
“Chapter˙7”
2017/11/13
page 1

Chapter 1

Tools and Workloads for Many-Core Computing
Amit Kumar Singh1

Piotr Dziurzanski2

Geoff V. Merrett 3 and
Bashir M. Al-Hashimi 4

Proper tools and workloads are required to evaluate any computing systems. This
enables designers to fulfill the desired properties expected by the end-users. It can
be observed that multi/many-core chips are omnipresent from small scale to large
scale systems, such as mobile phones and data centers. The reliance on multi/many-
core chips is increasing as they provide high processing capability to meet the in-
creasing performance requirements of complex applications in various application
domains. The high processing capability is achieved by employing parallel process-
ing on the cores where the application needs to be partitioned into a number of tasks
or threads and they need to be efficiently allocated onto different cores. The appli-
cations considered for evaluations represent workloads and toolchains required to
facilitate the whole evaluation are referred to as tools. Figure 1.1 provides three-
layer view of a typical computing system, where the top layer contains applications
and thus represents workloads. The tools facilitate realization of different actions
(e.g., thread-to-core mapping and voltage/frequency control, which are governed by
OS scheduler and power governor, respectively) and their effect on different per-
formance monitoring counters leading to a change in the performance metrics (e.g.,
energy consumption and execution time) concerned by the end-users.

The design of multi/many-core chips has been the focus of several chip man-
ufactures. The examples of some industrial chips include: Samsung Exynos 5422
System-on-Chip [1] that contains 4 ARM Cortex-A15 cores, 4 ARM Cortex-A7
cores and a six-core ARM Mali T628 MP6 GPU, Intel’s Teraflop 80-core proces-
sor [2] and Xeon Phi 64-core processor [3], 16 and 64 core Epiphany processors
[4], Tilera’s TILE-Gx family 100-core processor [5], AMD’s Opteron 16-core pro-
cessor [6], Kalray’s MPPA 256-core processor [7] and recently developed KiloCore
1000-core chip [8] by IBM and UCDavis. Even world’s fastest supercomputers such

1School of Computer Science and Electronic Engineering, University of Essex, UK
2Department of Computer Science, University of York, UK
3School of Electronics and Computer Science, University of Southampton, UK
4School of Electronics and Computer Science, University of Southampton, UK



“Chapter˙7”
2017/11/13
page 2

2 Many-Core Computing: Hardware and Software

Application layer

OS Scheduler Power governor

OS/Management Layer

Performance Monitoring Counters

Hardware layer

Performance requirements

Thread-to-core mapping
Voltage/frequency control

Energy/Performance
Statistics

Hardware
resource 1

. . .
resource n

t1 ... tn

App 1
t1 ... tn

App 2
t1 ... tn

App n Workload

Hardware

Tools

Figure 1.1 Three-layer view of a computing system [11]

as Tianhe-2 (MilkyWay-2) and Titan use many-cores and the total number of cores
in Tianhe-2 is around 3 millions. The large number of cores within a chip is usu-
ally connected by an on-chip interconnection network [9, 10], whereas bus-based
or point-to-point interconnections are used when the number of cores is small. The
hardware in bottom-layer of Figure 1.1 can represent any of these chips.

These chips power systems of different scales to meet the respective user re-
quirements. For small scale systems such as mobile phones and desktops, usually
a single chip is used, whereas multiple chips are used for large scale systems such
as data centers. Figure 1.2 classifies these systems into single-chip and multi-chip
systems, where the hardware layer contains one and multiple chips, respectively.
Examples of single and multiple chip multi-core systems are embedded systems (in-
cluding mobile phones) and data centers, respectively. In embedded systems, typi-
cally a single chip containing small number of cores is used, e.g., Samsung Exynos
5422 System-on-Chip [1], which powers popular Samsung Galaxy series of mobile
phones [11]. In a desktop computer, a chip having higher numbers of cores, e.g.,
Intel’s Xeon Phi 64-core processor [3] and AMD’s Opteron 16-core processor [6],
are used [12]. An HPC data center connects a set of nodes (servers) [13], where
each node contains a set of cores within a chip and the cores communicate via an
interconnection network and the nodes communicate via a high-speed network, e.g.,
InfiniBand. When the number of cores within a chip is relatively smaller, it is re-
ferred to as a multi-core chip and the cores are usually interconnected by a shared
bus or point-to-point links. However, the chip is referred to as a many-core chip
when the number of cores is relatively higher and they are usually connected by a
network-on-chip. Further, some of these systems might incorporate cores of different
types to achieve efficiency over only one types of cores [14].

As shown earlier, since many-core systems can employ a single or multiple
chips, it is important to identify appropriate tools and workloads to evaluate them.



“Chapter˙7”
2017/11/13
page 3

Tools and Workloads for Many-Core Computing 3

OS Scheduler Power governor

OS/Management Layer

Application layer

t1 ... tn

App 1
t1 ... tn

App 2
t1 ... tn

App n

OS Scheduler Power governor

OS/Management Layer

Application layer

t1 ... tn

App 1
t1 ... tn

App 2
t1 ... tn

App n

(a) (b) 

Figure 1.2 Many-core systems with: (a) single chip and (b) multiple chips

In this chapter, the tools for these systems are reviewed from three categories: i)
Toolchains or scripts generated by designers to map and schedule application codes,
e.g. C/C++ codes, on real hardware platforms, e.g. Samsung Exynos 5422 System-
on-Chip [1], ii) Simulation tools, to evaluate systems by simulating the descriptions
of applications and architectures at a high level, e.g. task graphs [15] and syn-
chronous data flow graphs [16], and iii) Commercial tools or software development
environments to program the real hardwares to run application(s), e.g., Xilinx’s Soft-
ware Development Kit (SDK) to program many-core systems available or created in
a field-programmable gate array (FPGA) chip [17].

This chapter is organized around the descriptions/discussions of tools and work-
loads for these systems as follows. Section 1.1 provides overview of identified tools
and workloads for systems using single chips. The same has been covered in Section
1.2 for systems using multiple chips. Section 1.3 provides a discussion about the
tools and benchmarks covered in Sections 1.1 and 1.2. Section 1.4 concludes the
chapter.

1.1 Single-chip Multi/Many-core Systems

In this section, the typical tools used for design and analysis of single-chip many-
core systems are investigated. Then, the characteristic workloads of these systems
are discussed.



“Chapter˙7”
2017/11/13
page 4

4 Many-Core Computing: Hardware and Software

Table 1.1 Tools for single-chip multi/many-core systems

Category Reference Comments/Remarks

Toolchains/scripts

Epiphany SDK [18] For Epiphany
COPRTHR SDK [19] For Epiphany
ARL OpenSHMEM [20] For Epiphany
ePython [21] For Epiphany
OMPi OpenMP compiler [22] Ported for Epiphany
Epiphany BSP [23] For Epiphany
SMYLE OpenCL [24] Framework for OpenCL
Adrenaline [25] Framework for OpenVX
GSNoC [26] Frameworks for 3D NoC design perspectives

Simulation

HORNET [27] Applicable to many-cores of various scales
FOLCS [28] Applicable to many-cores of various scales
BookSim2 [29] Applicable to many-cores of various scales
Gem5+GPU [30] Applicable to many-cores of various scales
VIPPE [31] Parallel native simulation
SMVM-NoC [32] NoC simulator based on OMNeT++
OVPSim [33] Fast simulation of virtual platforms

Commercial tools

Multicore Development EnvironmentTM [34] For TILE-Gx72 and TILE-Gx36
MPPA R© DEVELOPER [35] For Kalray MPPA2 R©-256
AccessCore R© SDK [35] For Kalray MPPA2 R©-256
eMCOS IDE [36] Profiler, trace analyzer for eMCOS
Sourcery CodeBench [37],[38] Complete development environment
AbsInt aiT [39] WCET static analyzer
Open Virtual Platforms (OVP) [33] For creating software virtual platforms

1.1.1 Tools
Table 1.1 lists various tools employed to evaluate single-chip multi/many-core sys-
tems. The first few entries list developed tools for the Epiphany microprocessor,
probably the most widely supported many-core architecture. Despite the recent prob-
lems related to the public release of the 1024-core Epiphany-V version, its predeces-
sor Epiphany-III is still publicly available as a co-processor in the Parallella Board
[4]. The Epiphany SDK [18] and COPRTHR OpenCL SDK [19] are officially sup-
ported. The former is comprised of Eclipse IDE, GCC, GDB, an Epiphany driver,
loader and runtime library. The toolchain includes a functional simulator for a sin-
gle core. The CO-PRocessing THReads (COPRTHR) SDK provides libraries and
tools facilitating programming low-power many-core RISC co-processors. It offers
a portable API for targeting accelerators with an MPI programming model for par-
allel code development. An integrated many-core co-processor debugging tool is
included. An open-source OpenCL implementation is available.

