
RUN-TIME MAPPING
TECHNIQUES FOR NOC-BASED

HETEROGENEOUS MPSOC
PLATFORMS

AMIT KUMAR SINGH

School of Computer Engineering

A thesis submitted to the Nanyang Technological University
in partial fulfillment of the requirement for the degree of

Doctor of Philosophy

2013

Acknowledgments

I would like to take this opportunity to thank many people who directly and indirectly

supported me all through the last four years. Without their help and support, this thesis

would not have reached its current form.

First of all I would like to express my heartfelt gratitude to my supervisor Prof.

Thambipillai Srikanthan for his invaluable guidance, support and suggestions. Despite

being entrusted with many responsibilities, he always found time for discussion with me.

His patience and understanding in this regard is truly admirable.

I would like to thank Mr. Ewerson Carballo for providing the basic simulation en-

vironment that we extended for verifying our initial ideas and to Dr. Wu Jigang, Alok,

Samarth and Dr. Akash Kumar for our discussions on ideas and implementation issues.

I would especially like to thank Dr. Akash Kumar who always took time to understand

the problems that I faced during my Ph.D. and provided sound suggestions.

The administrative support rendered by Ms. Nah, Merilyn and Jeremiah was the best

I could have asked for. They always helped me out whenever I needed any equipment or

administrative work to be sorted out. I want to thank them for all the help they have

provided me at CHiPES.

This acknowledgement is incomplete without mentioning my dear friends with whom

I have shared many wonderful moments. They always cheered me up with their jokes

and antics. I want to thank Alok (Bihari), Shantanu (Lambu), Ashish (Dada), Bharath

(Motu), Abhijit (Taklu Bhai), Sachan (Baba), Suvu and Manish for all the great times.

Last but not the least; I would like to thank my family for their constant love and

encouragement. I would especially like to thank my wife Arpita, who endured all the

late evenings, early mornings, week-ends and vacations that were consumed in producing

this thesis. I would not have reached this point without her loving support. I feel truly

blessed to have such a strong support system around myself.

