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Execution Trace–Driven Energy-Reliability Optimization
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Multiprocessor systems-on-chip (MPSoCs) are becoming a popular design choice in current and future tech-
nology nodes to accommodate the heterogeneous computing demand of a multitude of applications enabled
on these platform. Streaming multimedia and other communication-centric applications constitute a signif-
icant fraction of the application space of these devices. The mapping of an application on an MPSoC is an
NP-hard problem. This has attracted researchers to solve this problem both as stand-alone (best-effort) and
in conjunction with other optimization objectives, such as energy and reliability. Most existing studies on
energy-reliability joint optimization are static—that is, design time based. These techniques fail to capture
runtime variability such as resource unavailability and dynamism associated with application behaviors,
which are typical of multimedia applications. The few studies that consider dynamic mapping of applica-
tions do not consider throughput degradation, which directly impacts user satisfaction. This article proposes
a runtime technique to analyze the execution trace of an application modeled as Synchronous Data Flow
Graphs (SDFGs) to determine its mapping on a multiprocessor system with heterogeneous processing units
for different fault scenarios. Further, communication energy is minimized for each of these mappings while
satisfying the throughput constraint. Experiments conducted with synthetic and real SDFGs demonstrate
that the proposed technique achieves significant improvement with respect to the state-of-the-art approaches
in terms of throughput and storage overhead with less than 20% energy overhead.
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1. INTRODUCTION

To accommodate the ever-increasing demand of applications and to address scalability,
multiple processing cores are integrated using an interconnect network such as bus or
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networks-on-chip (NoCs) to form multiprocessor systems-on-chip (MPSoCs). Due to the
power penalty associated with homogeneous architectures, modern MPSoCs integrate
heterogeneous processing elements such as general-purpose processors (GPPs), field
programmable gate arrays (FPGAs), and digital signal processors (DSPs). Examples of
heterogeneous MPSoCs are OMAP from Texas Instruments, NEXPERIA from Philips,
and NOMADIK from STMicroelectronics. Streaming multimedia applications such as
the H.264 decoder and MP3 encoder constitute a large fraction of the embedded ap-
plication space for these MPSoCs [Wolf 2005]. These applications are characterized
by large data exchange among different tasks. Data communication agnostic mapping
of these applications on an MPSoC can lead to a significant energy consumption on
the communication infrastructure, such as NoCs, constituting as high as nearly 60%
of the overall application energy consumption [Hu and Marculescu 2004]. This has
motivated researchers to investigate communication-aware application mapping on
MPSoCs [Singh et al. 2010].

Shrinking transistor geometries and aggressive voltage scaling are negatively im-
pacting the dependability of the processing elements (e.g., cores) and the commu-
nication backbone of an MPSoC [Borkar et al. 2004]. One of the design objectives
in deep submicron technologies is to provide support for tolerating multiple faults
(transient, intermittent, and permanent) without sacrificing solution quality (mea-
sured as throughput for streaming applications) and respecting the given energy
budget. One of the traditional techniques for fault tolerance is redundancy (hard-
ware and/or software) [Koren and Krishna 2007]. This involves using spare process-
ing elements to assume responsibility when faults occur (hardware redundancy) or
executing the same task multiple times on same or different cores (software redun-
dancy). However, stringent area and energy budgets are prohibiting the use of hard-
ware redundancy in modern systems. System-level fault-tolerance techniques such
as task mapping and scheduling are gaining popularity among the research commu-
nity. Both offline [Das et al. 2012; Lee et al. 2010] and online [Derin et al. 2011;
Chou and Marculescu 2011] analysis techniques have been studied over the years
to determine task mappings for all processor fault scenarios. The offline analysis
techniques offer limited flexibility to mapping readjustment after faults and a lim-
ited scope for new application support. The existing online techniques in this do-
main do not consider throughput degradation, which is an important consideration
for streaming multimedia applications to deliver a given quality of service to end
users.

1.1. Scope of This Work

This article attempts to solve the following problem: given a heterogeneous MPSoC
architecture and a set of multimedia and other communication-centric embedded ap-
plications, how to assign and order the tasks of every application at runtime on the
component cores such that the communication energy consumption is minimized while
guaranteeing the satisfaction of the performance requirement (e.g., throughput) of the
application under all possible core fault scenarios. The scope of this article is limited
to permanent and intermittent faults of cores. It assumes a given MPSoC architecture
(floorplan), and therefore the selection of cores (number and/or types) for the architec-
ture and their placement (coordinates) are not addressed. Furthermore, the proposed
technique deals with resource management after fault occurrence and is orthogonal
to any fault-detection techniques (e.g., Reinhardt and Mukherjee [2000]). To the best
of our knowledge, this is the first work on communication energy minimization con-
sidering throughput degradation for runtime fault tolerance of heterogeneous MPSoC
platforms.
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1.2. Contributions

This article proposes a trace-based runtime remapping of applications on a multi-
processor system to minimize communication energy while satisfying the throughput
requirement for all core fault scenarios. The following are the key contributions:

—Execution trace-based dynamic reconfiguration of application mapping for different
fault scenarios

—Communication energy and storage overhead minimization on a given MPSoC
—Consideration of throughput degradation for communication-centric multimedia ap-

plications
—Fault tolerance for heterogeneous MPSoC architecture
—Implementation of the runtime algorithm on a real embedded system.