The US Army Research Laboratory (ARL) has developed the ARL OpenSH-
MEM for Epiphany, which is a standardized interface to enable portable applications
for partitioned global address space (PGAS) architectures. Its high-performance exe-
cution while approaching hardware theoretical networking limits is demonstrated in
[20]. ePython is a Python-based parallel programming environment for Epiphany
and similar many-core co-processors [21]. It offers the capability of offloading
specific Python functions (kernels) from an existing Python code to a many-core
co-processor. Despite OpenMP was intended for shared memory multiprocessing
programming and thus is more suitable for SMP architectures than for the cores



“Chapter˙7”
2017/11/13
page 5

Tools and Workloads for Many-Core Computing 5

with local memories, there exists its implementation for Epiphany [22]. A Bulk
Synchronous Parallel (BSP) programming environment developed by Coduin is also
available [23]. The programs following the BSP model are comprised of so-called
supersteps performing local computations and non-blocking communication, fin-
ished with a barrier synchronization. Some popular Google technologies as MapRe-
duce and Pregel are based on this model.

The processors developed by Tilera, including TILE64, TILEPro64, TILEPro36,
TILE-Gx72, TILE-Gx36, TILE-Gx16 and TILE-Gx9 are also suitable for many-core
embedded systems. After the acquisition of EZchip in February 2016, TILE-Gx72
and TILE-Gx36 are offered by Mellanox Technologies. This company offers the
toolset named Multicore Development EnvironmentTM (MDE) [34]. In this envi-
ronment, cross-compilation is performed using a typical C/C++ GNU compiler. An
Eclipse IDE facilitates many-core application debugging and profiling. A complete
system simulator and hardware development platform is also available.

Kalray offers MPPA2 R©-256 (Bostan) many-core processors with 288 cores, op-
timized for networking and storage applications [35]. The EMB boards from the
same company provide a complete environment to develop compute-intensive em-
bedded systems. This processor is programmed using MPPA R© DEVELOPER and
AccessCore R© Software Development Kit (SDK). Kalray’s SDK is based on Eclipse
and offers a set of simulation, profiling, debugging and system trace tools. Three
programming styles are allowed: a low-level DSP style, POSIX-level CPU Style and
GPU style based on OpenCL.

On Kalray MPPA, eMCOS [36] and ERIKA Enterprise [40] operating systems
can be installed. The eMCOS IDE Plug-in development tools shipped with the for-
mer OS consist of eMCOS-specific system analysis tools and utility software for
building, debugging and system analysis. They include Real-time Profiler for run-
time analysis of each core, thread and function, Message Profiler for analysis of the
message communication behaviors from the OS to the driver, middleware and ap-
plication and Trace Analyzer for tracing the system events. Kalray cores are also
targeted by Absint aiT static analysis tool for determining the worst-case execution
time of a given taskset [39].

Despite the existence of the OpenCL SDK for Epiphany or Kalray mentioned
above, OpenCL is rather rarely used in embedded many-core systems in general.
The reasons for this fact, as explained in [24], are the large runtime overhead for cre-
ation and mapping of threads at runtime. Similarly, memory buffers and command
queues required for an OpenCL program execution are created at runtime. In that
paper, SMYLE OpenCL, a framework for OpenCL dedicated to embedded many-
cores is proposed. This framework reduces the runtime overhead by creating the
threads and objects statically, as demonstrated on a five-core SMYLEref architecture
implemented on an FPGA prototype board.

OpenVX is an open standard for cross-platform acceleration of computer vision
applications specified at a higher level of abstraction than OpenCL. In OpenVX, a
computer vision application is specified as a connected graph of vision nodes ex-
ecuting a chain of operations. In [25], an open framework for OpenVX named
Adrenaline is presented. It targets an embedded system on chip (SoC) platform



“Chapter˙7”
2017/11/13
page 6

6 Many-Core Computing: Hardware and Software

with a general-purpose host processor coupled with a many-core accelerator, such as
STM STHORM, KALRAY MMPA or Adapteva Epiphany.

Embedded SourceryTM CodeBench from Mentor R© is a commercial set of em-
bedded C/C++ development tools [37]. It includes an Eclipse-based IDE with a
performance-optimized compiler based on GCC and optimized runtime libraries for
selected embedded cores. An advanced software insight allows the developers to
identify and correct functional, timing, and performance bottlenecks. The attached
multi-core debugger facilitates simultaneous debug of multiple operating systems or
applications running on different cores. The applications can be simulated using the
QEMU hypervisor. This toolset has been used for embedded many-core systems in,
e.g., [38].

A set of simulation tools, used for embedded many-cores, can be also applied to
larger systems. The examples of such tools are HORNET [27], FOLCS [28], Book-
Sim2 [29], GEM5 (with a GPU extension) [30]. However, there exist a couple of
simulators that are dedicated solely to the small-scale many-core systems. One of
them is VIPPE [31] that offers a parallel host-compiled simulation methodology that
making an efficient use of multi-core host platforms. Some simulators are applicable
only to embedded NoCs, such as SMVM-NoC, an OMNeT++ based Network-on-
Chip simulator for embedded systems [32]. In this simulator, such parameters as
network size, buffer size and clock frequency are customizable. To reduce the com-
munication cost in NoCs, 3D chip technologies are emerging. Similarly, the neces-
sary tools have been developed recently. One of them is Generic Scalable Networks-
on-Chip (GSNoC) [26], which is a comprehensive design platform. It handles the 3D
NoCs design at the application, architecture and circuit design levels. The platform
is equipped with an application generator, design framework and a cycle accurate
system simulator.

OVPsim [33] is one of the most mature embedded many-core simulators. This
tool is a component of Open Virtual Platforms (OVP). OVP offers APIs allowing
the users to model processors, peripherals and platforms to create software virtual
platforms. Such platforms can be fast simulated with the OVPsim simulator, as the
instruction accurate simulation can achieve up to 1,000 MIPS. Numerous example
platform models including up to 24 processors are provided. These platforms benefit
from the attached peripheral models, such as Ethernet or USB. Finally, several pro-
cessor models can be used, including such families as OpenCores, ARM, Synopsys
ARC, MIPS, PowerPC, Altera, Xilinx, Renesas. These OVP models are provided
with interface wrappers for C, C++, SystemC and OSCI SystemC TLM2.0 environ-
ments. OVP is free for non-commercial usage and thus can boast with a huge com-
munity and numerous related research projects. For example, an accurate energy
estimation for embedded many-core systems has been added to OVPSim in [38].

1.1.2 Workloads
Table 1.2 lists various workloads/benchmarks used to evaluate single-chip multi/many-
core systems. Among them are both industry-standard benchmark suites and the sets
developed in academia.