i

Contents

Acknowledgments . i

List of Figures . vi

List of Tables . viii

List of Abbreviations . ix

Abstract . xi

1 Introduction 1

1.1 The Multi-Processor System-on-Chip Revolution 1

1.2 Motivation . 3

1.3 Aim of the Research . 5

1.4 Main Contributions of the Thesis . 5

1.5 Organization of the Thesis . 7

1.6 List of Publications resulting from the Thesis 8

2 Literature Survey 11

2.1 Trends in Multi-Processor System-on-Chip 12

2.1.1 Number of Processing Cores . 12

2.1.2 Network-on-Chip for Scalability 13

2.1.3 Heterogeneity in Processing Cores 14

2.2 Multi-Processor System-on-Chip Architectures 15

2.2.1 Homogeneous Architectures . 16

2.2.2 Heterogeneous Architectures . 17

2.2.3 On-chip Interconnects for the Architectures 21

2.2.4 Designing Multi-Processor System-on-Chip Platforms 23

2.3 Mapping Applications on Multi-Processor System-on-Chip Platforms . . 27

ii

2.3.1 Design-time Mapping . 29

2.3.2 Run-time Mapping . 30

2.3.3 Analysis of Mapping Techniques 39

2.4 Summary . 44

3 Mapping Single-Task-per-Processing-Element 45

3.1 NoC-based MPSoC Architecture . 46

3.2 The Mapping Strategy . 47

3.2.1 Definitions . 48

3.2.2 Placing Initial Tasks . 50

3.2.3 Packing Strategy for Minimizing Communication Costs 51

3.3 Run-time Mapping Heuristics . 52

3.3.1 Packing-based Nearest Neighbor 53

3.3.2 Packing-based Best Neighbor . 54

3.3.3 Packing-based Time-bounded Best Neighbor 56

3.4 Performance Evaluation . 57

3.4.1 Total Execution Time . 60

3.4.2 Average Channel Load . 62

3.4.3 Average Packet Latency . 63

3.4.4 Effect of Time Bound . 64

3.5 Summary . 66

4 Mapping Multiple-Tasks-per-Processing-Element 68

4.1 Target MPSoC Architecture . 69

4.2 Supporting Multiple-Tasks-per-Processing-Element 70

4.2.1 Placing Initial Tasks . 70

4.2.2 Packing Strategy to Support Multiple-Tasks-per-Processing-Element 71

4.3 Run-time Mapping Heuristics . 72

4.3.1 Packing-based Nearest Neighbor 72

4.3.2 Packing-based Best Neighbor . 73

4.3.3 Packing-based Time-bounded Best Neighbor 74

4.4 Performance Evaluation . 74

iii

4.4.1 Total Execution Time . 77

4.4.2 Average Channel Load . 78

4.4.3 Average Packet Latency . 79

4.4.4 Effect of Time Bound . 80

4.5 Summary . 81

5 Communication-aware Mapping 84

5.1 Communication-aware Strategy . 85

5.2 Run-time Mapping Heuristics . 89

5.2.1 Communication-aware Packing-based Nearest Neighbor 91

5.2.2 Communication-aware Packing-based Best Neighbor 91

5.3 Performance Evaluation . 94

5.3.1 Total Execution Time . 96

5.3.2 Energy Consumption . 98

5.3.3 Average Channel Load . 100

5.3.4 Average Packet Latency . 101

5.3.5 Effect of Computation-Communication Ratio 102

5.3.6 Clustering vs. Non-clustering . 106

5.4 Summary . 107

6 Computation and Communication Aware Mapping 109

6.1 Preliminaries . 110

6.2 Computation and Communication Aware Mapping Strategies 111

6.2.1 Pre-processing for Balancing Computation and Communication . 114

6.2.2 Mapping of the Processed Application 120

6.3 Performance Evaluation . 122

6.3.1 Total Execution Time . 123

6.3.2 Energy Consumption . 123

6.3.3 Resource Optimization . 124

6.3.4 Computation Load Variance . 125

6.3.5 Case Study - MPEG4 Decoder . 127

6.4 Summary . 128

iv

7 Hybrid Strategy for Accelerating Run-time Mapping 129

7.1 Preliminaries . 130

7.2 Hybrid Mapping Strategy . 136

7.2.1 Design-time Analysis . 136

7.2.2 Run-time Mapping . 149

7.3 Implementing Hybrid Mapping . 152

7.4 Performance Evaluation . 155

7.4.1 Design Space Exploration . 157

7.4.2 Speed Up and Quality of Results 160

7.4.3 Design Space Exploration for a Given Platform 162

7.4.4 Run-time Mapping Results . 165

7.4.5 Hop distance Overestimation Penalty 166

7.5 Summary . 167

8 Conclusion and Future Directions 169

8.1 Conclusion . 169

8.2 Future Research Directions . 172

References 175

v

List of Figures

1.1 Continuation of Moore’s Law [1] . 2

2.1 ITRS Roadmap showing growing number of processing cores 13

2.2 Amdahl’s law indicating speedup obtained using multiple processors . . . 15

2.3 IMEC MPSoC design flow [2] . 25

2.4 Task binding process . 34

2.5 Run-time mapping followed by SMIT Mapper tool 35

2.6 Design-time analysis of applications . 43

3.1 Conceptual MPSoC architecture . 47

3.2 Application modeling and master-slave pair 49

3.3 Initial tasks placement for mapping (packing) applications 51

3.4 Total execution time for PL, NN, PNN, PBN and PTBN heuristics . . . 61

3.5 Average channel load for BN, PBN and PTBN heuristics 63

3.6 Execution time at varying time bound values 65

4.1 Initial tasks placement for mapping applications 71

4.2 Applications for the simulated scenarios 76

4.3 Total execution time at different communication rates 78

4.4 Average channel load at different communication rates 79

4.5 Execution time at varying time bound values 82

5.1 Mapping of an application by state-of-the-art mapping heuristic 86

5.2 Mapping of application by communication-aware strategy 88

5.3 Ideal mapping of application with static mapping decision 90

5.4 Execution time at different platforms . 97

vi

5.5 Energy consumption for PBN and CPBN heuristics 100

5.6 Average channel load for PBN and CPBN heuristics 101

5.7 Total execution time for NN and CPNN at varying CCR 104

5.8 Improvement in total execution time for CPNN over NN at varying CCR 105

5.9 Improvements in clustering approach . 107

6.1 An example application and its execution trace 111

6.2 An example application mapping by CPBN heuristic 113

6.3 Run-time pre-processing and mapping 114

6.4 Pre-processing to get optimized application by Algorithm 6 118

6.5 Pre-processing to get optimized application by Algorithm 7 121

6.6 Mapping of optimized application . 121

6.7 Performance evaluation for CPBN and PHomog heuristics 124

6.8 Performance evaluation for CPBN and PHeterog heuristics 125

6.9 MPEG4 decoder application case study 127

7.1 Example multiprocessor platform. 131

7.2 SDFG model of an H.263 decoder. 133

7.3 Execution trace of H.263 decoder. 135

7.4 Hybrid mapping strategy. 136

7.5 Design-time DSE flow. 139

7.6 Analyze once & run everywhere demonstration. 150

7.7 Design space exploration for an application modeled with 3 actors 153

7.8 Run-time mapping of H.263 decoder and the example application 155

7.9 Quality of mappings by HDSE over EDSE 161

7.10 Speed up obtained by HDSE over EDSE 162

7.11 The best mapping throughput comparison for different applications . . . 164

vii

List of Tables

3.1 Average Packet Latency Measured in Clock Cycles 64

4.1 Average packet latency at different communication rates 80

5.1 Average packet latency for all simulated scenarios 102

6.1 Computation load distribution and their variance for CPBN and PHomog 126

6.2 Computation load distribution and their variance for CPBN and PHeterog 127

7.1 Properties of the example platform. 131

7.2 Resource requirement of actors and edges of H.263 decoder. 133

7.3 DSE results for H.263 decoder. 158

7.4 Number of evaluated mappings by different DSE flows 160

7.5 Multimedia applications DSE at different platforms 163

7.6 Time required to map applications by run-time mapping strategies 166

viii

List of Abbreviations

ACC Accelerator

AMBA Advanced Microcontroller Bus Architecture

ASIC Application Specific Integrated Circuit

ASIP Application Specific Instruction-set Processor

BN Best Neighbor

CCR Computation-Communication Ratio

CPBN Communication-aware Packing-based Best Neighbor

CPNN Communication-aware Packing-based Nearest Neighbor

DSE Design Space Exploration

DSP Digital Signal Processor

FPGA Field Programmable Gate Array

GPP General Purpose Processor

HDSE Heuristic Design Space Exploration

HetEDSE Heterogeneous Exhaustive Design Space Exploration

HetPDSE Heterogeneous Pruning-based Design Space Exploration

HomEDSE Homogeneous Exhaustive Design Space Exploration

HomPDSE Homogeneous Pruning-based Design Space Exploration

HRM Hybrid Run-time Mapping

IP Intellectual Property

ISA Instruction Set Architecture

ISM Ideal Static Mapping

ISP Instruction Set Processor

ITRS International Technology Roadmap for Semiconductors

ix

MIPS Million Instructions Per Second

MPSoC Multi-Processor System-on-Chip

NN Nearest Neighbor

NoC Network-on-Chip

NP-hard Non-deterministic Polynomial-time hard

NRE Non Recurring Engineering

PBN Packing-based Best Neighbor

PE Processing Element

PHeterog Preprocessing-based Heterogeneous

PHomog Preprocessing-based Homogeneous

PNN Packing-based Nearest Neighbor

PTBN Packing-based Time-bounded Best Neighbor

RA Reconfigurable Area

RH Reconfigurable Hardware

RISC Reduced Instruction Set Computing

RTM Run-time Manager

SDFG Synchronous Dataflow Graph

SoC System-on-Chip

VLSI Very Large Scale Integration

x

Abstract

The reliance on Multi-Processor Systems-on-Chip (MPSoCs) to satisfy the high per-

formance requirement of complex embedded software applications is increasing. The

Networks-on-Chip (NoCs) based interconnection infrastructure is fast becoming a pre-

ferred approach to facilitate communication among the processing elements (PEs) of

MPSoCs. The heterogeneity of MPSoCs is also increasing by employing different types

of PEs in order to meet the functional and non-functional requirements. This necessi-

tates the need to realize efficient run-time mapping techniques for such heterogeneous

computing platforms.

In this thesis, a number of efficient techniques have been proposed to realize run-time

mapping algorithms for heterogeneous MPSoC platforms. MPSoC with single-task sup-

ported PEs, each of which consisting of a general purpose processor or reconfigurable

hardware is considered first. A new packing strategy to map the various tasks of an

application in close proximity has been proposed to reduce the communication overhead.

The proposed strategy was further extended to devise a time-bounded method to mini-

mize the overall execution time of the mapping process. Performance evaluations based

on 20 random applications show that the proposed techniques outperform the existing

techniques by up to 22%.

Subsequently, the proposed mapping process was extended to support an MPSoC

platform in which each PE is capable of supporting multiple tasks. The extended tech-

niques facilitate in the mapping of a group of communicating tasks on the same PE,

thereby resulting in a further reduction in the communication overhead. The extended

time-bounded method reduces the time required to identify the best mapping configura-

tion. Moreover, the overall communication overhead is also reduced, resulting in improved

performance. On average, channel load and total energy consumption is reduced by 10%

and 46% respectively.

xi

The run-time mapping techniques were further enhanced by taking into account both

the computation and communication costs so as to optimize the overall computation

efficiency. They rely on the systematic elimination of the longest communication path

at a time until the computation load on any PE impedes on the overall performance.

The proposed techniques were tested using multiple scenarios of an MPEG-4 application

to demonstrate that the total execution time and energy consumption can be reduced

by 33% and 39% respectively when compared to an approach that rely solely on the

communication-aware strategy.

A hybrid strategy has also been proposed to further accelerate the run-time mapping

process when the applications to be supported on a platform are known at design-time.

It relies on the efficient design-time analysis to generate light-weight run-time mapping

heuristics, which aid the communication and computation aware run-time mapping pro-

cess. Experiments based on models of real-life multimedia applications show that the pro-

posed analysis strategy is faster by 83% and run-time mapping is accelerated by 93% when

compared to state-of-the-art analysis and on-the-fly mapping approaches, respectively.

Finally, the proposed run-time mapping process relies on an efficient computation and

communication aware mapping strategy, which is complemented by light-weight heuris-

tics to implement embedded computing applications that demand high performance.

xii

Chapter 1

Introduction

1.1 The Multi-Processor System-on-Chip Revolution

When looking closely at our modern electronic systems, it is clear that we have entered

the Multi-Processor System-on-Chip (MPSoC) era. In essence, this era is initiated by

the need to deal with complex applications.

In 1965, Moore’s law predicted that the number of transistors in the same chip area

will grow exponentially [1]. The growing trend is shown in Figure 1.1. With the growing

trend, digital electronic devices capabilities such as processing speed, memory capacity,

even the number of pixels in digital cameras have increased with roughly the same expo-

nential rate. This has required simultaneous attention in two directions. On one hand,

hardware designers need to provide bigger, better and faster means of processing, and

on the other hand, the application developers have to maximize the utilization of the

processing power. The rising high level of integration enables implementation of multiple

processors within a single chip towards the development of MPSoC [3].

