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Abstract—This paper proposes a novel human-inspired
methodology called IRON-MAN (Integrated RatiONal prediction
and Motionless ANalysis of videos) on mobile multi-processor
systems-on-chips (MPSoCs). The methodology integrates analysis
of the previous image frames of the video to represent the analysis
of the current frame in order to perform Temporal Motionless
Analysis of the Video (TMAV). This is the first work on TMAV
using Convolutional Neural Network (CNN) for scene prediction
in MPSoCs. Experimental results show that our methodology
outperforms state-of-the-art. We also introduce a metric named,
Energy Consumption per Training Image (ECTI) to assess the
suitability of using a CNN model in mobile MPSoCs with a focus
on energy consumption of the device.

Index Terms—Covolutional neural network (CNN), temporal
analysis, motionless analysis, video, energy efficiency, embedded
device, multiprocessor systems-on-chip (MPSoCs)

I. INTRODUCTION AND MOTIVATION

Recently there has been a huge increase in utilizing Con-
volutional Neural Networks (CNNs) [1], [2] to solve several
real-life challenges such as traffic categorization [3], [4],
weather forecasting [5], etc due to its high prediction accu-
racy/categorization in the aforementioned target applications.
One particular case for harnessing the efficacy of visual CNN
based prediction model is Intelligent Transportation Systems
(ITS), which is becoming an important pillar in the modern
“smart city” framework.

(a) Frame predicted as Light traffic
category

(b) Frame predicted as Heavy traffic
category

Fig. 1. Frames (Images) from the same Light traffic category of UCSD dataset
[6] and associated prediction by a trained CNN model [7]

Traffic load categorization is challenging given the increase
in vehicles on road. Some of the popular ways of monitoring
and categorizing traffic load from videos include vehicle based
assessment method and holistic approach [7]. In vehicle based
assessment methodologies, either vehicles are first localized
on the road with a background subtraction method or the
vehicles are localized with moving feature keypoints. Whereas,
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in holistic approach, a macroscopic analysis of traffic flow is
understood through global representation of a scene, which
is obtained by accounting for spatio-temporal features except
tracking using background subtraction and moving feature
keypoints.

In recent times, there has also been emergence of several
methods capable of monitoring and analyzing traffic using
motionless analysis of videos [3], [7], where videos of traffic
are broken into frames instead, and the frames are analyzed
for further computation or prediction. The main motivation
to utilize methodologies consisting of motionless analysis of
video is that it is difficult to stream high-frame rate videos
gathered by a large network of interconnected cameras due to
bandwidth limitation. Hence, streaming low-frame rate videos
on these camera networks is very common. In many cases,
it is challenging to stream more than 2 frames per second
due to the limited bandwidth of the network when these
cameras stream over a WIFI network [3], [7]. Moreover, to
analyze video in real-time without motion features over a
WIFI network is difficult due to communication bandwidth
constraint and hence, it is better to analyze the image fames
on the camera enabled embedded device itself [7] instead of
relying on a server system over the WIFI network. Another
motivation to devise such approaches in embedded devices is
the affordability of such devices, e.g. in developing countries,
instead of employing powerful server systems used for analysis
purposes [7]. Therefore, the approach of analyzing videos
without motion features on the embedded device is not just
beneficial for categorizing traffic load but could be extended
to several computer vision based real-world applications that
require analysis of low-frame rate videos. Although motionless
analysis of videos has its own benefits, it also come with
limitations described with the following observation.

Although several implementations of such methods were
able to achieve high prediction accuracy on known dataset
[3], [7], in some test cases the prediction/analysis was not
accurate at all. The reason for poor prediction/analysis is
that in some cases it is difficult to predict the label of
an image frame from a video if the ground truth1 of the
image is overlapping with several other categories (labels).
For example, in the dataset of traffic released by UCSD [3],
[6], which consists of light, heavy and traffic jam categories,
two frames (images) belonging to the same category of video
are predicted differently by the CNN model [7]. The reason
for such behavior is that the CNN predicts the label and

1Ground truth of the image frame in this case is the information gained
through empirical evidence as opposed to the inference made by the CNN
model.



probability of it occurring on the instantaneous image frame.
In Fig. 1, we notice that a trained CNN model [7] with an
overall prediction accuracy of 81.25% predicted the wrong
label for a frame, which falls under Light category, but was
instead predicted as Heavy. However, both the frames belong
to the same video under the Light category. If the ground
truth of the two images (Fig. 1 (a) & (b)) are compared
then it is justifiable that the prediction by the CNN is in fact
accurate due to the fact that the traffic projected in Fig. 1.(b)
is more congested than the traffic projected in 1.(a). In reality
the analysis of each image frame of the video should also
portray the overall analysis2 for the video instead of the image
frame itself in order to convey the temporal prediction. Since,
each individual image frame of a video could lead to different
analysis result (prediction/label), the temporal prediction is the
prediction analysis of the video over time. This limitation is
due to the fact that the trained CNN model only predicts the
label or analyzes the current image frame without taking past
image frames into consideration.