“Chapter˙7”
2017/11/13
page 7

Tools and Workloads for Many-Core Computing 7

Table 1.2 Benchmarks for single-chip multi/many-core systems

Category Reference Comments/Remarks

Benchmark
sets

Autobench 2.0 [41] Commercially licensed
MultiBench [42] Commercially licensed
SPLASH-2 [43] HPC workloads mainly
PARSEC [44] Modern problems, not HPC
E3S [45] For high-level synthesis
MiBench [46] Wide range of embedded apps
SD-VBS [47] Vision domain apps
Rodinia [48] For heterogeneous platforms
StreamIt [49] Streaming apps

Popular
workloads

Sobel [50],[25],[51],[52] Edge detector filter
MMUL [53],[54],[55], [56], [57] Matrix multiplication
QSORT [53] Parallel versions from [58]
NCC [50],[59],[55] Normalized cross-correlation [60]
FAST [55],[25],[61],[52] Corner detection [62]
Computer vision [55],[59] Derived from OpenCV library [63]
Canny [25],[52] Edge detector
Odd-even sorting [64],[65],[57] Distributed sorting
Papabench [66], Rosace [67] Control apps of drone and plane
Object tracking [65], [68],[69] E.g. Vehicle localization
3D path planning [70], [71] Avionic collision avoidance
DemoCar [72] Gasoline engine ECU

Industry-standard benchmarks for embedded systems are licensed by the indus-
try alliance named EEMBC. This organization offers benchmark sets for various mo-
bile devices, networking, IoT, digital media, automotive, etc. Three of their suites
are labelled as multi-core and can be also applicable to many-core architectures.
The first of them, AutoBench 2.0, is dedicated to automotive processors. Multi-
Bench, the second multi-core processor suite, includes more than 100 data process-
ing and computationally intensive workloads for evaluating an impact of paralleliza-
tion and scalability of multi- and many-core processors. Some workloads realize
typical networking tasks (e.g., reassembling TCP/IP packets or compressing H.264
video streams), image processing (e.g., image rotations or color model conversions)
or cryptographic functions (e.g., MD5 checksum calculation). These workloads are
especially suitable for identifying memory bottlenecks and measure the efficiency of
parallel task synchronization. Both AutoBench 2.0 and MultiBench are in a form of
C/C++ codes intended to be run on a POSIX-compliant operating system. They may
also be ported to a bare-metal platform with a custom scheduler, memory driver and
thread synchronization mechanisms. Some examples of these benchmarks’ licensing
costs are provided in [42]. CoreMark-Pro is another set from EEMBC. It consists of
5 integer and 4 floating-point workloads including JPEG compression, XML parser,
SHA256, Zip, FFT, linear algebra and a neural net. Some of these workloads (e.g.,
FFT or neural net) exhibit relatively low level of data dependencies and thus are more
suitable for many-core systems than others (e.g., XML parser).



“Chapter˙7”
2017/11/13
page 8

8 Many-Core Computing: Hardware and Software

SPLASH-2 benchmark suite includes 11 workloads mainly from the high-performance
computing domain (e.g., Cholesky factorization, FFT, LU decomposition) and graphic
synthesis (e.g., Radiocity or Raytrace), which hardly cover the most typical modern
usage patterns of parallel processing in many-cores. SPLASH-2 applications are
written in C and are optimized to enhance scalability in the large-scale Cache Coher-
ent Non-Uniform Memory Access (ccNUMA) architectures. In [73], some changes
to make the suite compatible with modern programming practices and a number of
bug fixes have been performed in order to port the original benchmark suite to a
many-core architecture. The authors of [74] found that 7 original SPLASH-2 work-
loads contain data races due to the initial synchronization optimizations. They pro-
duced the SPLASH-3 suite, a sanitized version of the SPLASH-2 without data races
and performance bugs, compliant with the contemporary C-standard memory model.
Despite the year of its release, the SPLASH-2 benchmark suite still remains one of
the most popular collections of multithreaded workloads. It has been used for an
embedded many-core architecture evaluation in, e.g., [75]. Among the SPLASH-2
workloads, FFT and Cholesky are particularly often considered for many-cores, e.g.
in [76], [71], [77].

PARSEC (Princeton Application Repository for Shared-Memory Computers)
benchmark suite [44] contains fundamentally different types of programs than SPLASH-
2. Among 13 workloads, there are representative applications from assorted areas
such as enterprise servers, computer vision, data mining and animation. They reflect
the contemporary computing problems and are not focused on the High-Performance
Computing (HPC) domain. The applications are written in C and have been paral-
lelized with pthreads and OpenMP. These workloads have been used for embedded
many-cores in, e.g., [31],[75].

E3S is an embedded system synthesis benchmark set based on the EEMBC
benchmarks suite. It includes task graphs of five applications from the automo-
tive industry, consumer, networking, office automation and telecommunication areas
without providing their codes (due to the EEMBC licensing restrictions). Conse-
quently, their application is limited to the system-level allocation and scheduling,
particularly when applied to the Network-on-Chip based architectures, as shown for
example in [78].

MiBench [46] is a set of 35 applications covering the embedded system diver-
sity at the time of its release (2001). The applications range from a sensor system
on a simple microcontroller to a smart cellular phone. The whole set is divided into
six categories: automotive & industrial control, consumer devices, office automa-
tion, networking, security and telecommunications and includes basic math calcu-
lations, quick sort, image recognition, Dijkstra’s algorithm, Rijndael, SHA, JPEG
encode/decode, MP3 encoder, spelling checker, FFT, CRC32 and many more. The
programs are freely available as C source codes with (usually) two data sets: a light-
weight but useful embedded application of the benchmark and a large real-world
application. Despite their single-thread nature, the benchmarks can be successfully
used to evaluate embedded many-core environments, as shown in [79].

The more recent SD-VBS [47] suite includes nine applications from the com-
puter vision domain, namely disparity map, feature tracking, image segmentation,



“Chapter˙7”
2017/11/13
page 9

Tools and Workloads for Many-Core Computing 9

SIFT, SVM, robot localization, face detection, image stitch and texture synthesis.
These applications are composed of over 28 computationally intensive kernels such
as PCA, correlation, Gaussian filter, QR factorization, affine transforms, etc. The
codes are provided in both MATLAB and C. For each benchmark, the data inputs
of three different sizes are provided. The SD-VBS suite has been employed in, e.g.,
[79].

Rodinia (version 3.1) suite contains 23 applications (for example Gaussian elim-
ination, K-means, back propagation, leukocyte tracking, BFS, path finder, stream
cluster, similarity scores, LU decomposition) targeting heterogeneous architectures
with CPUs and GPUs. The domains of these benchmarks range from data mining
to fluid dynamics. The diversity of the benchmarks stems from applying various
Berkeley Dwarves, such as Dense Linear Algebra, Dynamic Programming, MapRe-
duce, Un/Structured Grid, etc. The CPU-targeted codes are written in C++ where
parallelism and synchronization are defined with the OpenMP pragmas. The GPU
implementations of the benchmarks are provided as CUDA codes. Additionally, the
codes are available in OpenCL and OpenACC.

In [49], a relatively large set of streaming application benchmarks is available
as dataflow programs written in the StreamIt language, described in [80]. These
benchmarks include DCT, FFT, DES, FM radio, MP3 decoder, Serpent, JPEG de-
coder/encoder, MPEG2 decoder/encoder, etc. For several benchmarks, the corre-
sponding C codes are also provided. This suite has been used with many-core archi-
tectures in [81] or [82].

Despite the abundance of available benchmark suites as presented above, a large
number of research is still carried out using other workloads. Some of them imple-
ment classic computer science algorithms, such as matrix multiplication in [53], [54],
[55], [56], [57], odd-even sorting [64], [65], [57], parallel quick sort in [53], normal-
ized cross-correlation in [50], [59], [55], etc. The popularity of computer vision
many-core applications grows rapidly which is also reflected in the workload selec-
tion. The traditional Sobel edge detector filter has been employed in [50], [25], [51],
[52], the Canny edge detector in [25], [52] and FAST corner detection in [55], [25],
[61], [52]. Various object tracking approaches (including data fusion from multiple
sources) have been presented in [65], [68], [69]. Numerous computer vision algo-
rithms derived from OpenCV library [63] have been studied in [55], [59]. Some
researchers prefer to work with custom real-world applications. DemoCar, a mini-
mal gasoline engine electronic contol unit (ECU) has been presented and studied in
[72]. Control applications of a drone and plane has been used as workloads in [66]
and [67], respectively. 3D path planning algorithms applied for avionic collision
avoidance systems are analyzed in [70], [71].

Additionally, tasksets for multi/many-cores can be artificially created using vari-
ous tools, for example Task Graph For Free [83], as it is done in [84], or Synchronous
Dataflow 3 [85]. Various automotive ECU can be generated using the AMALTHEA
tool platform [86].