Intel’s first released processor 4004 in 1971 had approximately 2,300 transistors (Fig-

ure 1.1). This processor operated at a speed of 400 KHz. In contrast, a modern single

processor chip (for example, Intel Pentium 4) has more than a billion of transistors op-

erating at more than 3 GHz. Going forward, as the maximum operational frequency of

a processor has hit the roof due to power dissipation and radio frequency effects, chip

1

Chapter 1. Introduction

Figure 1.1: Continuation of Moore’s Law [1]

manufacturers are forced to limit the maximum frequency of the processor and shifting

towards designing chips with multiple processors operating at lower frequencies. In Fig-

ure 1.1, it is interesting to observe the introduction of dual core processor chips from

2005 onwards. This indicates the beginning of MPSoC era.

Moreover, the rising complexity of modern real-life applications cannot be handled by

simply increasing the frequency of a single-core processor. Instead, it requires multiple

processors which can cohesively communicate and provide increased parallelism. The

underlying concept is to consider applications as conglomeration of many parallelized

small tasks which can be efficiently distributed on multiple processors in order to execute

them in parallel and thereby meeting the increased performance demand of complex

applications.

2

Chapter 1. Introduction

1.2 Motivation

It is a well known fact that customizing a single processor for the application can im-

prove performance. However, the performance demands of modern complex embedded

applications have increased substantially which can only be satisfied using multiple pro-

cessors providing increased parallelism. The communication requirement of large number

of processors can be satisfied by efficient Networks-on-Chip (NoCs). The processors need

to be of different types for executing different tasks efficiently in order to achieve better

performance. With the presence of reconfigurable hardware blocks in heterogeneous MP-

SoCs, the hardware blocks can be configured at run-time according to the functionality

needed by compute intensive tasks as it provides flexibility at similar level to that of the

general purpose processors. The acceleration provided by the hardware can be used to

satisfy the imposed performance demands. Similarly, other types of processors can be

configured to exploit them at their maximum capacity. Thus, heterogeneous MPSoCs

will be required as the performance demands increase.

Modern embedded systems (e.g., smart phones, PDAs, tablet PCs) employ MPSoCs

in order to support multiple applications concurrently. For example, a smart phone might

be used to view an image using a JPEG decoder application over the internet and at

the same time to listen to music using an MP3 decoder application. The components

(tasks and their connections) of applications need to be mapped and scheduled on the

MPSoC resources efficiently in order to satisfy performance constraints for each appli-

cation. Mapping and scheduling problem is similar to Quadratic Assignment Problem, a

well known NP-hard problem [4]. Therefore, finding optimal solution satisfying all the

given constraints is very difficult and time consuming. For example, exploring all the

tasks to resources combinations exhaustively and then choosing the optimal combination

may take days or weeks for a large number of tasks and processors. Thus, heuristics

3

Chapter 1. Introduction

based on the application domain knowledge need to be employed to find a nearly optimal

solution.

Mapping applications on an MPSoC platform can be accomplished at either design-

time or run-time. The design-time mapping techniques are suitable only for static work-

load scenarios and thus are unable to handle dynamism in applications incurred at run-

time (e.g., multimedia and networking applications). Since applications are often added

to the platform at run-time (for example, downloading a Java application in a mobile-

phone at run-time), workload variation takes place. We witness the need of run-time

mapping techniques to handle such dynamic workloads. The run-time mapping tech-

niques face the challenge to map new applications on the platform resources with accurate

knowledge of resource occupancy in order to satisfy their performance requirements.

At run-time, new applications can be mapped with or without previously analyzed

results based on different kind of scenarios. When the applications to be supported on

a platform are not known at design-time, they need to be mapped without any previous

analysis. This requires efficient heuristics to be defined to assign new arriving tasks

on the platform resources. Such heuristics perform all the processing at run-time. They

cannot guarantee for schedulability, i.e., for strict timing deadlines due to lack of any prior

analysis and limited compute power at run-time. However, these heuristics are platform

independent since they do not use any platform specific analysis results computed in

advance.

The applications to be supported on a platform should be known at design-time in

order to map them using previously analyzed results. In such cases, light-weight heuristics

are required to select the most efficient mappings for each application from the design-

time (offline) analyzed mappings stored on the system. The selection should be subject

to available system resources and desired performance. The mappings should contain

schedules and allocations. The selected mappings can be used to configure the platform.

4

Chapter 1. Introduction

The design-time analysis needs to perform all the compute intensive processing. This

facilitates for light-weight run-time platform manager that can configure the applications

efficiently. Design-time analysis to explore mappings, i.e. tasks to resources allocations

exhaustively is not feasible within a limited time for large application and platform

size. Therefore, faster analysis strategies exploring all the efficient mappings need to

be developed. These strategies need to consider platform specifications for performing

exploration so the analysis results will not be applicable to all the platforms.

1.3 Aim of the Research

The main aim of this research is to develop efficient techniques and methodologies for

run-time mapping of embedded applications on heterogeneous MPSoC platforms in order

to maximize performance. The proposed techniques must consider NoC-based platforms

as NoC is highly scalable which can cater for the larger platforms expected in future.

The techniques need to be scalable for large problems as well.

1.4 Main Contributions of the Thesis

We provide an overview of the main contributions that have been made during the course

of this research. The main contributions can be summarized as follows:

1. Run-time mapping techniques for efficiently mapping applications on NoC-based

heterogeneous MPSoCs containing single task supported processing elements. We

show that the existing mapping techniques may not lead to the best results. The

proposed techniques map tasks of the applications on the MPSoC processing ele-

ments (PEs) in very systematic manner, leading to efficient mapping. These tech-

niques show performance improvement when compared to existing techniques.

5

Chapter 1. Introduction

2. Extending the run-time mapping techniques to heterogeneous MPSoCs containing

multi-task supported PEs. Supporting a single task on each PE is not a realistic

scenario. Additionally, when multi-task supported PEs are considered, we can-

not exploit possible advantages of the PEs by the techniques considering single

task supported PEs. The extended techniques take advantage of the multi-task

supported PEs and show performance improvements.

3. Techniques for communication-aware run-time mapping of applications on MP-

SoCs. State-of-the-art mapping techniques do not consider communication between

tasks during mapping and thus are not able to exploit the multi-task supported PEs

efficiently. The proposed techniques consider communication between tasks while

performing mapping, resulting in reduced communication overhead when compared

to state-of-the-art mapping alternatives. Reduced communication overhead leads

to significant performance improvement.

4. Techniques for computation and communication aware run-time mapping. Com-

putation and communication aware mapping is required when both computation

and communication overhead are of significant importance. The proposed tech-

niques perform preprocessing of the applications by considering computation and

communication load balancing between tasks before application tasks are actually

allocated to the platform resources. In preprocessing, communication bottlenecks

are repeatedly removed till a processor becomes bottleneck. Thereafter, resource

optimization is carried out to get the final preprocessed graph. We show that the

proposed techniques outperform existing mapping techniques.

5. Hybrid mapping strategy for accelerating run-time mapping. The strategy uses

design-time analysis results while performing run-time mapping. We show that

the run-time mapping using previously analyzed results gets accelerated as the

computation intensive processing is performed at design-time.

6

Chapter 1. Introduction

1.5 Organization of the Thesis

The rest of the thesis is organized as follows:

• Chapter 2: This chapter provides a background review on need for MPSoC ar-

chitectures in modern embedded systems, challenges and methodologies to design

MPSoCs as well as techniques and methodologies to map applications on MPSoCs.

Subsequently, the existing mapping strategies are analyzed to highlight their limi-

tations and the most appropriate strategies are identified for further investigation.

• Chapter 3: We propose run-time mapping techniques to map the applications on

MPSoCs containing single task supported PEs. The mapping techniques are based

on a packing strategy that maps the tasks in close proximity in order to reduce

communication overhead of communicating tasks.