The proposed technique analyzes the execution trace of an application modeled as
Synchronous Data Flow Graphs (SDFGs) [Lee and Messerschmitt 1987]. Based on such
analysis, a runtime manager (RTM) determines the most suitable task remapping
that minimizes communication energy while satisfying the application throughput
requirement. Experiments conducted with synthetic and real-life application SDFGs
demonstrate that the proposed technique achieves significant improvement both in
terms of throughput and storage overhead with less than 20% energy overhead from a
static mapping.

In our recent work [Das et al. 2013b], some of these contributions are addressed.
Specifically, an execution trace–based application remapping is proposed in Das et al.
[2013b] for homogeneous multiprocessor systems to minimize communication energy
while satisfying the throughput constraint for all processor fault scenarios. This article
extends our earlier work by considering heterogeneous multiprocessor systems and the
embedded implementation of the overall approach.

1.3. Article Organization

The rest of this article is organized as follows. The background on fault tolerance and
a motivating example are presented in Section 2. An overview of related works is pre-
sented in Section 3. This is followed by an introduction to SDFGs and the problem
formulation in Section 4. The execution trace–driven design methodology is presented
in Section 5. Experimental results are presented in Section 6. Finally, Section 7 con-
cludes the work with a discussion on future improvements.

2. BACKGROUND AND MOTIVATION

2.1. Background on Fault Tolerance

With shrinking feature size, dependability is becoming a major concern even for NoCs.
It is predicted that a 20% to 30% fault rate is expected in future MPSoCs [Furber 2006].
These faults can be classified into three categories: transient, intermittent, and perma-
nent. Transient faults are point failures and occur due to alpha or neutron emissions.
Transient faults are measured in flit error rate. Prior work in transient fault tolerance
reveals a flit rate between 10−9 and 10−12 for NoC [Murali et al. 2005]. Permanent
faults, as the name itself indicates, are damages to the circuit caused by phenom-
ena such as electromigration, dielectric breakdowns, and broken wires. These faults
are caused during manufacturing or during the product lifetime due to component
wearout. Behavior of a system under permanent faults is time invariant. Intermittent
faults present separate challenges for system designers due to the unpredictability
associated with their occurrence and their fault duration. Naively suspending the sys-
tem operation for the intermittent fault duration can degrade system performance.
Unlike transient faults due to single-event upsets, task re-execution cannot guarantee
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Fig. 1. Limitations of offline task mapping techniques.

elimination of the intermittent faults, as they usually persist for a few cycles, if not
a few seconds or more. There are major factors contributing to intermittent faults—
wear-outs, manufacturing defects, and PVT variations. Wearouts such as negative bias
temperature instability (NBTI), hot carrier injection (HCI), and time-dependent di-
electric breakdown are susceptible to PVT variations at deep submicron nodes (45nm
and beyond) [McPherson 2006]. Studies have shown than microprocessors typically
experience intermittent faults frequently after the first occurrence until the time this
intermittent fault converts to permanent failure. Another major cause for intermittent
faults is manufacturing defects. Although deterministic defects are detected in the
testing phase, nondeterministic faults manifest as intermittent faults.

2.2. Limitations of the Offline Task Mapping Techniques

The existing design-time (offline) task mapping techniques suffer from two limita-
tions: mapping readjustment and new application support. The existing design-time–
based fault-tolerance techniques fail to readjust the task mappings on fault detection;
Figure 1 shows a scenario at time T = T1 with three applications (denoted as A, B,
and C in the figure, respectively) active simultaneously on a multiprocessor system
with nine cores. The cores utilized by each of these applications are reported in the
corresponding table. These mappings are determined at design time by analyzing the
throughput and communication energy. At a later instant of time, say at T = T2,
core 6 becomes faulty (intermittent fault due to temperature increase). The mapping
corresponding to application A needs to be altered. The design-time mapping for A
corresponding to three cores is fetched and applied. This is shown in Figure 1(b). Even-
tually, at time instant T = T3, core 6 becomes operational and a fourth application D
(of higher priority) is loaded in the system. This application requires core 4, 7, and 8.
The other two applications B and C complete their execution. Thus, at time instant
T = T3, the application A has the choice of utilizing core 2 or core 4. However, none of
these two mappings for application A (mapping 0-1-2-3 or 0-1-3-4) has been analyzed at
design time in terms of communication energy or throughput. Although the mapping
0-1-2-3 is selected for application A, this mapping provides no guarantee on energy or
throughput. A point to note here is that for systems where analyzed task mappings
from design time are only allowed, application A will continue to execute on three cores
(0-1-3) with an acceptable throughput degradation, even though there are idle cores
available in the system.

Another limitation of the design-time approaches is that the applications need to
be known before the actual hardware implementation. This poses a restriction on the
support of new applications post device manufacturing.
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3. RELATED WORKS

Task mapping and scheduling have received significant attention among researchers
starting from classical optimization metrics (e.g., performance and power) up to recent
ones (e.g., reliability). The details of performance and power-driven mapping techniques
are beyond the scope of this work. Interested readers can refer to Singh et al. [2013].
Some of the key studies on communication energy and reliability-aware task mapping
are presented here.