There have been some recent studies, which focused on
future predictions of motion in ego-centric videos3 [8], [9] or
action4 [10], [11] taken by a human being, such as predicting
the future position of a person based on the current image
frame. However, no study to our best knowledge has tried
to predict the scene5 [12], [13] of a video from image
frames taking predictions from immediate previous frames into
account to provide a more holistic analysis of the scene over
a time period. Hence, we call such an analysis as Temporal
Motionless Analysis of Video (TMAV). Several target applica-
tions of CNN such as traffic categorization require such kind
of analysis in comparison with traditional ones [3], [14], [7].

In order to overcome the limitations of the existing ap-
proaches we propose IRON-MAN: Integrated RatiONal pre-
diction and Motionless ANalysis of videos using CNN, which
is capable of performing TMAV, in Multi-Processor System-
on-chips (MPSoCs). To this end, this paper makes the follow-
ing contributions:

1) An energy efficient scene prediction methodology
(IRON-MAN) based on CNN, which integrates predic-
tions of previous image frames of a video to predict
the current frame, and hence, analyze the video without
using motion features.

2) A new metric named Energy Consumption per Training
Image (ECTI), which will enable the choice of suitable
CNN model for real-world applications on embedded
devices keeping energy-efficiency in mind.

3) Validation of the proposed approach on a real hardware
platform, the Odroid-XU4 [15].

II. PROPOSED METHODOLOGY: IRON-MAN

In our proposed approach, we utilize the concept of Hybrid
Training Method [7], where we train our model both dur-
ing offline (training period) and online (runtime/post-training

2Here, overall analysis of video means the analysis of the video as a whole
as opposed to the analysis of each image frame of the video.

3Ego-centric video is a first-person vision technique, which acts as an
artificial visual system that perceives the world around camera wearers and
assist them to decide their next action.

4Action is based on the movement of the human being in consideration in
the image frame.

5Scene is a place where a human being could navigate or can act within.

period) modes. IRON-MAN (Integrated RatiONal prediction
and Motionless ANalysis of videos) has two modules in it:
Training and Prediction (as shown in Fig. 2). The strength of
our approach is that it provides temporal analysis of videos
without motion features i.e. TMAV.

In the training module, we use transfer learning6 [16], [17]
by utilizing an existing pre-trained network and training the
classifier with our data categories. First, we train the pre-
trained CNN with our dataset, which could be either performed
on the MPSoC or on a powerful computing system, which has
a lot more computing resources than the MPSoC that could be
leveraged to improve the training time. After the initial phase
of training is complete, we evaluate the overall prediction
accuracy of the trained CNN. If the overall prediction accuracy
(Pi) of the CNN is equal or more than the desired quality of
experience (Q) [7], then we utilize the CNN for prediction
in the prediction module. However, if the desired prediction
accuracy is not achieved then we retrain (details in Sec.
II-A) the CNN with the failed predicted images. This retrain
methodology is human-inspired as it mimics one of the key
intelligence feature of a human being, which is learning from
the surrounding environment to adapt. When a human being
meets a new environment and is not aware of the rules and
regulations associated with it, the human tries to adjust and
adapt by learning the new set of rules and regulations. We
have utilized the same concept in our approach as well, which
is described subsequently in Sec. II-A.

After the retraining of the CNN, when the desired prediction
accuracy is achieved we use the trained CNN in the prediction
module. Now, instead of providing prediction result for each
individual image frame, we integrate the final prediction by
taking previous image frames into consideration. Our CNN
model’s prediction is inspired by Bayes’ theorem and se-
quential Bayesian updating [18], where the model updates
the probability of the occurring prediction label by incorpo-
rating the probability of the label occurring in the previous
frames. This approach is again human-inspired as it is adopted
from the ideology of humans updating their knowledge using
Bayesian inference logic. Detailed inner working (Training
and Prediction modules) of the IRON-MAN is provided in
the following two subsections.