• Chapter 4: We extend the run-time mapping techniques proposed in Chapter 3

so that more than one tasks can be supported on the PEs. The extended tech-

niques take the advantage of the multi-task supported PEs and provide better

performance.

• Chapter 5: In this chapter, we present communication-aware mapping techniques

that consider communication between tasks during mapping in order to exploit

the multi-task supported PEs efficiently. The presented techniques map maximum

communicating task pairs on the same PE, resulting in reduced communication

overhead.

• Chapter 6: In this chapter, we further enhance the mapping techniques to consider

both computation and communication overhead. Unlike the techniques proposed in

Chapter 5 that consider communication overhead only, the techniques proposed in

7

Chapter 1. Introduction

this chapter perform efficient mapping by taking computation overhead, communi-

cation overhead and resource utilization into account. We show that the proposed

techniques outperform the communication-aware techniques for the scenarios where

both computation and communication overhead are significant.

• Chapter 7: In this chapter, we present a hybrid mapping strategy that performs

compute intensive analysis at design-time and uses the analysis results at run-time

for facilitating efficient mapping. We also present analysis strategies performing

faster design space exploration and at the same time providing better design points

when compared to existing analysis strategies. The analysis results are used at run-

time by a proposed run-time mapping strategy in order to accelerate the mapping

process.

• Chapter 8: We conclude the thesis and identify some future directions in this

work.

1.6 List of Publications resulting from the Thesis

The work presented in this thesis has been communicated in international journals and

conferences as follows:

International Refereed Journals

[J-1] A. K. Singh, T. Srikanthan, A. Kumar and W. Jigang, “Communication-aware

heuristics for run-time task mapping on NoC-based MPSoC platforms”, Journal of

Systems Architecture, Vol. 56, No. 7, July 2010, pp. 242-255.

[J-2] A. K. Singh, A. Kumar and T. Srikanthan, “Accelerating Throughput-aware Run-

time Mapping for Heterogeneous MPSoCs”, ACM Transactions on Design Automa-

tion of Electronic Systems. (Accepted for Publication)

8

Chapter 1. Introduction

[J-3] A. K. Singh, A. Kumar, W. Jigang and T. Srikanthan, “CADSE: Communication

Aware Design Space Exploration for Efficient Run-time MPSoC Management”,

Frontiers of Computer Science. (Accepted for Publication)

International Refereed Conferences

[C-1] A. K. Singh, W. Jigang, A. Prakash and T. Srikanthan, “Efficient Heuristics for

Minimizing Communication Overhead in NoC-based Heterogeneous MPSoC Plat-

forms”, IEEE/IFIP International Symposium on Rapid System Prototyping (RSP),

June 2009, pp. 55-60.

[C-2] A. K. Singh, W. Jigang, A. Prakash and T. Srikanthan, “Mapping Algorithms for

NoC-based Heterogeneous MPSoC Platforms”, IEEE Euromicro Symposium on

Digital Systems Design (DSD), August 2009, pp. 133-140.

[C-3] A. K. Singh, W. Jigang, A. Prakash, T. Srikanthan and D. Maskell, “Efficient Task

Mapping in Multi-tasking Heterogeneous MPSoC Platforms”, Asia-Pacific Embed-

ded Systems Education and Research Conference (APESER), December 2009.

[C-4] A. K. Singh, W. Jigang, A. Kumar and T. Srikanthan, “Run-time Mapping of

Multiple Communicating Tasks on MPSoC Platforms”, International Conference

on Computational Science (ICCS), June 2010, pp. 1013-1020.

[C-5] A. K. Singh, A. Kumar, T. Srikanthan and Y. Ha, “Mapping Real-life Applications

on Run-time Reconfigurable NoC-based MPSoC on FPGA”, IEEE International

Conference on Field Programmable Technology (FPT), December 2010, pp. 365-

368.

[C-6] S. Kaushik, A. K. Singh and T. Srikanthan, “Preprocessing-based Run-time Map-

ping of Applications on NoC-based MPSoCs”, IEEE Annual Symposium on VLSI

(ISVLSI), July 2011, pp. 337-338.

9

Chapter 1. Introduction

[C-7] A. K. Singh, A. Kumar and T. Srikanthan, “A Design Space Exploration Method-

ology for Application Specific MPSoC Design”, IEEE Annual Symposium on VLSI

(ISVLSI), July 2011, pp. 339-340.

[C-8] S. Kaushik, A. K. Singh and T. Srikanthan, “Computation and Communication

Aware Run-time Mapping for NoC-based MPSoC Platforms”, IEEE International

SOC Conference (SOCC), September 2011, pp. 185-190.

[C-9] A. K. Singh, A. Kumar and T. Srikanthan, “A Hybrid Strategy for Mapping

Multiple Throughput-constrained Applications on MPSoCs”, IEEE/ACM Interna-

tional Conference on Compilers, Architectures and Synthesis of Embedded Systems

(CASES), October 2011, pp. 175-184.

[C-10] S. Kaushik, A. K. Singh, W. Jigang and T. Srikanthan, “Run-Time Computa-

tion and Communication Aware Mapping Heuristic for NoC-based Heterogeneous

MPSoC Platforms”, IEEE International Symposium on Parallel Architectures, Al-

gorithms and Programming (PAAP), December 2011, pp. 203-207.

[C-11] A. K. Singh, A. Kumar, W. Jigang and T. Srikanthan, “Communication-aware

Design Space Exploration for Efficient Run-time MPSoC Management”, IEEE In-

ternational Symposium on Parallel Architectures, Algorithms and Programming

(PAAP), December 2011, pp. 72-76.

[C-12] A. K. Singh “Run-Time Mapping Techniques for NoC-based Heterogeneous MPSoC

Platforms”, EDAA/ACM SIGDA PhD Forum at the Design Automation and Test

in Europe (DATE) Conference, March 2012.

10

Chapter 2

Literature Survey

Modern embedded systems (e.g., smart phones, PDAs, tablet PCs) employ Multi-Processor

Systems-on-Chip (MPSoCs) in order to satisfy the ever-rising performance demands of

modern complex embedded applications while also reducing power consumption. There-

fore, MPSoC platforms consisting of several embedded processors are becoming ubiqui-

tous in embedded processing [5]. These platforms can provide increased performance by

executing parallel tasks of applications on different processors at the same time. Further,

the processors operate at lower frequencies unlike at a very high frequency in single-core

processor based systems and thus fulfilling the low power requirement. Intel reports that

under-clocking a single core by 20 percent saves half of the power while sacrificing just

13 percent of the performance [6]. So, if the work is distributed on two processors run-

ning at 80 percent clock rate, we get 74 percent better performance for the same power.

However, the heat is dissipated at two points rather than one.

The MPSoC platforms are bound to contain larger number of processing elements

(PEs) as technology advances. The platforms can be homogeneous or heterogeneous de-

pending upon the type of PEs present in the platform. Homogeneous platforms contain

identical PEs making them very suitable for VLSI implementation. On the other hand,

heterogeneous platforms contain different type of PEs in order to satisfy higher perfor-

mance demands by exploiting distinct features of the PEs. The platform PEs call for

11

Chapter 2. Literature Survey

a communication infrastructure to have proper communication amongst multiple PEs.

Mapping of applications on the platform PEs by using efficient mapping techniques is

very active topic of research and is being addressed by several research organizations [7]

[8].

In this chapter, we discuss the trends in MPSoC in Section 2.1. Section 2.2 introduces

some of the existing homogeneous and heterogeneous MPSoC platforms targeted for

different domain of embedded applications. In the same section, we discuss available on-

chip interconnects required to fulfill the communication needs of various platform PEs

and the challenges involved in designing MPSoC platforms along with various existing

design methodologies. Various mapping techniques proposed in the literature to map

applications on MPSoC platforms have been discussed in Section 2.3. A comprehensive

review of the mapping techniques is undertaken to highlight their limitations, which gave

us the main motivation for this dissertation. The contents of this chapter are summarized

in Section 2.4.