The existing communication energy-aware fault-tolerant techniques can be classified
into two categories: static and dynamic. Static task mapping techniques compute task
mapping decisions at design time for different fault scenarios. As faults occur, these
mappings are looked up at runtime to carry out task migration. A fixed order Band
and Band reconfiguration technique is studied in Yang and Orailoglu [2007]. Cores of
target architecture are partitioned into two bands. When one or more cores fail, tasks
on these core(s) are migrated to other functional core(s) determined by the band in
which these tasks belong. The core partitioning strategy is fixed at design time and
is independent of the application throughput requirement. Consequently, throughput
is not guaranteed by this technique. A re-execution slot–based reconfiguration mech-
anism is studied in Huang et al. [2011]. Normal and re-execution slots of a task are
scheduled at design time using an evolutionary algorithm to minimize certain param-
eters, such as throughput degradation. At runtime, tasks on a faulty core migrate to
their re-execution slot on a different core. However, a limitation of this technique is
that the schedule length can become unbounded for high fault-tolerant systems. A task
remapping technique based on offline computation and virtual mapping is proposed
in Lee et al. [2010]. Here, task mapping is performed in two steps: determining the
highest throughput mapping followed by generation of a virtual mapping to minimize
the cost of task migration to achieve this highest throughput mapping. A limitation
of this technique is that the migration overhead significantly increases, as this is
not considered in the initial optimization process. Moreover, throughput-constrained
streaming applications do not benefit from a throughput higher than required and can
increase buffer requirements at output. Das and Kumar [2012] propose minimizing
migration overhead while satisfying the throughput requirement for different fault
scenarios. However, energy is not considered in this technique. The technique in Das
et al. 2012] jointly minimizes communication energy, migration overhead, and through-
put degradation for streaming multimedia applications modeled using SDFGs. These
existing offline task mapping techniques suffer from the following limitations. First,
these techniques fail to capture the dynamism observed at runtime due to unavailabil-
ity of one or more component cores. Such unavailability can be attributed to resource
blockage due to execution of multiple simultaneous applications or running mainte-
nance jobs. The static mappings fail to adapt to such a changing environment, leading
to suboptimal results both in terms of throughput and energy consumption. Second,
the existing static techniques determine task mapping for every application enabled
on the multiprocessor platform for every fault scenario. These mappings are stored in
a table to be looked up as, and when, faults occur. The size of the look-up table grows
exponentially with the number of applications and the level of fault tolerance. This
is crucial, especially for multimedia MPSoCs where increased storage space leads to
an increase in area and cost of the system. Third, the existing approaches can only
support applications analyzed at design time, and therefore throughput for new appli-
cations is not guaranteed. This imposes limitations on the support of new applications,
as it is difficult to foresee all future applications a priori. Fourth, the existing static
techniques also suffer from runtime overhead of table look-up to fetch a mapping of
an application for a fault scenario. The size of the mapping table needs to be small
to avoid the requirement of large memory space. In other words, the number of faults
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Fig. 2. Architecture and application model.

and/or applications that can be practically supported for an MPSoC is limited. Last,
scheduling is not considered in these techniques, and therefore these techniques suffer
from large schedule construction overhead at runtime or schedule storage overhead
from design time.

Dynamic approaches monitor system status and decide to migrate tasks at runtime.
A fault-aware resource management is proposed in Chou and Marculescu [2011] to
deal with the occurrence of transient, intermittent, and permanent faults. The remap-
ping decisions are taken at runtime to minimize data communication while avoiding
the faulty and other stressed processors. An integer linear programming(ILP)-based
task remapping technique is proposed in Derin et al. [2011] to remap tasks while
minimizing communication energy. A common limitation of these approaches is that
throughput is not guaranteed. Furthermore, these techniques are based on directed
acyclic graphs and therefore require significant modification (if at all applicable) for
multimedia applications with cyclic task dependency and pipelined scheduling.

4. PROBLEM FORMULATION

4.1. Architecture and Application Model

The MPSoC platform consists of Np processing cores interconnected using a mesh-based
topology.1 This is shown in Figure 2(a). Such an architecture is modeled as a directed
graph Garc = (Varc, Earc), where Varc is the set of nodes cj representing the processing
cores and Earc is the set of edges ei j representing communication channel between ci and
cj . Here, Np = |Varc|. Each processing core cj is associated with a heterogeneity type
hj . For an architecture with three different processing elements (e.g., DSP, GPP type 1,
and GPP type 2), 0 ≤ hj ≤ 2, where hj = 0 implies DSP, hj = 1 implies GPP type 1, and
hj = 2 implies GPP type 2. The platform activities (e.g., dispatching an application,
updating of resource utilization table, dynamic task remapping) are coordinated using
a special node—the RTM—and is linked to the interconnect network. For simplicity,
only some of the links from the RTM are shown in the figure. It is to be noted that
this work is based on the assumption that the RTM is fault free. This is justified by
implementing the RTM on a radiation-hardened and reliable processor. In the future,
the relaxation of this restriction will be addressed. Although a specific architecture,
such as the one defined here, is assumed for this work, the proposed technique can
trivially be applied to other architectures.