“Chapter˙7”
2017/11/13
page 10

10 Many-Core Computing: Hardware and Software

1.2 Multi-chip Multi/Many-core Systems

The tools and workloads for multi-chip systems are as follows.

1.2.1 Tools
Table 1.3 lists various tools employed to evaluate multi-chip multi/many-core sys-
tems, as shown in Figure 1.2.

The toolchains/scripts are limited for the evaluation of multi-chip multi/many-
core systems. These have been developed to achieve some specific additional pur-
poses.

SystemC based tools are used in [13], where resource allocation approaches are
implemented in a C++ prototype and integrated with a SystemC functional simu-
lator. To simulate real situations, it is considered that the number of jobs arriving
during peak times is higher than that of off-peak times. All the jobs arriving over a
whole day, i.e., 24-hour period, are considered to sufficiently stress the data center
resources, where a job contains a set of dependent tasks.

Analytical models have been used to accelerate the evaluation process [87, 88].
In [87], analytical methods for estimating the total data center energy efficiency are
proposed. This allows designers to evaluate energy efficiency of various power man-
agement approaches. For different approaches, polynomial efficiency models for
cooling and power-conversion equipment are used to construct the system-level en-
ergy efficiency model. The models are evaluated for various example cases to show
their benefits. In [88], an analytical model supports the design and evaluation of
various resource allocation controller parameters.

There is a huge list of simulators to evaluate multi-chip many-core systems and
the notable ones are listed in Table 1.3.

CloudSim [89] is a highly generalized and extensible Java based simulation tool
for realizing data centers, virtual machines, applications, users, computational re-
sources and policies for managing diverse parts of the system like scheduling and
provisioning. The data center contains a set of nodes (server), where each node is
comprised of a many-core chip. It also enables modeling and simulation of large
scale cloud computing data centers by configuring the number of nodes to a high
value. Further, it has support to incorporate user defined policies for allocating hosts
to virtual machines (VMs) and include different network topologies.

CloudAnalyst [90] is a GUI based simulator derived from CloudSim. Therefore,
it has some extended features and capabilities. It facilitates evaluation according to
the geographical distribution of data centers and users. It is regarded as a power-
ful simulation framework for deploying real-time data centers and monitoring load
balancing. The available extensions in this tool range from enabling GUI features,
by saving configurations as XML files to exporting live results in the PDF format.
The graphical outputs also include tables and charts, in addition to a large amount of
statistical data. It also has a high degree of configuration ability as several entities
such as data center size, memory, storage and bandwidth can be easily configured to
perform a new set of experiments.



“Chapter˙7”
2017/11/13
page 11

Tools and Workloads for Many-Core Computing 11

Table 1.3 Tools for multi-chip multi/many-core systems

Category Reference Comments/Remarks

Toolchains/scripts SystemC-based tool [13] Configurable number of servers and cores
Analytical model [87, 88] For fast evaluation

Simulation

CloudSim [89] Configurable number of nodes (servers)
CloudAnalyst [90] Configurable number of nodes (servers)
GreenCloud [91] Configurable number of nodes (servers)
iCanCloud [92] Configurable number of nodes (servers)
EMUSIM [93] Configurable number of nodes (servers)
GroudSim [94] Configurable number of nodes (servers)
DCSim [95] Configurable number of nodes (servers)
CloudSched [96] Configurable number of nodes (servers)
CDOSim [97] Configurable number of nodes (servers)
TeachCloud [98] Configurable number of nodes (servers)
SPECI [99] Configurable number of nodes (servers)
MDCSim [100] Configurable number of nodes (servers)
Dist-Gem5 [101] Gem5 extension to distributed systems

Commercial tools

CoolSim [102] Tool for data center managers
Apache Hadoop [103] For computer clusters
OpenMP [104] For shared memory multiprocessing
OpenMPI [105] For multiprocessing
OpenACC [106] For heterogeneous CPU/GPU platforms

GreenCloud [91] has been developed as an extension to the NS-2 packet-level
network simulator. It provides an environment for simulating energy-aware cloud
computing data centers. It offers a detailed fine-grained modeling of the energy con-
sumed by the various equipments used in a data center. Examples of these equip-
ments are servers, network switches and communication links. The data center
servers, each containing a many-core chip, are created with a help of a script, where
data center size can be configured. This simulator can be used to explore methods
leading to minimized electricity consumption.

iCanCloud [92] is based on SIMCAN and developed over the OMNeT++ plat-
form. It was developed with the aim of predicting the trade-offs between cost and
performance of a given set of applications executed on specific hardware. Further, it
supports flexibility, accuracy, performance and scalability, and thus has been widely
used to design, test and analyze various existing and non-existing cloud architectures.
It also provides a user-friendly GUI, which is useful for managing preconfigured ex-
periments/systems and generating graphical reports.

EMUSIM [93] stands for Integrated Emulation and Simulation. It integrates
emulation (AEF-Automated Emulation Framework) and Simulation (CloudSim) to
enable fast and accurate simulations. It is particularly useful when there is limited
information regarding the performance of the software under the varied levels of
concurrency and parallelism as it accurately models application performance.



“Chapter˙7”
2017/11/13
page 12

12 Many-Core Computing: Hardware and Software

GroudSim [94] is designed for scientific applications on grid and cloud environ-
ments. It has a rich set of features, e.g, calculation of costs for job executions and
background load on resources.

DCSim (Data Center Simulation) [95] is an extensible data center simulator.
It facilitates high-end experiments on data center management for the evaluation
of data center management policies and algorithms. It also contains a multi-tier
application model that allows the simulation of dependencies and has support for
feedback.

CloudSched [96] provides different metrics for load-balance, energy efficiency
and utilization, etc. It uses the model suggested by Amazon, where physical ma-
chine and virtual machine specifications are predefined. It also supports migration
algorithms.

CDOSim [97] is a cloud deployment option (CDO) that can simulate the re-
sponse times, SLA violations and costs of a CDO. It has ability to represent the
user’s rather than the provider’s perspective. It can be used to determine trade-off
between costs and performance. It also has features to use workload profiles from
production monitoring data.

TeachCloud [98] is made specially for education purposes. For students and
scholars, it provides a simple graphical interface to modify a cloud’s configuration
and perform experiments. It uses CloudSim as the basic design platform and intro-
duces many new enhancements on top of it, e.g., a GUI toolkit, a workload generator,
new network models and a reconfiguration interface.

SPECI [99] stands for Simulation Program for Elastic Cloud Infrastructures and
allows analysis and exploration of scaling properties of large data centers while tak-
ing the given design policies of the middleware into account. Due to its elastic nature,
it allows exploration of performance properties of future data centers. Thus, the de-
signer can have insights into the expected performance of data centers when they are
designed, but not built.

MDCSim [100] is a scalable simulation platform for in-depth analysis of multi-
tier data centers. It captures all the important design specifics of communication
paradigm, kernel level scheduling algorithms and the application level interactions
among the tiers of the data center.

Dist-Gem5 [101] is a flexible, detailed, and open-source full-system simulation
infrastructure. It is an extension of Gem5 to model and simulate distributed computer
system using multiple simulation hosts.

Commercial tools are also available to evaluate data centers. Such tools provide
evaluation on physical real hardware. Some of these tools are listed in Table 1.3 and
described as follows.

CoolSim [102] enables the analysis and design refinement of data centers. It
offers several benefits such as an easy to use and quick to learn user environment. By
using CoolSim, the best data center in terms of price/performance can be designed.

Apache Hadoop [103] is an open-source software framework usually employed
for processing of big data applications/data using the MapReduce programming
model. The framework contains a set of clusters built from hardware. The process-
ing part in Apache Hadoop is accomplished by employing MapReduce programming



“Chapter˙7”
2017/11/13
page 13

Tools and Workloads for Many-Core Computing 13

model and there is a storage part, known as Hadoop Distributed File System (HDFS).
Hadoop splits files into large blocks and then distributes them across nodes in a clus-
ter to process the data in parallel. Thus, the data is processed fast. Apache Spark is
another popular framework providing an interface for programming entire clusters.
It allows the developers to efficiently execute the class of applications inappropriate
to the Hadoop’s MapRecuce model, such as iterative jobs, streaming jobs or inter-
active analysis [107]. Apache Spark can execute applications up to two order of
magnitudes faster than Hadoop due to the reduced number of read/write operations.
However, Spark usually requires more RAM memory than Hadoop and is perceived
as slightly less secure because of limited authentication options.