2.1 Trends in Multi-Processor System-on-Chip

This section describes the trends in the MPSoC as technology evolved and performance

demand increased.

2.1.1 Number of Processing Cores

Continuing with the Moore’s law, the number of transistors will grow exponentially,

thereby the number of cores with roughly the same exponential rate. Moreover, Interna-

tional Technology Roadmap for Semiconductors (ITRS) predicts that this growing trend

will continue as shown in Figure 2.1. Thus, as nanotechnology evolves, it will become

feasible to integrate thousands of cores on the same chip as predicted by sources like Intel

and Berkeley [9] [10]. The cores are envisioned as logic gates of 21st century.

12

Chapter 2. Literature Survey

Figure 2.1: ITRS Roadmap showing growing number of processing cores (engines) [11]

Almost all computing vendors have announced chips with multiple processor cores.

Moreover, the vendor road-maps assure for repeatedly doubling the number of cores per

chip. These chips are to be used in future and are diversely called chip multiprocessors,

multi-core chips, and many-core chips. The complete systems are usually referred to as

MPSoCs.

2.1.2 Network-on-Chip for Scalability

The processors present in the MPSoCs call for a communication infrastructure to have

proper communication amongst them. This communication infrastructure can be based

on buses, point-to-point links or Networks-on-Chip (NoCs) [12]. In bus-based infrastruc-

ture, as the number of processors increases, the arbitration bottleneck increases due to

need of increased number of bus masters. Additionally, the bus bandwidth gets shared by

all the attached processors, making it non-scalable. In point-to-point links, with increased

number of processors, longer wires are required, causing long delays in communication.

Thus, this infrastructure too is non-scalable. However, in a NoC, the arbitration is dis-

tributed and only wire segments are required. Further, the bandwidth gets scaled with

13

Chapter 2. Literature Survey

the network size, i.e. number of processors. Thus, NoC communication infrastructure is

efficient and highly scalable [13] [14].

2.1.3 Heterogeneity in Processing Cores

Amdahl’s law has been augmented in multi-core era to evaluate the true benefits of multi-

core processing [15]. It states that the speedup of an application by MPSoC processing

is limited by the time needed to execute the sequential portion of the application. Figure

2.2 shows the speed up obtained by using different number of processors at various levels

of parallelization. It is clear that if 5% of the application cannot be parallelized (95%

parallelized) then the maximum speedup that can be achieved is 20x even if larger number

of processors is used.

The speedup can be increased by accelerated execution of the non-parallelized part

(5%), i.e. by executing the sequential part in less time with the help of a processor that

has better sequential performance. When heterogeneous MPSoCs are considered, the

distinct features of different type of processors can be exploited by different portions of the

application which might lead to increased speedup. Thus, heterogeneous MPSoCs have

become formidable computing alternatives where applications witness large improvement

over their homogeneous counterpart.

Further, heterogeneous MPSoCs may contain general purpose processor (GPP) for

flexibility, custom accelerators for compute intensive tasks, reconfigurable hardware blocks

for flexibility & compute intensive processing and specialized processors like digital sig-

nal processors (DSPs) for signal processing tasks, thereby providing flexibility, increased

compute performance and reduced power consumption at the same time. Going forward,

heterogeneity can be increased further to achieve high performance demands of complex

applications.

14

Chapter 2. Literature Survey

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

S
p

ee
d
u
p

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

Number of Processors

Amdahl’s Law

Parallel Portion

 50%

 75%

 90%

 95%

Figure 2.2: Amdahl’s law indicating that speed up obtained using multiple processors is
limited by the sequential part of the program [16]

2.2 Multi-Processor System-on-Chip Architectures

A Multi-Processor System-on-Chip (MPSoC) has two aspects - multiple processors and

System-on-Chip. A multi-core architecture approach can be adopted to implement the

PEs in the cores as they show success for most of the application domain [5]. These

processing cores can be implemented in a chip to develop an MPSoC. The multi-core

architecture has a number of advantages:

• Most suitable to the future process technologies as more cores will be available with

advancement in technology and the complexity of the cores can be kept the same.

• Small cores can be optimized extensively.

• Computational performance scales almost linearly with the number of cores.

• Some cores can be switched off/on depending on the requirements.

15

Chapter 2. Literature Survey

• Faulty cores can be discarded to make the multi-core concept as fault tolerant.

• Multiple cores can be configured in parallel to improve the performance.

• Individual clock domain per core is possible and it is possible to do partial dynamic

reconfiguration on a per core basis for the reconfigurable cores.

Several multi-core chips have been developed, suitable to different application do-

main [17]. These chip platforms are viable alternatives for high performance computing

platforms.

2.2.1 Homogeneous Architectures

All cores present in homogeneous MPSoCs are identical. Thus, the cores can be easily

replicated, making it very suitable for VLSI implementation. Further, they are easy to

program as compared to their heterogeneous counterpart.

Academias often propose homogeneous MPSoCs and some of the notable ones are

introduced here. Massachusetts Institute of Technology proposed 16-core Raw Architec-

ture Workstation (RAW) processor architecture [18]. A 167-core Asynchronous Array

of Simple Processors (AsAP) has been proposed by University of California at Davis

[19]. The University of Texas at Austin proposes The Tera-op, Reliable, Intelligently

adaptive Processing System (TRIPS) which uses 32 chips each containing 2-core [20]. A

WaveScalar processor has been proposed by University of Washington which contains

approximately 2K simple processing elements (PEs) arranged into 16 clusters [21]. In

[22], a scalable MPSoC for next generation architectures has been proposed. This archi-

tecture is based on RISC processors and distributed memories. These chips have been

developed to provide high performance.

Recently, Intel and Tilera Corporation have proposed homogeneous MPSoCs [23]

[24]. In [23], Intel proposes a homogeneous MPSoC consisting of 80 cores connected

16

Chapter 2. Literature Survey

by an interconnection network where each core contains two floating-point units. The

interconnection network is arranged as a 10×8 2D array in 275mm2 area that contains

80 cores and packet-switched routers, operating at 4GHz. The MPSoC is designed in

65nm technology. Intel has also announced Core i3, Core i5 and Core i7, a family of

multi-core processors for desktop and mobile processors [17]. In [24], Tilera Corporation

announced TILE-Gx100, the world’s first 100-core general purpose processor that offers

the highest performance amongst any microprocessor yet announced by a factor of four.

They have also simplified many-core programming with their breakthrough Multicore

Development Environment (MDE) that features rapid product deployment. Hewlett-

Packard announced an MPSoC consisting of multiple MIPS cores [25].

There are lot of other chip manufactures who have announced their multi-core chips

targeting for different computing domains such as scientific, embedded and general pur-

pose computing. Some multi-core chips are listed in [17].

2.2.2 Heterogeneous Architectures

The heterogeneous MPSoCs consist different types of PEs implemented in the cores.

The PEs can be GPPs, specialized PEs like DSPs, FPGA fabrics, dedicated intellectual

property cores (IPs), specialized memories etc. By exploiting distinct features of differ-

ent type of PEs, compute performance can be increased while at the same time power

consumption can be reduced and remain flexible.

Recently, academic researchers are targeting heterogeneous MPSoCs as well. Some

heterogeneous architectures proposed by academia are presented in [26], [27], [28], [29]

and [30].

Nollet et al. [26] present MPSoCs containing four different type of PEs: GPPs, DSPs,

accelerators and reconfigurable hardware blocks. The different PEs are interconnected

by a 3×3 mesh network. Smit et al. [27] propose reconfigurable architectures where the

17

Chapter 2. Literature Survey

PEs are connected by an on-chip network and one particular architecture is named as

Annabelle. In the Smart chipS for Smart Surroundings (4S) project [28] at University

of Twente, a dynamically reconfigurable MPSoC architecture has been proposed, where

a core can be either a bit-level reconfigurable unit (e.g. FPGA) or a word-level reconfig-

urable unit (e.g. Montium [31]), or a general-purpose programmable unit (DSP or GPP).