The NoC model adopted for this work is based on the principle of spatial division
multiplexing (SDM) [Leroy et al. 2008] with cores interconnected in a mesh-based ar-
chitecture. SDM-based NoCs have been proposed as an alternative to time division

1Although a mesh-based network is assumed for simplicity, the proposed approach can be applied directly
to any other NoC architectures, such as Torus and Tree.
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Fig. 3. Difference between TDM- and SDM-based NoCs.

Fig. 4. Mesh-based architecture.

multiplexing (TDM)-based NoCs. In SDM-based NoCs, a subset of available wires is
dedicated between a pair of cores to form a connection. Each connection thus has ex-
clusive use of the wires assigned to it. Data from cores is serialized at the transmitter
network interface and sent over the wire. At the receiving end, data is de-serialized at
the receiver network interface. Figure 3 shows the difference between an SDM-based
NoC and a TDM-based NoC. For a TDM-based NoC, three different connections—A,
B, and C—are time multiplexed over the wires. For an SDM-based NoC, data for all
connections is transmitted simultaneously over multiple wires. The number of wires
dedicated for a connection is bandwidth dependent. In Figure 3, two of the wires are
assigned to connection A and one each to connection B and C. SDM networks do not
require any switching at the routers once the connections are configured; they essen-
tially are circuit switched once the data leaves the network interface. Thus, packets no
longer need to be buffered in the switches, saving area and power.

To ensure guaranteed latency between cores at runtime, analysis is performed as-
suming full connectivity between the cores. In other words, every edge ei j is assumed
to be comprised of Np × (Np −1) physical wires. End-to-end connections providing fixed
latencies between cores are used to connect the cores. This is shown in Figure 4. The
latencies depend upon the hop distance between the cores, as shown at the bottom of
Figure 4 . The application edges can get mapped onto the connections between cores.
Each edge occupies one connection between the cores at its full bandwidth, and the oc-
cupied connection always serves only the assigned edge. This ensures that the latency
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between cores remains constant. Although the worst-case connectivity is assumed, a
total number of physical wires equal to the sum of the input and output connections
of an actor is sufficient in the average case. This improves the wire utilization signifi-
cantly. However, routability is not guaranteed. To address this routability, a partially
reconfigurable (PR) cross-bar router for SDM-based NoC is adopted. Further details are
omitted because of space limitations. Interested readers can refer to Hoo and Kumar
[2012] for a detailed treatment of PR SDM-based NoC.

Dataflow graphs (DFGs) are a natural paradigm for modeling modern DSP applica-
tions and for designing concurrent and pipelined multimedia applications implemented
on an MPSoC [Kavi et al. 1986]. Among the various dataflow models, this article focuses
on SDFGs proposed in Lee and Messerschmitt [1987]. The nodes of an SDFG are called
actors; they represent functions that are computed by reading tokens (data items) from
their input ports and writing the results of the computation as tokens on the output
ports. Figure 2(b) shows an example of an SDFG. There are four actors in this graph.
In the example, a1 has an input rate of 3 and output rate of 4. An actor is called ready
when it has sufficient input tokens on all of its input edges and sufficient buffer space
on all of its output channels; an actor can only fire when it is ready. The edges may also
contain initialtokens, indicated by bullets on the edges, as seen on the edge from actor
a2 to a0 in Figure 2(b). The following definitions are stated. For a detailed treatment
and proofs, interested readers are urged to refer to Ghamarian et al. [2006].

Definition 1 (SDFG). An SDFG is a directed graph Gapp = (A, C, Tc) consisting of a
finite set A of actors, a finite set C ⊆ Ports2 of channels, and the throughput constraint
Tc. Let Napp = |A|.

Definition 2 (Actor). An actor ai is a tuple (Ni, �i), where Ni is the set of execution
cycles of ai and �i is the set of tokens produced. The execution cycle Ni is the set {nil},
representing the CPU cycles needed to execute actor ai on core type l. For homogeneous
systems, the execution cycles of an actor on all cores are the same. �i is the set {γi j |∀ j},
where γi j represent the tokens communicated from actor ai to actor aj .

Definition 3 (Repetition Vector). Repetition Vector RV of an SDFG Gapp = (A, C, Tc)
is defined as the vector specifying the number of times actors in A are executed in one
iteration of SDFG Gapp. For example, in Figure 2(b), RV [a0 a1 a2 a3] = [1 1 1 2].

The repetition vector is also referred to as the periodic admissible sequential schedule
(PASS) [Lee and Messerschmitt 1987].

Definition 4 (Application Period). Application Period Per(A) is defined as the time
that SDFG Gapp = (A, C) takes to complete one iteration on average.