OpenMP (Open Multi-Processing) [104] is an application programming inter-
face (API) that supports multi-platform (multi-chip) shared memory multiprocess-
ing. It is employed with programming languages C, C++, and Fortran and is com-
patible with most hardware platforms and operating systems such as Solaris, AIX,
HP-UX, Linux, macOS, and Windows. This API has been implemented in a number
of commercial compilers from various vendors (e.g., Intel, IBM), as well as the ones
developed by open source communities. It offers a simple and flexible interface to
develop parallel applications for platforms of various scales, e.g., desktop computers
and supercomputers.

OpenMPI [105] is a Message Passing Interface (MPI) library project combining
technologies and resources from several other projects. Similarly to OpenMP, it has
been implemented in both commercial and open-source compilers. It has been used
by several TOP500 supercomputers of the world. Some notable examples include
Roadrunner, the world’s fastest supercomputer from June 2008 to November 2009,
and K computer, the fastest supercomputer from June 2011 to June 2012.

The fastest supercomputer in 2017, Sunway TaihuLight, has its own imple-
mentation of OpenACC [106], another directive-based parallel programming model.
OpenACC is aimed at heterogeneous HPC hardware platforms with GPU accelera-
tors. In contrast to OpenMP, where the possible parallelisms and data dependencies
has to be expressed in the code explicitly, OpenACC can benefit from the user’s
guidance, but is capable of performing automatic parallelization of the user-selected
regions (kernels) and offloading them to GPUs. Commercial compilers supporting
OpenACC are available from CRAY and PGI, but this model is also supported by
GCC7 and a number of academic compilers.

1.2.2 Workloads
Table 1.4 lists various workloads/benchmarks used to evaluate multi-chip multi/many-
core systems. Multithreaded applications are potential benchmarks to evaluate multi-
chip systems. However, some of these benchmarks can be used to evaluate single-
chip multi/many-core systems as well [11], e.g., PARSEC [44] and SPLASH-2 [43],
and have been mentioned earlier in this chapter. Short descriptions of the additional
benchmarks listed in Table 1.4 are as follows.

CloudSuite [108] consists of eight applications that have been selected based
on their popularity in today’s data centers. These benchmarks represent real-world
setups and are based on real-world software stacks.



“Chapter˙7”
2017/11/13
page 14

14 Many-Core Computing: Hardware and Software

SPEC Cloud IaaS 2016 benchmark [109] is SPEC’s the first benchmark suite to
evaluate performance of cloud infrastructures. In addition to academic researchers,
the benchmark is targeted for cloud providers, cloud consumers, hardware vendors,
virtualization software vendors and application software vendors.

TPC Express Benchmark V (TPCx-V) [110] helps to measure the performance
of servers running database workloads. It has features to simulate load variation in
cloud data centers with the help of unique elastic workload characteristic. It stresses
several resources such as CPU and memory hardware.

The High Performance LINPACK (HPL) benchmark [111] evaluates floating
point computing power of a system. For a common task in engineering, they measure
how fast a computer system solves a dense system of linear equations. Its latest
version is used to evaluate and rank world’s most powerful TOP500 supercomputers.

High Performance Conjugate Gradients (HPCG) Benchmark [112] has been
proposed to create a new metric for ranking HPC systems. It is a complement to
the LINPACK (HPL) benchmark. The benchmark has several basic operations such
as sparse matrix-vector multiplication, vector updates and global dot products.

Additionally, the simulators listed in Table 1.3 also contain inbuilt functions to
create data center workloads of varying natures. Therefore, they can also be used to
stress the data center resources, mainly cores of the chips.

Table 1.4 Benchmarks for multi-chip multi/many-core systems

Category Reference Comments/Remarks

Benchmark
sets

PARSEC [44] Modern problems, not HPC
SPLASH-2 [43] HPC workloads mainly
CloudSuite [108] Several software components
SPEC Cloud IaaS [109] SPEC’s first cloud benchmark
TPCx-V [110] TPC’s data center benchmark
LINPACK [111] Currently used to rank the TOP500

computing systems
HPCG [112] Proposed to rank the TOP500 com-

puting systems

1.3 Discussion

The tools and workloads/benchmarks covered in the earlier sections can be used
to evaluate systems of various scales, such as embedded, desktop and data centers.
Typically, tools and benchmarks for single-chip systems are used to evaluate embed-
ded systems and desktop computers equipped with many-core CPUs or accelerators.
However, some of them, especially having multithreaded applications can be used to
evaluate multi-chip systems as well.

Since these benchmarks stress the systems in different ways, i.e. some impose
high computation load and some high memory load, they need to be appropriately
selected to properly evaluate the considered system. It might also be worth trying a



“Chapter˙7”
2017/11/13
page 15

REFERENCES 15

mixture of some of the benchmark applications to cover a broad spectrum of work-
loads across different resources of a computing system.

In addition to the tools and benchmarks covered in this chapter, there are several
developments for graphic processing unit (GPU) based multi/many-cores systems,
e.g. CUDA [113], OpenCL [114], OpenHMPP [115], etc. However, in this chapter,
our focus is on CPU-based multi/many-core systems, so we are not detailing GPU-
based systems.

1.4 Conclusion

This chapter presents tools and workloads/benchmarks to evaluate systems contain-
ing a set of cores. These cores can be present in a single chip or multiple chips,
forming single-chip and multi-chip systems, respectively. Depending upon the re-
quirements such as programming model and evaluating cores stressing, appropriate
tools and benchmarks can be chosen to evaluate a system under consideration.

References

[1] Samsung. Samsung Exynos 5422; 2014. Www.samsung.com/exynos/.
[2] Vangal S, Howard J, Ruhl G, et al. An 80-Tile 1.28TFLOPS Network-on-

Chip in 65nm CMOS. In: Proceedings of IEEE International Solid-State
Circuits Conference (ISSCC); 2007. p. 98–589.

[3] Intel. Xeon Phi; 2016. Https://ark.intel.com/products/95828/Intel-Xeon-
Phi-Processor-7230F-16GB-1 30-GHz-64-core.

[4] Olofsson A, Trogan R, Raikhman O, et al. A 1024-core 70 GFLOP/W float-
ing point manycore microprocessor. In: Poster on 15th Workshop on High
Performance Embedded Computing HPEC2011; 2011. .

[5] TILE-Gx. First 100-core Processor with the New TILE-Gx Family; 2009.
Http://www.tilera.com/ (Last visited: 12 February, 2016).

[6] AMD. AMD Opteron 6000 series processors; 2011.
Http://www.amd.com/en-us/products/server/opteron/6000 (Last visited: 12
February, 2016).

[7] De Dinechin BD, Van Amstel D, Poulhiès M, et al. Time-critical comput-
ing on a single-chip massively parallel processor. In: Proceedings of IEEE
Conference on Design, Automation and Test in Europe (DATE); 2014. p.
1–6.

[8] Bohnenstiehl B, Stillmaker A, Pimentel J, et al. A 5.8 pJ/Op 115 Billion
Ops/sec, to 1.78 Trillion Ops/sec 32nm 1000 Processor Array. In: IEEE
Symposia on VLSI Technology and Circuits; 2016. .

[9] Benini L, De Micheli G. Networks on chips: a new SoC paradigm. Com-
puter. 2002;(1):70–78.

[10] Worm F, Ienne P, Thiran P, et al. An adaptive low-power transmis-
sion scheme for on-chip networks. In: Proceedings of IEEE/ACM/IFIP



“Chapter˙7”
2017/11/13
page 16

16 Book title

Conference on Hardware/Software Codesign and System Synthesis
(ISSS+CODES); 2002. p. 92–100.