The programmability of the cores in the reconfigurable architectures facilitate the system

to be targeted for multiple application domains.

Arpinen et al. [29] present an MPSoC consisting of many Altera Nios II soft-core pro-

cessors and custom hardware accelerators, where they are connected by a communication

network called Heterogeneous IP Block Interconnection (HIBI). The MPSoC is created

on an Altera FPGA [32]. Hristo et al. [30] propose MPSoCs containing fixed Instruction

Set Architecture (ISA) processors and dedicated IP cores. These MPSoCs provide high

performance for fixed targeted applications.

Two heterogeneous MPSoCs: CHAMELEON and Pleiades Chips are proposed by

University of Twente and UC Berkeley, respectively. These MPSoCs target DSP algo-

rithms. The CHAMELEON SoC [31] contains a general purpose processor (an ARM

core), a fine-grained reconfigurable part (FPGA fabric cores) and a coarse-grained re-

configurable part (MONTIUM cores [31]). Highly regular computation patters of an

algorithm are executed in reconfigurable parts and irregular parts on the general purpose

processor. The Pleiades Chips [33] contain low power domain specific processors.

Industry is also targeting heterogeneous MPSoCs. Some industrial proposals are

presented in [34], [35], [36] and [17].

In [34], STMicroelectronic presents a flexible MPSoC called StepNP. The MP-

SoC contains multiple configurable multi-threaded processors, configurable PEs and

networking-oriented I/O’s, where all of them are connected by an on-chip network. The

MPSoC fulfills the requirement for flexibility, rapid development and end-user produc-

tivity. Leijten et al. [35] propose an MPSoC that is designed by a method known as

18

Chapter 2. Literature Survey

PROPHID. The PROPHID architecture contains a general purpose processor for con-

trol and low to medium-performance signal processing, and domain specific processors

for high-performance signal processing. Rutten et al. [36] propose an MPSoC called

Eclipse that contains function-specific coprocessors to execute the tasks of one or more

applications at the same time in order to provide high performance.

In [17], MPSoCs proposed by several companies are listed. These MPSoCs contain

varying number of PEs implemented in the cores depending upon the need of the tar-

geted application domain. Some contemporary MPSoCs show that most of them contain

application-specific PEs next to more general purpose PEs and are introduced subse-

quently.

CELL

The Cell Processor [37] is jointly developed by IBM, Sony and Toshiba. It is composed

of one manager processor and 8 floating-point units. The manager processor is PowerPC

[38] and is called Power Processor Element (PPE). The PPE runs an operating system for

controlling all the PEs. The floating-point units are called Synergistic Processor Elements

(SPEs) and provide the required compute performance. The Cell processor uses a high

speed communication network. This MPSoC is used as the heart of PlayStation 3 game

console.

Nexperia

The Nexperia [39] is developed by Philips. It contains three processors: one MIPS

PR4450 for control processing and balancing off-chip functions, and two TriMedia TM3260

DSP processors for processing the multimedia content. This MPSoC mainly target the

digital television and set-top box systems.

OMAP

The OMAP [40] is developed by Texas Instruments (TI). The OMAP2 MPSoC contains

an ARM11 as manager processor, a TI C55x digital signal processor for accelerating DSP

19

Chapter 2. Literature Survey

processing, a 2D/3D graphics accelerator and a video accelerator. This MPSoC can be

found in high end Nokia cell phones. The dual-core OMAP4 chip can be found in modern

tablets such as in Kindle Fire and BlackBerry PlayBook.

Nomadik

The Nomadik [41] is developed by STMicroelectronics. This MPSoC contains an ARM926

processor and several Very Long Instruction Word (VLIW) DSP cores. The DSP cores

provide acceleration for different kinds of signal processing tasks. This MPSoC is used

in high end cell phones.

XPP

The Xtreme Processing Platform (XPP) [42] is developed by PACT Technologies. The

platform is composed of a coarse-grain reconfigurable array, adaptive computing elements

and a packet-oriented communication network. The platform is suited for large domain

of applications and provides high computation performance.

AVISPA CH

The AVISPA CH [43] is developed by Silicon Hive (an incubator of Philips Research)

[44]. This MPSoC contains a Base Processor (BP), two Arithmetic Complex Processors

(ACPs) and a pseudo-multi-port memory. The AVISPA CH provides high processing

power, flexibility and hardware acceleration, and is very suitable for base band processing

of existing and emerging audio and video broadcasting standards.

Configurable Cores

Recently, many companies have begun providing configurable cores targeting different

application domains. These are known as Application Specific Instruction-set Processors

(ASIPs). The ASIPs provided by Tensilica [45] and Silicon Hive [44] are listed in [46]

and [47]. These companies provide the complete toolset to generate both the MPSoC

where each PE can be customized and the corresponding software programming toolset.

The motivation behind ASIPs is that tuned PEs are more efficient than general-purpose

PEs, all the while providing more flexibility than ASICs [48].

20

Chapter 2. Literature Survey

Fine-grain Reconfigurable Hardware

The Field Programmable Gate Array (FPGA), also denoted as fine-grain reconfigurable

hardware, is becoming a viable alternative for the ASIC in embedded systems market.

The FPGA provides high flexibility and low upfront cost with performance between

the general purpose processor (GPP) and ASIC. There is no NRE cost as FPGAs are

an off-the-shelf product. FPGA fabrics are being integrated into SoCs in order to create

high performance custom logic even after manufacturing. In conventional systems, FPGA

fabric is fully allocated to a single processor, which is used to accelerate compute intensive

tasks [49] [50]. On the other hand, in modern systems, FPGA fabrics are integrated as

some of the PEs of the MPSoC. Some research works show the potential benefits of

integrating the FPGA fabrics in MPSoCs [26] [51] [52]. However, there is still a lack of

general agreement on how the integrated FPGA fabrics should be used as regular PEs

within the MPSoCs [53]. Additionally, FPGA vendors such as Xilinx [54] and Altera [32]

also provide soft and hard IP-core blocks. These provide GPP, DSP and accelerators

functionality and can be integrated to develop custom MPSoCs providing flexibility and

high performance.

Intuitively, it is clear that application development and run-time management of dif-

ferent type PEs in heterogeneous MPSoCs is difficult as compared to their homogeneous

counterpart.

2.2.3 On-chip Interconnects for the Architectures

An on-chip interconnect is required to connect the PEs of MPSoCs in order to fulfill their

communication needs. Out of available interconnect options such as buses, point-to-point

connections and Networks-on-Chip (NoC), it has been observed that NoC is the most

efficient and highly scalable [12] [13] [14].

The term NoC is used in several contexts varying from multi-layer segmented buses to

on-chip networks [55]. Several researchers focus on designing efficient NoCs, which involve

21

Chapter 2. Literature Survey

several challenges. Marculescu et al. [56] describe the outstanding research problems

in designing NoCs and categorize them into five categories: application modeling and

optimization for NoC communication, communication paradigm selection, communication

infrastructure synthesis, evaluation and validation. Some solutions against each problem

have also been suggested. Efficient solutions to these problems need to be explored from

the perspective of future NoC research.

Examples of well known research NoCs are SPIN [57], AEthereal [58], QNoC

[59], Xpipes [14], PNoC [60], ProtoNoC [61], Nostrum [62], MANGO [63] and

HERMES [64]. The design approaches for the mentioned NoCs are described in their

respective references. Some other design approaches have been mentioned in [65], [66]

and [67]. Bjerregaard et al. [63] provide an excellent survey of existing NoC research and

their practices. Lately, several start-up companies like Sonics [68] and Arteris [69] have

started to commercialize the NoC concepts with their NoC products.