4.2. Communication Energy Model

In Hu and Marculescu [2004], bit energy (Ebit) is defined as the energy consumed in
transmitting one data bit through an NoC router and link:

Ebit = ESbit + ELbit , (1)

where ESbit and ELbit are the energy consumed in the switch and the link, respectively.
The energy per bit consumed in transferring data between cores cp and cq, situated
nhops(p, q) away, is given by Equation (2) according to Hu and Marculescu [2004]:

Ebit(p, q) =
{

nhops(p, q) ∗ ESbit + (nhops(p, q) − 1) ∗ ELbit if p �= q
0 otherwise . (2)
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ALGORITHM 1: Application mapping
Require: Gapp, Garc, throughput constraint Tc
Ensure: Mappings for all fault scenarios
1: /* Design-time analysis */
2: Determine initial mapping MNarc
3: /* Runtime analysis */
4: while true do
5: Execute one iteration of the application using MNarc .
6: if core faulty then
7: Determine the faulty core c j .
8: Determine mapping of Gapp on Varc \ c j .
9: end if
10: end while

The total communication energy is given by Equation (3):

Ecomm =
∑

∀ai ,aj∈A

dij ∗ Ebit(�(i),�( j)), (3)

where �(i) and �( j) are the cores where actors ai and aj are mapped, respectively, and
dij is the data communicated from actor ai to aj and is given by

dij = RV [ai] ∗ γi j ∗ sze, (4)

where sze is the size of a token in bits.

4.3. Problem Representation

The mapping of Gapp on Garc with n cores is denoted as Mn. The pseudocode of the
optimization problem is shown in Algorithm 1. The algorithm consists of two sections:
starting mapping generation at design time and fault-aware task remapping at run-
time. Exploring all possible task to core mapping to minimize energy consumption
while satisfying throughput constraint is an NP-hard problem. The design-space ex-
ploration time grows exponentially with an increase in the number of actors and/or
cores. For example, executing 14 actors on 14 cores, a total of 190,899,321 mapping op-
tions need to be evaluated exhaustively to determine the best mapping with one faulty
core. The complete evaluation takes 2 days assuming 1ms for simulating (evaluating)
one mapping. This evaluation is to be performed every time a core becomes faulty.2
Even pruning the exploration space with existing analysis strategies does not lead to
acceptable evaluation time for complex applications.

To cater for a fault scenario at runtime, performing the exploration by employing
simulative evaluations may lead to missed timing deadlines. Therefore, analytical
estimations need to be employed to get fast results. However, the accuracy of the esti-
mations with respect to the simulations needs to be validated. In contrast to existing
approaches, the proposed approach performs faster exploration for a runtime fault sce-
nario by analyzing the execution traces of actors and edges of the application executing
on a fixed number of cores. Further, the proposed approach jointly optimizes for the
throughput and energy consumption, unlike most of the existing approaches.

5. PROPOSED DYNAMIC FAULT-TOLERANT RECONFIGURATION METHODOLOGY

Figure 5 presents an overview of the proposed fault-tolerant task remapping method-
ology. The flow starts with a mapping (referred to in the figure as Current Mapping)

2Although a large exploration time can be tolerated for permanent faults that are infrequent, the overhead
is large for frequently occurring intermittent faults leading to a large performance degradation.
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Fig. 5. Proposed dynamic fault-tolerant reconfiguration approach.

of the application Gapp enabled on the platform Garc. At the start of the application
execution, the current mapping uses the maximum number of cores, which is given by
the minimum value of the number of cores available in the system and the number of
actors in the application. For a large architecture, where the number of cores is greater
than the number of actors, this current mapping uses one actor per core. The mapping
reduces the stress on the core and improves the lifetime reliability [Das et al. 2013a].
However, the proposed technique can trivially be used along with any other heuristics
[Singh et al. 2010; Ost et al. 2013] to generate this starting mapping.

The mapping process is handled by the RTM (Figure 2(a)). One of the platform
processors is used as manager processor that manages the job of mapping, scheduling,
platform resource control, and configuration control. The resources’ status is updated
at runtime when an actor is loaded in the platform or a faulty core gets detected to
provide the RTM with accurate knowledge of resource occupancy, which is required for
making better mapping decisions based on available resources at runtime.

In the subsequent steps of the technique, the application is executed on the platform
using current mapping, and in parallel, the execution traces of actors and edges are
captured using the Simulate Mapping block. The simulation process also computes
the throughput of the mapping. The captured execution traces are stored in a database
by deleting the earlier traces (Update Traces). Thus, the trace storage space is
reused, minimizing the storage overhead significantly. Updated traces are analyzed
to estimate throughput and energy consumption of the mappings using one less core
in case a tile becomes faulty during the application execution. Out of all evaluated
mappings, the one with highest throughput/energy ratio is selected as the current
mapping to execute the application toward achieving the fault tolerance. Selection of
such a mapping optimizes the throughput and energy consumption jointly.

In the event when a core recovers from faults (as in the case when a core is affected
by intermittent faults), the same strategy is applied—that is, the updated traces are
analyzed to select the configuration with the highest throughput/energy ratio while
using one extra core. The current mapping is updated accordingly.

The parallel simulation of the current mapping along with the application execution
prepares the updated traces faster, which is essential in case a fault occurs in the early
stage of the application execution. The simulation process also guarantees accurate
execution traces, which facilitates accurate analytical estimations (Analyze Traces).
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Fig. 6. Execution trace of actors/edges of the H.263 decoder for one periodic execution.

