find the placement (mapping time) and configu-
ration time) is indirectly considered. Communication time
dominates the entire execution time. Since with the packing
strategy tasks are mapped in close proximity, so communi-
cation time gets reduced and so does the total execution
time. It has also been seen that mapping time gets reduced
because we have reduced the search space (explained in
4.4) to find the placement of a task. The graphs in figure 6
show that the total execution time also gets reduced for our
algorithms (algo 1 and algo 2) when compared to the NN
and BN heuristics.
5.2.3 Latency
 The average packet latency depends on the distance be-
tween the source and destination PEs on which communi-
cating tasks are mapped and the congestion in the commu-
nication path. Network congestion depends directly on the
communication rate (% of available bandwidth). Table 1
presents the latency results for different heuristics for the
first scenario. It can be seen that average packet latency for
our algorithms gets reduced compared to NN and BN.

Scenarios

Rates

Average Packet Latency (Clock Cycles)

NN Algo 1 BN Algo 2

Applications
having 10

tasks

5% 142 138 144 139

10% 248 239 233 224

15% 332 323 344 332

20% 447 435 438 423
Table 1- Average Packet Latency measured in clock cycles

6 Conclusions
 This paper details our packing strategy and two run-time
mapping heuristics based on it in order to map the applica-
tions efficiently onto an 8 × 8 NoC-based heterogeneous
MPSoC. First heuristic tries to map the tasks of an applica-
tion in close proximity, reducing the communication over-
head (communication time) between the communicating
tasks. The second heuristic considers traffic in addition to
the proximity of tasks while mapping, resulting in more
uniformly distributed channel load. Our mapping heuristics
reduce the average channel load by a large amount with a
significant improvement in total execution time and laten-
cy, when compared to the mapping heuristics presented in
[9] [17]. The improvements are clearly enunciated in the
experiments and results section. As mentioned before the
processors in this work can execute only one task at a time,
so in future, we plan to extend the mapping heuristics to
multi-tasking processors.

7 Acknowledgments
 We thank Mr. Ewerson Carvalho (first author of the pa-
pers [9] and [17]) for providing us the simulation environ-
ment and helping us in explaining details via mails.

References

[1] Jerraya, A.; et al. Guest Editors' Introduction: Multiprocessor
Systems-on-Chips. IEEE Computer, v.38(7), 2005.

[2] Benini, L. and Micheli, G. Networks on Chips: A new SoC
paradigm. IEEE Computer, v.35(1), 2002.

[3] Nollet, V.; et al. Centralized Run-Time Resource Manage-
ment in a Network-on-Chip Containing Reconfigurable
Hardware Tiles. DATE, 2005.

[4] Smit, L.; et al. Run-time mapping of applications to a hetero-
geneous reconfigurable tiled system on chip architecture.
FPL, 2004.

[5] Hu, J.; Marculescu, R. Energy- and Performance-Aware
Mapping for Regular NoC Architectures. IEEE Transaction
on Computer-Aided Design of Integrated Circuits and Sys-
tems, v.24(4), 2005.

[6] Marcon, C.; et al. Time and Energy Efficient Mapping of
Embedded Applications onto NoCs. ASP-DAC, 2005

[7] Bertozzi, S.; et al. Supporting task migration in multiproces-
sor systems-on-chip; a feasibility study, DATE, 2006.

[8] Kalte, H.; et al. Context Saving and Restoring for Multitask
ing in Reconfigurable Systems. FPL, 2005.

[9] Carvalho, E.; et al. Heuristics for dynamic task mapping in
NoC-based heterogeneous MPSoCs. Rapid System Prototyp-
ing (RSP), 2007.

[10] Ruggiero, M.; et al. Communication-aware allocation and
scheduling framework for stream-oriented multi-processor
systems-onchip. DATE, 2006.

[11] Nollet, V.; et al. Run-time Management of a MPSoC Con
taining FPGA Fabric Tiles. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, Vol. 16, No. 1, 2008.

[12] Smit, G.; et al. Multi-coreArchitectures and Streaming
Applcations. SLIP, 2008.

[13] Holzenspies, P.; et al. Run-time Spatial Mapping of Stream-
ing Applications to a Heterogeneous Multi-Processor Sys-
tem-on-Chip (MPSoC). DATE, 2008.

[14] Faruque, M. A. A.; et al. ADAM: Run-time Agent-based
Distributed Application Mapping for on-chip Communica
tion. DAC, 2008.

[15] Chou, C.-L. and Marculescu, R. Incremental run-time appli
cation mapping for homogeneous NoCs with multiple voltage
levels. Haraware/software Codesign and system synthesis
(CODES+ISSS’07), 2007.

[16] Lei, T. and Kumar, S. A two-step genetic algorithm for map-
ping task graphs to a network on chip architecture. Digital
Systems Design (DSD), 2003.

[17] Carvalho, E.; Moraes, F. Congestion-aware task mapping in
 heterogeneous MPSoCs. System-on-Chip (SoC), 2008

6060