The NoCs require smart routing mechanisms for efficiently transferring data from one

PE to another PE of the MPSoC. Some mechanisms are presented in [70] and [71]. In

[70], a novel routing scheme called DyAD is presented, which takes the advantages of

both deterministic and adaptive routing schemes by switching between them based on the

network’s congestion. In [71], a multi-path routing strategy is presented that guarantees

in-order data delivery by optimally spreading the traffic in the NoCs to minimize the

bandwidth requirements of the network.

The NoC architecture also imposes new run-time management challenges. For ex-

ample, re-routing communication, i.e. changing the communication path between source

and destination PEs at run-time. Additionally, resource management algorithms need to

consider the properties of the interconnect.

22

Chapter 2. Literature Survey

2.2.4 Designing Multi-Processor System-on-Chip Platforms

As mentioned earlier, MPSoCs can provide the most efficient architectural solutions for

supporting different domain of applications. As a result, tools to design and simulate

these systems are needed. Designing MPSoCs involves several challenges [72]. For exam-

ple, the number and type of processors, size of memories, communication infrastructure

and different accelerators to be considered in designing a promising MPSoC for a given set

of applications. Academia and industry have proposed several design methods integrated

into different tools. The design methods are either software-based or hardware-based.

The software-based and hardware-based techniques design simulation and hardware plat-

forms, respectively.

2.2.4.1 Software-based Design Techniques

The software-based design approaches provide simulation platforms for MPSoCs, which

are relatively easy to design than that of the hardware platforms. However, simulation

platforms provide near accurate results and sometimes take long time in simulation.

Some existing works to design simulation platforms are presented in [73], [74], [75] and

[76].

Benini et al. [73] propose a method to design MPSoC simulation platform calledMP-

ARM. The MP-ARM platform contains ARM processors modeled based on SystemC [77]

and communication architecture compliant with AMBA bus. Paulin et al. [78] present

another technique to design SystemC based MPSoC simulation platform called StepNP.

Monchiero et al. [74] present a design framework called GRAPES. The framework is

system-level and cycle-based, which provides flexibility and modularity maintaining high

simulation speed. SystemC or C++ entities are used to model intellectual property (IP)

modules. The modules are captivated into C++ objects called plug-ins and are managed

by the GRAPES kernel, which is the heart of the simulation framework.

23

Chapter 2. Literature Survey

Cong et al. [75] present a methodology to automatically generate fast, cycle-true, C-

based simulators for coprocessors using a high-level synthesis tool and integrate them with

their simulation frameworkMC-Sim. The framework is capable of accurately simulating

a variety of processor, memory, NoC configurations and application specific coprocessors.

Atat et al. [76] propose a system level design approach for rapid prototyping of MPSoCs

starting from Matlab/Simulink specifications.

Beltrame et al. [79] present a method that starts from the description of an application

in standard sequential code. Firstly, the application is profiled in order to parallelize it,

which gives minimum number of processors required for a given constraint. Then, a

StepNP based simulation platform is designed based on the parallelized components

and the number of processors. The flow is applied to an MPEG4 VGA real-time encoder

for industrial case study.

Interuniversity Microelectronics Centre (IMEC) [2] presents a design flow that uses

three tools. The flow is depicted in Figure 2.3. The tools used are i) CleanC for source

code cleaning, ii) Multi-Processor Assist (MPA) for parallelization of sequential code

and iii) Memory Hierarchy (MH) for performing scratchpad memory management. The

CleanC permits designers to write a high-level sequential code that is optimized for par-

allelization. The MPA tool empowers designers to extract the potential parallelization

present in an application using the functional and data parallelism. The MH tool auto-

matically schedules data transfers between main memory and local memory by analyzing

the input source code.

The designed MPSoCs based on simulation framework are being targeted by many

researchers as they are easy to design and need less design-time.

2.2.4.2 Hardware-based Design Techniques

Hardware platforms are difficult to design as compared to the simulation platforms. How-

ever, hardware platforms provide faster execution than the simulators. Some methods to

24

Chapter 2. Literature Survey

Figure 2.3: IMEC MPSoC design flow [2]

design hardware platforms are presented in [80], [81], [82], [83] and [84].

Nikolov et al. [80] present a methodology implemented in a tool called Embedded

System-level Platform synthesis and Application Mapping (ESPAM) for automated de-

sign, programming and implementation of MPSoCs. The methodology considers an ap-

plication, system-level platform, and mapping specifications as input for performing the

automation. The proposed methodology is evaluated by automatic generation and pro-

gramming of several MPSoCs for executing real-time applications. STMicroelectronics

[81] propose a low-cost modular approach for generating hardware platforms that offer

design and verification of complex MPSoCs.

Atienza et al. [82] present a framework to design MPSoCs on FPGA. The designed

MPSoC provides speed-ups of three orders of magnitude as compared to cycle-accurate

MPSoC simulators. Sun et al. [83] propose a methodology for MPSoC synthesis. The

methodology is implemented using the Xtensa platform from Tensilica Inc [45]. The

methodology is evaluated by automatically generating custom MPSoCs for several com-

plex embedded software benchmarks and the results show that synthesized MPSoCs

25

Chapter 2. Literature Survey

provide faster results. Kumar et al. [84] present a methodology implemented in a tool

called Multi-Application Multi-Processor Synthesis (MAMPS) for generating MPSoCs in

a systematic and fully automated way for multimedia applications. The tool generates

MPSoCs for Xilinx FPGAs. For scalable architectures, techniques to generate NoC-based

MPSoC on FPGA are presented in [85] [86] and [87].

So far, techniques to design MPSoCs have been described, which design either sim-

ulators or hardware platforms. Some of the techniques design general MPSoCs to be

targeted to map applications at later stages [73] [76] [81], while others application spe-

cific MPSoCs [79] [2] [80] [83] [84]. An application specific MPSoC is customized to

serve a fixed application. To handle dynamism such as adding a new application into the

system at run-time, general MPSoCs are required.

In order to handle modern complex applications requiring large number of processors,

the MPSoCs need to be NoC-based for efficiency and scalability. However, it has been

observed that most of the design methods produce MPSoCs that are not NoC-based.

Further, it has been observed that MPSoCs on Field Programmable Gate Arrays (FP-

GAs) for hardware platforms are a new and increasingly important trend [80] [82] [84]

[85] [86] [87]. Dorta et al. [88] provide a nice overview of the MPSoCs on FPGAs. These

facilitate rapid prototyping and allow for research in new architectures without the wor-

ries of their ASIC production. However, these have reduced performance compared to

their ASIC counterpart but offer several advantages like flexibility, reconfiguration, less

time-to-market and less cost, to compensate for the same. Modern FPGAs can accommo-

date 80-100 soft-core processors in a single chip and NoC is the best solution to manage

such large number of cores [89]. Techniques are also available to design thousand core

systems by using multiple FPGAs and such a system has been referred to as Research

Accelerator for Multiple Processors (RAMP) [90].

26

Chapter 2. Literature Survey

2.3 Mapping Applications on Multi-Processor System-

on-Chip Platforms

Before starting the mapping of applications on MPSoC platforms, the applications need

the following processing:

• Parallelization of the application, adding synchronization and inter-task communi-

cation in the parallelized tasks, and management of the memory hierarchy commu-

nication. This job can be furnished by state-of-the-art application parallelization

tools [91] [2]. The parallel tasks can be executed on different platform resources

concurrently in order to accelerate the application execution.

• Checking the parallelized code and making sure that it is functionally correct and

optimized for a given set of platform parameters.

• In the case of heterogeneous platforms, a task binding process is required. For

each task, the binding process defines the processor types on them the task can be

mapped. It also specifies the cost of mapping on the different processor types.