The process is repeated as more cores become faulty. To handle multiple simultaneous
faults (recovery), the same process is repeated by considering faults in (recovery of) one
core at a time until traces considering all faulty (recovered) cores are explored.

5.1. Fault Tolerance for Concurrent Applications

The focus of this work is on runtime energy optimization for different fault scenar-
ios. However, for the sake of completeness, an overview is provided on the use of the
proposed approach for the resource management and fault tolerance of concurrent
applications in a use case. Formally, a use case is defined as a collection of multiple ap-
plications that are active simultaneously on an MPSoC. Several techniques have been
proposed in the literature for the runtime resource management of use cases [Bellasi
et al. 2012; Ykman-Couvreur et al. 2006; Das et al. 2013a]. To provide fault tolerance
for all applications of a use case, the first step is to determine the number of processors
allocated to each of them. This can be determined by analyzing the energy consumption
of each application or using the mean time to failure (MTTF)-aware resource distribu-
tion technique of Das et al. [2013a], which reduces the wearout of the processors. The
trace-based dynamic fault-tolerance methodology is then performed for every applica-
tion of the use case. Detailed consideration of use cases is left to future work.

5.2. Simulation Strategy

The simulation of the current mapping involves two steps: throughput computation
and execution trace capturing.

5.2.1. Throughput Computation. The throughput for a mapping is computed by taking
the resource allocations of actors/edges on the platform into account. To compute the
throughput, first, a static-order schedule for each core is constructed, which orders the
execution of bound actors. Thereafter, all binding and scheduling decisions are modeled
in a graph referred to as binding-aware SDFG. Finally, the throughput is computed by
self-timed state-space exploration of the binding-aware SDFG [Ghamarian et al. 2006].
Toward this, states visited during self-timed execution are examined and stored until
a recurrent state is found. The throughput is computed from the periodic part of the
state space.

5.2.2. Execution Trace Capturing. The execution traces of actors and edges are captured
based on their execution pattern for a given mapping during one periodic execution.
For example, Figure 6 shows the execution pattern of actors and edges of the H.263
decoder when each actor and edge is mapped on a different core and connection between
cores, respectively. First, actor VLD fires (executes) as it has sufficient input tokens
on its incoming edge e4. Then, it generates 2,376 tokens to be transferred through
e1 to process them one by one by IQ. The transfer of tokens through edges and their
processing by different actors follows the shown trace. For easier realization, the shown
trace considers four tokens in places of 2,376, and thus actors VLD, IQ, IDCT, and MC
fire 1, 4, 4, and 1 times during one period, respectively. The execution traces for each
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ALGORITHM 2: Analysis strategy
Require: Execution trace for the current mapping μ using m cores
Ensure: Mappings with throughput and energy consumption using (m− 1) cores
1: Initialize the mapping set M —that is, M = { }
2: Select m cores containing actor(s)
3: for each unique pair of selected cores do
4: if actor(s) on the selected cores can be combined on the same core then
5: Move actor(s) from one core to another to generate a new mapping η using (m− 1) cores
6: Estimate throughput and Ecomm of η

7: Add η with its throughput and Ecomm to set M
8: end if
9: end for

actor and edge is captured as the start and end time of their active executions (firings)
in the whole period. For example, four active executions of actor IQ gets captured with
different start and end times.

5.3. Analysis Strategy

The analysis strategy to perform the analytical estimation is presented in Algorithm 2.
The strategy takes the updated execution traces of actors/edges for the current map-
ping μ using m cores as input and estimates throughput and energy consumption of
mappings using (m− 1) cores with one faulty core. The strategy first selects m cores
containing actor(s). Then, for each unique pair of selected cores, actors of one core are
moved to another to generate a new mapping η that uses (m− 1) cores, provided that
the actors on the selected cores can be combined on the same core. Depending upon
the fault occurring in a particular core type, the movement is performed by taking one
lesser core of the faulty core type. The actors can be combined on the same core if they
can be supported by the core—that is, the actors have implementations for the core
type. For each new generated mapping, its throughput (1/period) and energy consump-
tion are estimated, and the mapping with its throughput and energy values is added
to mapping set M.

The period (P) of the mapping using (m− 1) cores (Pη) is estimated by utilizing the
period of the current mapping using mtiles (Pμ) by Equation (5), where incμ,η and decμ,η

are the increase and decrease in the period of the mapping μ when the new mapping η
is generated by moving actors from one core to another in μ.

Pη = Pμ + incμ,η + decμ,η (5)

The period increases when parallel executing actors (e.g., IQ and IDCT in Figure 6)
mapped on selected pair of cores in mapping μ are forced to execute sequentially
by mapping the actors on the same tile in mapping η. The period decreases when
execution of the edge(s) between the selected pair of cores is not in parallel with other
actors and edges (e.g., execution of edge e1 in Figure 6). The incμ,η is calculated by
assuming sequential execution of the actors mapped on the selected pair of cores. The
nonparallel executions of the actors (with executions of other actors/edges) contribute
to incμ,η. The decμ,η is calculated by considering execution traces of edge(s) mapped
between the selected pair of cores. The nonparallel executions of the edge(s) (with
executions of other actors/edges) contribute to decμ,η.