[11] Reddy BK, Singh AK, Biswas D, et al. Inter-cluster Thread-to-core Map-
ping and DVFS on Heterogeneous Multi-cores. IEEE Transactions on
Multi-Scale Computing Systems. 2017;.

[12] Wang X, Singh AK, Li B, et al. Bubble budgeting: throughput optimization
for dynamic workloads by exploiting dark cores in many core systems. IEEE
Transactions on Computers. 2017;.

[13] Singh AK, Dziurzanski P, Indrusiak LS. Value and Energy Optimizing Dy-
namic Resource Allocation in Many-core HPC Systems. In: IEEE Inter-
national Conference on Cloud Computing Technology and Science (Cloud-
Com); 2015. p. 180–185.

[14] Smit LT, Smit GJM, Hurink JL, et al. Run-time mapping of applications to a
heterogeneous reconfigurable tiled system on chip architecture. In: Proceed-
ings of IEEE International Conference on Field-Programmable Technology
(FPT); 2004. p. 421–424.

[15] Dick RP, Rhodes DL, Wolf W. TGFF: task graphs for free. In:
CODES+ISSS; 1998. p. 97–101.

[16] Stuijk S, Geilen MCW, Basten T. SDF3: SDF For Free. In: Proceed-
ings of IEEE Conference on Application of Concurrency to System Design
(ACSD); 2006. p. 276–278.

[17] Xilinx SDK;. Https://www.xilinx.com/products/design-tools/embedded-
software/sdk.html (Last visited: 04 November, 2017).

[18] Inc A. Epiphany SDK Reference; 2013.
[19] Brown Deer Technology L. COPRTHR-2 SDK; 2017. Available from: http:

//www.browndeertechnology.com/coprthr2.htm.
[20] Ross J, Richie D. An OpenSHMEM implementation for the adapteva

epiphany coprocessor. In: Workshop on OpenSHMEM and Related Tech-
nologies. Springer; 2016. p. 146–159.

[21] Brown N. ePython: An Implementation of Python for the Many-core
Epiphany Coprocessor. In: Proceedings of the 6th Workshop on Python
for High-Performance and Scientific Computing. PyHPC ’16. Piscataway,
NJ, USA: IEEE Press; 2016. p. 59–66. Available from: https://doi.org/10.
1109/PyHPC.2016.8.

[22] Agathos SN, Papadogiannakis A, Dimakopoulos VV. Targeting the Paral-
lella. In: European Conference on Parallel Processing. Springer; 2015. p.
662–674.

[23] Coduin. Epiphany BSPs documentation; 2017. Available from: http://www.
codu.in/ebsp/docs/.

[24] Tomiyama H, Hieda T, Nishiyama N, et al. SMYLE OpenCL: A program-
ming framework for embedded many-core SoCs. In: 2013 18th Asia and
South Pacific Design Automation Conference (ASP-DAC); 2013. p. 565–
567.

[25] Tagliavini G, Haugou G, Marongiu A, et al. A Framework for Optimizing
OpenVX Applications Performance on Embedded Manycore Accelerators.



“Chapter˙7”
2017/11/13
page 17

REFERENCES 17

In: Proceedings of the 18th International Workshop on Software and Com-
pilers for Embedded Systems. SCOPES ’15. New York, NY, USA: ACM;
2015. p. 125–128. Available from: http://doi.acm.org/10.1145/2764967.
2776858.

[26] Ying H, Hollstein T, Hofmann K. GSNoC - The comprehensive design plat-
form for 3-dimensional Networks-on-Chip based many core embedded sys-
tems. In: 2013 International Conference on High Performance Computing
Simulation (HPCS); 2013. p. 217–223.

[27] Lis M, Ren P, Cho MH, et al. Scalable, accurate multicore simulation in
the 1000-core era. In: (IEEE ISPASS) IEEE International Symposium on
Performance Analysis of Systems and Software; 2011. p. 175–185.

[28] Naruko T, Hiraki K. FOLCS: A Lightweight Implementation of a Cycle-
accurate NoC Simulator on FPGAs. In: Proceedings of the 3rd International
Workshop on Many-core Embedded Systems. MES ’15. New York, NY,
USA: ACM; 2015. p. 25–32. Available from: http://doi.acm.org/10.1145/
2768177.2768182.

[29] Jiang N, Balfour J, Becker DU, et al. A detailed and flexible cycle-accurate
network-on-chip simulator. In: Performance Analysis of Systems and Soft-
ware (ISPASS), 2013 IEEE International Symposium on. IEEE; 2013. p.
86–96.

[30] Power J, Hestness J, Orr MS, et al. gem5-gpu: A heterogeneous cpu-gpu
simulator. IEEE Computer Architecture Letters. 2015;14(1):34–36.

[31] Nicolas A, Sanchez P. Parallel Native-Simulation for Multi-processing Em-
bedded Systems. In: 2015 Euromicro Conference on Digital System Design;
2015. p. 543–546.

[32] Mansour A, Gtze J. An OMNeT++ based Network-on-Chip simulator for
embedded systems. In: 2012 IEEE Asia Pacific Conference on Circuits and
Systems; 2012. .

[33] Software I. OVP - Open Virtual Platforms; 2017. Available from: http:
//www.ovpworld.org.

[34] Technologies M. Multicore Development Environmen (MDE); 2017. Avail-
able from: http://www.mellanox.com/page/products dyn?product family=
250.

[35] Kalray. Kalray Software; 2017. Available from: http://www.kalrayinc.com.
[36] eSOL Co. Software Development Kit for Many-core Processors; 2017.

Available from: https://www.esol.com/embedded/emcos sdk.html.
[37] Oliver K. How-To Guide: Creating and Debugging Linux Applica-

tions Using Sourcery Codebench for ARM GNU/Linux; 2012. Avail-
able from: http://s3.mentor.com/public documents/whitepaper/resources/
mentorpaper 72367.pdf.

[38] Rosa F, Ost L, Raupp T, et al. Fast energy evaluation of embedded ap-
plications for many-core systems. In: 2014 24th International Workshop
on Power and Timing Modeling, Optimization and Simulation (PATMOS);
2014. p. 1–6.



“Chapter˙7”
2017/11/13
page 18

18 Book title

[39] Heckmann R, Ferdinand C. Worst-case execution time prediction by static
program analysis. In: In 18th International Parallel and Distributed Process-
ing Symposium (IPDPS 2004). IEEE Computer Society; 2004. p. 26–30.

[40] Technology EE. Erika Enterprise RTOS v3; 2017. Available from: http:
//www.erika-enterprise.com/.

[41] Poovey JA, Conte TM, Levy M, et al. A Benchmark Characterization of the
EEMBC Benchmark Suite. IEEE Micro. 2009 Sept;29(5):18–29.

[42] Halfhill TR. EEMBCS Multibench Arrives; 2008. Available from: http:
//www.eembc.org/benchmark/pdf/080812 MPRarticle MultiBench.pdf.

[43] Woo SC, Ohara M, Torrie E, et al. The SPLASH-2 programs: character-
ization and methodological considerations. In: Proceedings 22nd Annual
International Symposium on Computer Architecture; 1995. p. 24–36.

[44] Bienia C, Li K. PARSEC 2.0: A New Benchmark Suite for Chip-
Multiprocessors. In: Proceedings of the 5th Annual Workshop on Modeling,
Benchmarking and Simulation; 2009. .

[45] Dick R. Embedded system synthesis benchmarks suite (E3S); 2010. Avail-
able from: http://ziyang.eecs.umich.edu/dickrp/e3s/.

[46] Guthaus MR, Ringenberg JS, Ernst D, et al. MiBench: A free, commer-
cially representative embedded benchmark suite. In: Proceedings of the
Fourth Annual IEEE International Workshop on Workload Characterization.
WWC-4 (Cat. No.01EX538); 2001. p. 3–14.

[47] Venkata SK, Ahn I, Jeon D, et al. SD-VBS: The San Diego Vision Bench-
mark Suite. In: 2009 IEEE International Symposium on Workload Charac-
terization (IISWC); 2009. p. 55–64.