A. Training Module
For the proposed approach, any pre-trained CNN model

such as VGG [2], ResNet [19], MobileNet [20], etc could
be selected. The training module itself consist of two part
training: Offline and Online mode. During the offline mode,
the CNN is trained with stock images from a dataset stored
on a memory. After the initial training period (offline) the
CNN is then fed with live images from the camera and
the prediction for each image frame is evaluated during the
validation of the model. Upon failure in prediction for each
image during validation testing, the image is stored in a stack
implementation called “reFeed Image Stack”. After utilizing
cross-validation technique [21], where validation testing is
performed on a separate dataset such as live image frames from
the camera stream, the overall prediction accuracy (Pi) of the
CNN model is evaluated. If the overall prediction accuracy

6Learning achieved by taking the convolutional base of a pre-trained
network, running the new data of 4 traffic categories through it and training
a new randomly initialized classifier



Fig. 2. IRON-MAN Model Work-flow

is equal or more than the desired quality of experience (Q)
then the training process concludes and the CNN is ready
to start predicting categories in the prediction module. The
governing equation to check for the suitability of the CNN
for further prediction is provided in Eq. 1[7], where I is the
dataset consisting of images, i is an image in the dataset and
Pi is the prediction accuracy of the CNN for i. However,
if the desired quality of experience is not met in terms of
prediction accuracy then the CNN is trained with the failed
prediction images, which are stored in the reFeed image stack.
We call this as the reTrain approach so that the CNN can
achieve a higher localized prediction accuracy. Here, the term
localized prediction accuracy means the prediction accuracy
of the model for a set of images that is restricted to a specific
task or place. In this application, it should be kept in mind
that reTrain does not mean training the whole model from the
beginning, however, it means to continue the training process
with the images from the reFeed image stack in order to
improve learning capability of the CNN model. The retrain
mechanism is bound to improve prediction accuracy because
we train the CNN model with the failed images7 saved in the
reFeed image stack and this approach mimics a human being’s
ability to rectify his/her mistake after making one.

∀{i ∈ I : i > 1}, Pi ≥ Q (1)

B. Prediction Module

From Bayes’ Theorem [18] we can represent the expression
representing the Bayesian Update Scheme as follows:

posterior ∝ prior × likelihood (2)

In Eq. 2, posterior is the revised probability of an event
occurring after taking new information into consideration,
prior is the probability of the event assessed before revising
posterior and likelihood is the probability that an event which
has already occurred would yield a specific outcome. Now,
using sequential update scheme where we take the past into

7Here, failed images are the image frames which were predicted/labeled
incorrectly during the testing of the trained CNN model.

account and the modified expression for Bayesian Update
Scheme is as follows:

new posterior ∝ current× new likelihood (3)

In Eq. 3, current is the probability of some entity occurring
whereas the new likelihood is the Bayesian Update taking
posterior from the past into account. This approach sometimes
is also called a Recursive Bayesian Update. For our scenario,
we are trying to predict the current probability for the label
(category), which becomes the new posterior in the equation,
current is the probability prediction of the category of the
image frame provided by the CNN and new likelihood is
the probability of the category occurring in some previous
time steps. Here, the reason to mention some previous time
steps is because the number of previous time steps to take
into consideration will be a heuristic choice of the user. In
our case, we call the number of previous frames (images),
which is considered to provide an integrated prediction for the
chosen category, as Frame Window. Frame Window consists
of N number of frames, which are taken into consideration.

If we consider that the prediction for the category in the
current frame as P category

this , prediction for the same category
in the previous frame as P category

this−1 and the total prediction
accuracy of the model after the training/cross-validation of
the model is complete as PCNN then the updated equation
for Bayes’ Theorem is as follows:

P category
updated ∝ P category

this−1 × P category
this (4)

Eq. 4 could be utilized to predict the frame using the
prediction of previous frame as follows:

P category
updated =

P category
this−1 × P category

this

(P category
this−1 × P category

this ) + PCNN

(5)

In Eq. 5, P category
updated is the updated prediction using Bayes’

Theorem for the same category by the CNN model. We should
also note that both P category

this−1 and P category
this are conjugate

priors for our scenario since they belong to the same category
as the posterior (P category

updated ) and hence, in the same probability
distribution family. Now, depending on the Frame Window, the
evaluation of P category

updated will vary, which leads us to an updated
equation as follows:

P category
updated =



P category
this−1 ×P category

this

(P category
this−1 ×P category

this )+PCNN
, if N = 1

∏N
1

P category
this−N ×P category

this−(N−1)

(P category
this−N ×P category

this−(N−1)
)+PCNN

, if N > 1

(6)
Eq. 6 is the governing equation, which is utilized to predict

the probability of the category during the Frame Window.
In the Prediction module, IRON-MAN has a queue imple-

mentation of the image stack (called as Image Queue), where
the N number of frames are stored and N is defined by
the user to denote the size of the Frame Window. When an
(N + 1)

th image frame comes from the camera for prediction,
the images stored at 1st position of the Image Queue is
popped out and the (N + 1)

th image frame is pushed in the



N th position of the queue while everything getting shifted
a place in the middle just like in a first-in-first-out (FIFO)
queue implementation. When prediction for a particular frame
is required, the prediction of the frame by the CNN model
is provided as well as the prediction of the Frame Window is
provided by using the Eq. 6. After utilizing Eq. 6 the updated
prediction (P categoryi

updated ) for a specific category i is compared
with the the updated prediction of other categories and the
label for the maximum value of the prediction/probability is
provided as output.

C. ECTI: Energy Consumption per Training Image
A new metric, ECTI (Energy Consumption per Training

Image), is introduced to choose the suitability of a CNN
model in embedded systems. If we consider ET as the total
execution time period required to train the CNN with a dataset
I consisting of n number of images to achieve a validation
prediction accuracy of P , Q as the quality of experience, and
the average power consumption per second during the training
period as e then the equation for ECTI could be defined as
follows:

ECTI = (
ET

n
× e) iff P ≥ Q (7)

The unit of ECTI is kilo−watt−hour (kWh), where ET
is represented in hours and e in kilo-Watt (kW ). To choose
the most suitable CNN for an embedded application we have
to select the CNN with the least value of ECTI .

III. EXPERIMENTAL RESULTS

Dataset used: We have performed our validation on traffic
categorization. For our traffic categorization experimentation
we are using the same dataset used in [3], [7].
Hardware setup: We have implemented the methodology on
an Odroid-XU4 [15], which employs Exynos 5422 MPSoC
[22] used in popular Samsung Note phones and phablets.
Experimental Results: To categorize traffic we chose four
pre-Trained CNN models, which were trained on millions
of ImageNet images, for our validation. These four CNN
models are VGG16, VGG19 (a deeper network of VGG16),
ResNet50 and MobileNet. In our experiments, we have chosen
the quality of experience (Q) to be 0.7 i.e. 70%. Through
empirical evidence it was noticed that the CNN model per-
forms best when the prediction accuracy of 70% or more
is chosen in order to be utilized for traffic categorization
application in the real world, hence, 0.7 was chosen to be the
quality of experience. For VGG16, VGG19, ResNet50 and
MobileNet it took us 360, 360, 330, 360 images respectively
to train the pre-Trained using Transfer Learning and our pro-
posed retrain approaches (see Sec. II-A), and gained a testing
prediction accuracy of 98.93%, 96.62%, 92.79% and 85.75%
respectively. The total execution time of the VGG16, VGG19,
ResNet50 and MobileNet CNN model’s training are 5864,
6093, 7047 and 5301 seconds respectively. The average power
consumption of VGG16, VGG19, ResNet50 and MobileNet
on the MPSoC during the training are 10.63, 10.67, 10.59 and
9.89 Watt respectively, and the average operating temperature
on the MPSoC during training of VGG16, VGG19, ResNet50
and MobileNet are 93.6°, 94.01°, 93.6°and 93.3° centigrades
respectively. Based on Eq. 7 the evaluated ECTI values for
VGG16, VGG19, ResNet50 and MobileNet are 4.81× 10−05,

5.02× 10−05, 6.28× 10−05 and 4.05× 10−05 kWh (approx.)
respectively, hence, proving MobileNet to be the most energy
efficient model.

IV. CONCLUSION

In this paper, we propose IRON-MAN, which is capable of
providing Temporal Motionless Analysis of Videos (TMAV )
i.e. analyzing videos without motion features and providing
a holistic temporal analysis while utilizing predictions of the
past image frames into consideration. Based on the results we
have shown that MobileNet is more energy efficient compared
to VGG and ResNet50 models. Therefore, it is recommended
to perform the training off the embedded device for improved
energy efficiency or utilize MobileNet for on-device traffic
categorization.
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