In Algorithm 2, a total of m-choose-2 (mC2) unique pairs are found for the selected m
cores. Each unique pair provides a mapping that uses (m− 1) cores. Out of all of the
mappings M using (m− 1) cores, the proposed flow (Figure 5) selects the mapping with
maximum throughput/energy to jointly optimize for through and energy consumption
toward achieving the fault tolerance.
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Fig. 7. Dynamic fault tolerance demonstration.

5.4. Example Demonstration

Figure 7 demonstrates the proposed dynamic fault-tolerant flow for the H.263 decoder
of Figure 6 executing on four cores periodically. Figure 7(a) shows that a fault has
occurred on core 2 during a particular periodic execution. To achieve fault tolerance,
the proposed strategy finds the best mapping (having maximum throughput/energy)
using three cores. In the best mapping, the actor from the faulty core (core 2) is moved
to some other core. The platform is then reconfigured with the best mapping to start
the application execution, as shown in Figure 7(b). At a later instant of time, a fault
occurs on core 3, as shown in Figure 7(b). The proposed strategy moves the actor from
a faulty core to a nonfaulty one to get the best mapping using two cores. Two cases can
be considered in this case. If tile 5 is busy executing another application, then IDCT is
shown to be executed along with MC in Figure 7(c). If, however, tile 5 has a free slot to
accommodate another actor, the best throughput/energy mapping is to execute MC on
tile 5 as shown in Figure 7(c′). At a later stage, when tile 4 becomes available again, the
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same process is repeated and the best mapping for the corresponding cases is shown
in Figure 7(d) and (d′).

6. EXPERIMENTAL RESULTS

Experiments are conducted on a quad-core Intel Xeon 2.4GHz server running Linux
with 10 synthetic and 10 real-life applications modeled as SDFGs. The synthetic appli-
cations are generated from the SDF3 tool [Stuijk et al. 2006], with the number of actors
ranging from 4 to 12. The real applications are derived from the benchmarks provided
in the tool. These applications are executed on an MPSoC with six tiles arranged in
2 × 3 mesh architecture. All algorithms developed in the article are coded in C++ and
used in conjunction with the SDF3 tool for throughput computation. For embedded
implementation of our runtime algorithm, we used dual-core ARM cortex-A9 processor
of Zynq board [Santarini 2011]. One of the ARM processors operating at a frequency of
533MHz has been used to execute the same C++ description of the runtime algorithm.

6.1. Throughput Comparison for Different Fault Scenarios

As established in Section 3, there are no runtime fault-tolerant techniques available
in the literature that consider throughput degradation. Therefore, the proposed
trace-based dynamic reconfiguration technique is compared to the existing design-
time–based throughput-aware fault-tolerant techniques [Das et al. 2012; Hu and
Marculescu 2004; Lee et al. 2010]. The throughput obtained using the proposed
technique is compared to the throughput obtained using the communication energy-
aware static fault-tolerant technique of Das et al. 2012] (referred to as TConCEMin)
and the communication energy-aware dynamic technique of Hu and Marculescu
[2004] (referred to as DCEMin). It is important to note that the technique of Hu and
Marculescu [2004] does not incorporate fault tolerance in its native form. However,
we have modified the technique to compare to the proposed approach. Specifically,
the technique of Hu and Marculescu [2004] is applied to determine the minimum
communication energy for a different core count. Further, to determine how far
the proposed approach is from the highest throughput obtained for different fault
scenarios, the results are compared to the throughput maximization technique of
Lee et al. [2010] (referred to as TMax). Another important point is that the design-
time–based techniques obtain better results, as any sophisticated algorithms can be
implemented in these techniques. However, for the runtime approaches, the algorithm
needs to be simple to satisfy the real-time requirements. The objective to compare
to the design-time approaches is to determine how close the results of the runtime
algorithms are to that obtained from the design-time–based sophisticated heuristics.

Figures 8(a) and 8(b) plot the throughput of TConCEMin, DCEMin, and the proposed
technique normalized with respect to the throughput obtained using the TMax tech-
nique for five real applications for single and double faults, respectively. Single fault
refers to a fault in one PE, and a fault in two PEs is referred to as a double fault. There
are a few trends to follow from these figures. First of all, the throughput of DCEMin is
the least among all techniques. This is expected, as DCEMin does not consider through-
put degradation. The throughput constraint (80% of the highest throughput) is violated
for all applications except the MP3 Decoder, signifying the inapplicability of this tech-
nique for throughput-constrained multimedia applications. Second, the throughput of
the proposed fault-tolerant technique is better than the energy-aware fault-tolerant
technique—that is, TConCEMin [Das et al. 2012]. This is expected because the pro-
posed technique remaps the tasks from the faulty tile to other working tile(s) such that
communication energy is minimized with the least degradation of throughput, facilitat-
ing for least actor migration. The static fault-tolerant technique of TConCEMin, on the
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Fig. 8. Throughput performance of the proposed technique.

other hand, determines one mapping that results in minimum communication energy
satisfying the throughput requirement even at the expense of more actor migrations.
On average for all single-fault scenarios, the proposed technique achieves 70% and
42% better throughput than the DCEMin and TConCEMin techniques, respectively.
For double-fault scenarios, these numbers are 110% and 52%, respectively. Finally, the
proposed technique is only within 8% and 12% of the highest throughput technique of
TMax for single- and double-fault scenarios, respectively.