[48] Che S, Boyer M, Meng J, et al. Rodinia: A benchmark suite for heteroge-
neous computing. In: 2009 IEEE International Symposium on Workload
Characterization (IISWC); 2009. p. 44–54.

[49] Amarasinghe S, Gordon M, Soule R, et al.. StreamIt benchmarks; 2009.
Available from: http://groups.csail.mit.edu/cag/streamit/shtml/benchmarks.
shtml.

[50] Tagliavini G, Haugou G, Benini L. Optimizing memory bandwidth in
OpenVX graph execution on embedded many-core accelerators. In: Pro-
ceedings of the 2014 Conference on Design and Architectures for Signal
and Image Processing; 2014. p. 1–8.

[51] Hollis SJ, Ma E, Marculescu R. nOS: A nano-sized distributed operating
system for many-core embedded systems. In: 2016 IEEE 34th International
Conference on Computer Design (ICCD); 2016. p. 177–184.

[52] Lepley T, Paulin P, Flamand E. A novel compilation approach for image pro-
cessing graphs on a many-core platform with explicitly managed memory.
In: 2013 International Conference on Compilers, Architecture and Synthe-
sis for Embedded Systems (CASES); 2013. p. 1–10.

[53] Gunes V, Givargis T. XGRID: A Scalable Many-Core Embedded Processor.
In: 2015 IEEE 17th International Conference on High Performance Com-
puting and Communications, 2015 IEEE 7th International Symposium on



“Chapter˙7”
2017/11/13
page 19

REFERENCES 19

Cyberspace Safety and Security, and 2015 IEEE 12th International Confer-
ence on Embedded Software and Systems; 2015. p. 1143–1146.

[54] Burgio P, Marongiu A, Valente P, et al. A memory-centric approach to
enable timing-predictability within embedded many-core accelerators. In:
2015 CSI Symposium on Real-Time and Embedded Systems and Technolo-
gies (RTEST); 2015. p. 1–8.

[55] Capotondi A, Marongiu A, Benini L. Enabling Scalable and Fine-Grained
Nested Parallelism on Embedded Many-cores. In: 2015 IEEE 9th Inter-
national Symposium on Embedded Multicore/Many-core Systems-on-Chip;
2015. p. 297–304.

[56] Jose W, Neto H, Vestias M. A Many-Core Co-Processor for Embedded
Parallel Computing on FPGA. In: 2015 Euromicro Conference on Digital
System Design; 2015. p. 539–542.

[57] Lai JY, Huang CT, Hsu TS, et al. Methodology of exploring ESL/RTL
many-core platforms for developing embedded parallel applications. In:
2014 27th IEEE International System-on-Chip Conference (SOCC); 2014.
p. 286–291.

[58] Quinn MJ. Parallel programming in C with MPI and OpenMP. McGraw-
Hill Higher Education; 2004.

[59] Vogel P, Marongiu A, Benini L. Lightweight Virtual Memory Support for
Many-core Accelerators in Heterogeneous Embedded SoCs. In: Proceed-
ings of the 10th International Conference on Hardware/Software Codesign
and System Synthesis. CODES ’15. Piscataway, NJ, USA: IEEE Press;
2015. p. 45–54. Available from: http://dl.acm.org/citation.cfm?id=2830840.
2830846.

[60] Magno M, Tombari F, Brunelli D, et al. Multimodal Abandoned/Removed
Object Detection for Low Power Video Surveillance Systems. In: Proceed-
ings of the 2009 Sixth IEEE International Conference on Advanced Video
and Signal Based Surveillance. AVSS ’09. Washington, DC, USA: IEEE
Computer Society; 2009. p. 188–193. Available from: https://doi.org/10.
1109/AVSS.2009.72.

[61] Koutras I, Anagnostopoulos I, Bartzas A, et al. Improving Dynamic Mem-
ory Allocation on Many-Core Embedded Systems With Distributed Shared
Memory. IEEE Embedded Systems Letters. 2016 Sept;8(3):57–60.

[62] Rosten E, Porter R, Drummond T. Faster and Better: A Machine Learning
Approach to Corner Detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence. 2010 Jan;32(1):105–119.

[63] team OpenCV. OpenCV: Open source computer vision. software library;
2017. Available from: http://opencv.org/.

[64] Huang CT, Tasi KC, Lin JS, et al. Application-level embedded communi-
cation tracer for many-core systems. In: The 20th Asia and South Pacific
Design Automation Conference; 2015. p. 803–808.

[65] Chien HW, Lai JL, Wu CC, et al. Design of a scalable many-core processor
for embedded applications. In: The 20th Asia and South Pacific Design
Automation Conference; 2015. p. 24–25.



“Chapter˙7”
2017/11/13
page 20

20 Book title

[66] Nemer F, Casse H, Sainrat P, et al. PapaBench: a Free Real-Time Bench-
mark. In: Mueller F, editor. 6th International Workshop on Worst-Case
Execution Time Analysis (WCET’06). vol. 4 of OpenAccess Series in Infor-
matics (OASIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik; 2006. .

[67] Pagetti C, Saussi D, Gratia R, et al. The ROSACE case study: From
Simulink specification to multi/many-core execution. In: 2014 IEEE
19th Real-Time and Embedded Technology and Applications Symposium
(RTAS); 2014. p. 309–318.

[68] Louise S, Dubrulle P, Goubier T. A Model of Computation for Real-Time
Applications on Embedded Manycores. In: 2014 IEEE 8th International
Symposium on Embedded Multicore/Manycore SoCs; 2014. p. 333–340.

[69] Stan O, Sirdey R, Carlier J, et al. A GRASP for Placement and Routing of
Dataflow Process Networks on Many-Core Architectures. In: 2013 Eighth
International Conference on P2P, Parallel, Grid, Cloud and Internet Com-
puting; 2013. p. 219–226.

[70] Panic M, Quiones E, Zavkov PG, et al. Parallel many-core avionics sys-
tems. In: 2014 International Conference on Embedded Software (EM-
SOFT); 2014. p. 1–10.

[71] Vargas RE, Royuela S, Serrano MA, et al. A lightweight OpenMP4 run-
time for embedded systems. In: 2016 21st Asia and South Pacific Design
Automation Conference (ASP-DAC); 2016. p. 43–49.

[72] Dziurzanski P, Singh AK, Indrusiak LS, et al. Benchmarking, System De-
sign and Case-studies for Multi-core based Embedded Automotive Systems.
In: 2nd International Workshop on Dynamic Resource Allocation and Man-
agement in Embedded, High Performance and Cloud Computing DREAM-
Cloud; 2016. Available from: https://arxiv.org/abs/1601.03708.

[73] Venetis JE, Gao GR. The Modified SPLASH-2 Benchmarks Suite Home
Page; 2007. Available from: http://www.capsl.udel.edu/splash/index.html.

[74] Sakalis C, Leonardsson C, Kaxiras S, et al. Splash-3: A properly synchro-
nized benchmark suite for contemporary research. In: 2016 IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software (IS-
PASS); 2016. p. 101–111.

[75] Biswas D, Balagopal V, Shafik R, et al. Machine learning for run-time en-
ergy optimisation in many-core systems. In: Design, Automation Test in
Europe Conference Exhibition (DATE), 2017; 2017. p. 1588–1592.

[76] Ross JA, Richie DA, Park SJ, et al. Parallel Programming Model for the
Epiphany Many-Core Coprocessor Using Threaded MPI. In: Proceedings
of the 3rd International Workshop on Many-core Embedded Systems. MES
’15. New York, NY, USA: ACM; 2015. p. 41–47. Available from: http:
//doi.acm.org/10.1145/2768177.2768183.

[77] Nikolakopoulos Y, Papatriantafilou M, Brauer P, et al. Highly Concurrent
Stream Synchronization in Many-core Embedded Systems. In: Proceedings
of the Third ACM International Workshop on Many-core Embedded Sys-



“Chapter˙7”
2017/11/13
page 21

REFERENCES 21

tems. MES ’16. New York, NY, USA: ACM; 2016. p. 2–9. Available from:
http://doi.acm.org/10.1145/2934495.2934496.