6.2. Energy Comparison for Different Fault Scenarios

Figure 9 plots the energy consumption of the same four techniques for the same set
of applications. The energy values are average for all single and double faults and are
normalized with respect to the energy obtained using the TMax technique. As can be
seen from the figure, the energy of DCEMin is the least, as communication energy
is explicitly minimized in this technique without considering the throughput degra-
dation. Second, the communication energy of TConCEMin is better than the proposed
technique. This is because TConCEMin uses ILP to solve the minimum communication
energy problem and is guaranteed to determine the optimum solution. The proposed
technique, on the other hand, uses a heuristic to solve the same. On average for single
and double faults, the proposed technique results in 18% and 12% lower energy than
the static technique of TMax. The energy of the proposed heuristic is within 20% of the
minimum energy of TConCEMin.

The important conclusion to make from these results is that the proposed technique
maximizes throughput (on average, 70% and 110% for single and double faults, respec-
tively) compared to the existing dynamic techniques with less than 20% degradation
of energy as compared to existing static throughput-aware fault-tolerant techniques.
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Fig. 9. Energy performance of the proposed technique.

Table I. Storage Requirement (KB) with Increasing Tiles for a
Three-Fault-Tolerant System

Tiles TConCEMin [Das et al. 2012] Proposed
4 4.6 1
8 32.8 1.2
12 92.4 1.3
16 187.5 1.4
20 320.7 1.6
24 494.3 1.8
28 709.8 1.9
32 968.7 2.0

6.3. Storage Overhead Performance

Table I shows the storage requirement of the proposed dynamic technique compared
to the static technique of Das et al. 2012] for different numbers of tiles. The number of
actors for the application is the same as the number of tiles. Synthetic applications with
different numbers of actors are used for different numbers of tiles. As can be seen from
the table, and also expected, the static technique requires significant storage overhead.
This is because the static technique evaluates and stores the application mapping and
scheduling for all processor fault scenarios. On the other hand, the proposed dynamic
approach derives the schedule for a fault scenario from a master execution trace as, and
when, faults occur. Thus, the storage overhead associated with the dynamic technique
is that required to store the master execution trace. This is shown in the third column
of the table. Clearly, the proposed technique achieves significant savings in storage,
which is crucial for multimedia applications where increased storage space leads to
higher area and cost.
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Table II. Overhead ( in Milliseconds) for a Single-Fault Scenario for Different Applications

Proposed
Application TConCEMin [Das et al. 2012] Ex. Time Migration Overhead
H.263 decoder 2055.20 0.69 1.6
H.263 encoder 2124.61 15.74 0.6
Sample rate converter 17922.48 0.55 0.01

6.4. Algorithm Overhead

Table II shows the execution time of different approaches to find mappings in the case
of a single-fault scenario for different multimedia applications. The shown times for
our proposed approach are for the stand-alone implementation on a dual-core ARM
cortex-A9 processor present in the Zynq board [Santarini 2011]. Such embedded im-
plementation provides more accurate timing information. The initial mapping for each
application has been assumed to use the same number of tiles as the number of actors
in the application. Therefore, for each application, the approaches need to evaluate
mappings using one less number of tiles. Both approaches evaluate the same number
of mappings for the single-fault scenario. The number of mappings is n-choose-2 (nC2),
where n is the number of actors in the application. However, the static technique of
Das et al. 2012] employs simulative evaluations, and the proposed approach employs
analytical estimations. As can be seen from the table, and also expected, the static
technique needs a large time compared to the proposed technique (column 2 vs. col-
umn 3). The difference in execution times is observed due to simulative and analytical
evaluations. In case of other fault scenarios, such as double fault, similar results are
obtained. Thus, the proposed technique reduces the execution time significantly, which
is essential to make rapid decisions at runtime.

Finally, column 4 of Table II reports the migration overhead of the proposed approach,
which is measured as the time for reconfiguring the tasks for the new mapping. This
time is measured as the time required to migrate the state space of the actor from
the core in the current configuration to the new core, corresponding to the mapping
following a fault detection or fault recovery. The migration overhead also includes the
hop distance through which the state space is migrated in the NoC. Furthermore, the
migration overhead is incurred once when the configuration changes, and the energy
lost can be recovered in the subsequent iterations.

7. CONCLUSIONS AND FUTURE WORK

This article proposes an execution trace–based runtime technique to minimize the com-
munication energy and throughput degradation of applications for different processor
fault scenarios. Experiments conducted with applications modeled as SDFGs clearly
indicate that the proposed technique provides significant throughput improvement (on
average, 70% and 110% for single and double faults, respectively) with respect to the
existing dynamic technique with less than 20% deviation in communication energy
obtained with an ILP-based technique. Task computation energy minimization is left
as future work.
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