[78] Wildermann S, Teich J. Self-Integration for Virtualization of Embedded
Many-Core Systems. In: 2014 IEEE Eighth International Conference on
Self-Adaptive and Self-Organizing Systems Workshops; 2014. p. 170–177.

[79] Li Z, He S, Wang L. Prediction Based Run-Time Reconfiguration on Many-
Core Embedded Systems. In: 2017 IEEE International Conference on Com-
putational Science and Engineering (CSE) and IEEE International Confer-
ence on Embedded and Ubiquitous Computing (EUC). vol. 2; 2017. p. 140–
146.

[80] Thies W, Karczmarek M, Amarasinghe SP. StreamIt: A Language for
Streaming Applications. In: Proceedings of the 11th International Con-
ference on Compiler Construction. CC ’02. London, UK, UK: Springer-
Verlag; 2002. p. 179–196. Available from: http://dl.acm.org/citation.cfm?
id=647478.727935.

[81] Rouxel B, Puaut I. STR2RTS: Refactored StreamIT Benchmarks into
Statically Analyzable Parallel Benchmarks for WCET Estimation & Real-
Time Scheduling. In: Reineke J, editor. 17th International Workshop on
Worst-Case Execution Time Analysis (WCET 2017). vol. 57 of OpenAccess
Series in Informatics (OASIcs). Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik; 2017. p. 1:1–1:12. Available from: http:
//drops.dagstuhl.de/opus/volltexte/2017/7304.

[82] Selva M, Morel L, Marquet K, et al. Extending Dataflow Programs
with Throughput Properties. In: Proceedings of the First International
Workshop on Many-core Embedded Systems. MES ’13. New York, NY,
USA: ACM; 2013. p. 54–57. Available from: http://doi.acm.org/10.1145/
2489068.2489077.

[83] Dick RP, Rhodes DL, Wolf W. TGFF: task graphs for free. In: Hard-
ware/Software Codesign, 1998. (CODES/CASHE ’98) Proceedings of the
Sixth International Workshop on; 1998. p. 97–101.

[84] de Lima OA, Fresse V, Rousseau F. Evaluation of SNMP-like protocol to
manage a NoC emulation platform. In: 2014 International Conference on
Field-Programmable Technology (FPT); 2014. p. 199–206.

[85] Stuijk S, Geilen M, Basten T. Exploring trade-offs in buffer requirements
and throughput constraints for synchronous dataflow graphs. In: DAC;
2006. p. 899–904.

[86] Wolff C, Krawczyk L, Httger R, et al. AMALTHEA - Tailoring tools to
projects in automotive software development. In: 2015 IEEE 8th Interna-
tional Conference on Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications (IDAACS). vol. 2; 2015. p. 515–
520.

[87] Malkamäki T, Ovaska SJ. Analytical model of data center infrastructure effi-
ciency for system level simulations. In: Proceedings of the 8th International
Conference on Simulation Tools and Techniques. ICST (Institute for Com-



“Chapter˙7”
2017/11/13
page 22

22 Book title

puter Sciences, Social-Informatics and Telecommunications Engineering);
2015. p. 319–326.

[88] Faraci G, Schembra G. An analytical model for electricity-price-aware re-
source allocation in virtualized data centers. In: Communications (ICC),
2015 IEEE International Conference on. IEEE; 2015. p. 5839–5845.

[89] Calheiros RN, Ranjan R, Beloglazov A, et al. CloudSim: a toolkit for
modeling and simulation of cloud computing environments and evaluation
of resource provisioning algorithms. Software: Practice and experience.
2011;41(1):23–50.

[90] Wickremasinghe B, Calheiros RN, Buyya R. Cloudanalyst: A cloudsim-
based visual modeller for analysing cloud computing environments and
applications. In: Advanced Information Networking and Applications
(AINA), 2010 24th IEEE International Conference on. IEEE; 2010. p. 446–
452.

[91] Kliazovich D, Bouvry P, Khan SU. GreenCloud: a packet-level simulator
of energy-aware cloud computing data centers. The Journal of Supercom-
puting. 2012;62(3):1263–1283.

[92] Núñez A, Vázquez Poletti JL, Caminero C, et al. iCanCloud: A flexible and
scalable cloud infrastructure simulator. Journal of Grid Computing. 2012;.

[93] Calheiros RN, Netto MA, De Rose CA, et al. EMUSIM: an integrated emu-
lation and simulation environment for modeling, evaluation, and validation
of performance of cloud computing applications. Software: Practice and
Experience. 2013;43(5):595–612.

[94] Ostermann S, Plankensteiner K, Prodan R, et al. GroudSim: an event-based
simulation framework for computational grids and clouds. In: European
Conference on Parallel Processing. Springer; 2010. p. 305–313.

[95] Keller G, Tighe M, Lutfiyya H, et al. DCSim: A data centre simulation tool.
In: Integrated Network Management (IM 2013), 2013 IFIP/IEEE Interna-
tional Symposium on. IEEE; 2013. p. 1090–1091.

[96] Tian W, Zhao Y, Xu M, et al. A toolkit for modeling and simulation of real-
time virtual machine allocation in a cloud data center. IEEE Transactions
on Automation Science and Engineering. 2015;12(1):153–161.

[97] Fittkau F, Frey S, Hasselbring W. Cloud user-centric enhancements of the
simulator cloudsim to improve cloud deployment option analysis. In: Eu-
ropean Conference on Service-Oriented and Cloud Computing. Springer;
2012. p. 200–207.

[98] Jararweh Y, Alshara Z, Jarrah M, et al. Teachcloud: a cloud computing
educational toolkit. International Journal of Cloud Computing 1. 2013;2(2-
3):237–257.

[99] Sriram I. SPECI, a simulation tool exploring cloud-scale data centres. Cloud
Computing. 2009;p. 381–392.

[100] Lim SH, Sharma B, Nam G, et al. MDCSim: A multi-tier data center simula-
tion, platform. In: Cluster Computing and Workshops, 2009. CLUSTER’09.
IEEE International Conference on. IEEE; 2009. p. 1–9.



“Chapter˙7”
2017/11/13
page 23

REFERENCES 23

[101] Mohammad A, Darbaz U, Dozsa G, et al. dist-gem5: Distributed simulation
of computer clusters. In: Performance Analysis of Systems and Software
(ISPASS), 2017 IEEE International Symposium on. IEEE; 2017. p. 153–
162.

[102] CoolSim. CoolSim for Data Center Managers; 2017. Available from: http:
//www.coolsimsoftware.com/.

[103] Foundation AS. Apache Hadoop; 2017. Available from: https://www.
apache.org/.

[104] OpenMP. Open Multi-Processing; 2017. Available from: http://www.
openmp.org.

[105] OpenMPI. Open Source Message Passing Interface; 2017. Available from:
https://www.open-mpi.org/.

[106] org OS. The OpenACC Application Programming Interface; 2017.
Available from: https://www.openacc.org/sites/default/files/inline-files/
OpenACC.2.6.final.pdf.

[107] Zaharia M, Chowdhury M, Franklin MJ, et al. Spark: Cluster computing
with working sets. HotCloud. 2010;10(10-10):95.

[108] CloudSuite. Benchmark suite for cloud services; 2017. Available from: http:
//cloudsuite.ch/.

[109] SPEC. SPEC Cloud IaaS 2016; 2016. Available from: https://www.spec.
org/benchmarks.html.

[110] TPC. TPCx-V; 2017. Available from: http://www.tpc.org/information/
benchmarks.asp.

[111] LINPACK. LINPACK Benchmark; 2017. Available from: https://www.
top500.org/project/linpack/.

[112] HPCG. High Performance Conjugate Gradients (HPCG) Benchmark; 2017.
Available from: http://www.hpcg-benchmark.org/.

[113] CUDA. Compute Unified Device Architecture; 2017. Available from: https:
//developer.nvidia.com/cuda-zone.

[114] OpenCL. Open Computing Language; 2017. Available from: https://www.
khronos.org/opencl/.

[115] OpenHMPP. Open Source Hybrid Multicore Parallel Programming; 2017.
Available from: http://www.ithistory.org/resource/openhmpp.