Mapping tasks of applications on an MPSoC platform involves assignment and or-

dering of the tasks and their communications onto the platform resources in view of

some optimization criteria like reducing energy consumption, improving compute per-

formance etc. The optimization is necessary to satisfy performance constraints of the

applications. Therefore, efficient mapping techniques are required in order to optimize

the performance. The mapping techniques need following number of parameters:

• An application model (e.g., Task Graph [92], Data Flow Graph [93] etc.).

• An architecture model of the MPSoC platform (e.g., topology, number of PEs and

their type, interconnection scheme etc.).

27

Chapter 2. Literature Survey

• The constraints of the application (e.g., compute performance and/or power re-

quirements etc.).

• The performance model of inter-process communication (execution time, energy

consumption etc.).

• An estimate of the worst case execution time of the process implementations on

different PEs.

The mapping problem is being addressed by several researchers who communicate

their views through various forums such as ArtistDesign Network of Excellence [8], In-

ternational Forum on Embedded MPSoC and Multicore [7], various International confer-

ences and journals. The mapping techniques have been developed by targeting specific

application domain for the most promising MPSoC architecture.

Mapping applications’ tasks on MPSoC platform resources can be accomplished at

either design-time (static) or run-time (dynamic). Design-time mapping techniques con-

sider predefined set of applications with known computation and communication behavior

and a static platform. Therefore, they are not suitable for dynamic workloads such as

adding a new application into the platform at run-time. Dynamic (run-time) mapping

techniques are required for scenarios where application tasks need to be loaded into the

platform at run-time. After mapping tasks, task migration can be used to revise place-

ment of some of the already executing tasks, if the user requirement is changed or a new

application has entered into the system.

In next subsections, we discuss the design-time and run-time mapping techniques

reported in the literature. Our work focus mainly on run-time mapping, so we explore

run-time mapping techniques extensively and provide some introduction of design-time

mapping techniques.

28

Chapter 2. Literature Survey

2.3.1 Design-time Mapping

Design-time mapping techniques have a global view of the system which helps in making

better decision for using the system resources. Thus, a better quality of mapping may be

achieved as compared to the run-time mapping techniques that are restricted normally to

a local view. Most of the mapping related works in literature cover design-time mapping

techniques.

Design-time mapping techniques for bus-based and NoC-based MPSoCs are presented

in [94] [95] and [96] [97] [98] [99] respectively. The bus-based architectures are not scalable

and thus they enforce scalability issues to their related mapping techniques. Hu et al. [96]

propose a mapping technique called Communication Weighted Model (CWM) and show

that the overall power consumption is reduced by decreasing the energy consumption in

communication. Marcon et al. [97] extend the work in [96] and propose a technique called

Communication Dependence and Computation Model (CDCM). The CWM considers only

the communication volume, whereas CDCM considers the volume and timing of the

communication. Murali et al. [98] present a methodology that maps multiple use-cases

onto NoC architecture and performance constraints for each use-case are satisfied. Rhee

et al. [99] investigate core-switch mapping (CSM) problem that optimally maps cores

onto NoC architecture in order to minimize energy consumption or NoC congestion.

Different well established search approaches are also used to develop design-time map-

ping techniques in order to find optimal placement of tasks on platform PEs. Genetic

approach is used in [100] [101], Tabu Search in [102] and Simulated Annealing in [103]

[104]. Lei et al. [100] present a two-step genetic mapping algorithm aimed at optimizing

the application execution time. Wu et al. [101] present a genetic mapping algorithm

that uses Dynamic Voltage Scaling (DVS) to reduce the energy consumption. Manolache

et al. [102] investigate the task mapping aimed at guaranteed network packet latency

29

Chapter 2. Literature Survey

in order to guarantee for worst case application response time. Orsila et al. [104] pro-

pose a Simulated Annealing algorithm in order to optimize execution time and memory

consumption, whereas traditional approaches only focus on the execution time.

Some other recent design-time mapping techniques are summarized in [105], [106],

[107] and [108].

All the design-time techniques find placement of tasks at design-time. Therefore,

these techniques are not suitable for run-time varying workloads in the systems, which

require re-mapping/run-time mapping of applications (e.g. networking and multimedia

applications). Even if these mapping techniques are inadequate for the dynamic work-

load scenarios, such techniques might be useful to find the initial task placement, or be

optimized to be working at run-time.

2.3.2 Run-time Mapping

In contrast to the design-time mapping, run-time mapping needs to consider the time

taken to map each task as it contributes to overall application execution time. Fur-

thermore, the tasks are mapped one by one, unlike the static case where all the tasks

are mapped at once by looking globally at the system. Therefore, greedy algorithms

are used for efficient mapping in order to optimize performance metrics such as energy

consumption, communication latency, execution time etc.

In addition to the suitability of the run-time (dynamic) mapping techniques over

design-time (static) techniques in the case of dynamic workload scenarios, they also offer

a number of other advantages:

• Adaptability to the available resources : The available resources vary over time as

the applications of the dynamic workload scenario enter at run-time.

30

Chapter 2. Literature Survey

• Ability to enable unforeseeable upgrades : It is possible to upgrade the system for

new applications or changing standards that are not known at design-time, even

after the delivery of the system to the end-user.

• Ability to avoid defective parts of a SoC : If one or more processing cores are not

operating properly after production of a SoC, then the defective cores can be dis-

abled before the mapping process [109]. Aging can lead to defective cores that are

unforeseeable at design-time.

The run-time mapping techniques allocate tasks and their communications to plat-

form PEs and interconnect links respectively for all the applications to be mapped. When

the mapped applications start execution, the mapping of one or more running applica-

tions needs to be reconsidered in case of following events:

• When a new application is entered into the system and it needs resources from the

already executing applications.

• When parameters of a running application is modified.

• When a running application needs to be killed in order to free it’s occupied re-

sources.

• When the performance requirements of a running application are changed. This

might need extra resources for performing extra functionality.

• When current mapping is not sufficiently optimal, it requires (re-)mapping.

The aforementioned issues can be handled only by run-time mapping techniques as

the issues are dynamic and need to be handled at run-time.

At run-time, mapping of new applications to be supported onto a platform can be

handled either by performing all the processing at the same time, i.e. on-the-fly processing

31

Chapter 2. Literature Survey

or by using previously analyzed results. For on-the-fly processing, efficient heuristics are

required to assign new arriving tasks on the platform resources. These heuristics cannot

guarantee that strict timing deadlines are met due to limited processing resources at

run-time. However, such heuristics are applicable to any platform as they do not use any

platform specific analysis results computed in advance. For mapping using previously

design-time analyzed results, light weight run-time mapping heuristics are required as the

compute intensive analysis is performed at design-time. Such heuristics map applications

more efficiently than on-the-fly heuristics, but the analysis results will not be applicable to

all the platforms. Next, we discuss on-the-fly mapping heuristics and mapping strategies

that uses design-time analysis results, reported in the literature.

2.3.2.1 On-the-fly Mapping

The mapping techniques target homogeneous or heterogeneous MPSoCs depending upon

the requirement of applications.

Techniques Targeting Homogeneous MPSoCs

Some run-time mapping techniques targeting homogeneous MPSoCs are presented in

[110], [111], [112], [113], [114], [115], [116], [117], [118] and [119].

Chou et al. [110] propose a technique that incorporates the user behavior informa-

tion in the resource allocation process; that allows system to better respond to real-time

changes and adapt dynamically to user needs. This consideration saves 60% commu-

nication energy when compared to an arbitrary task allocation technique. Peter et al.

[111] present a heuristic algorithm that is distributed over the processors and thus can

be applied to systems of random size. Also, tasks added at run-time can be handled

without any difficulty, allowing for inline optimization. Task migration takes place based

on local information on processor workload, task size, communication requirements, and

link contention. The mapping results for several example task sets show that quality

32

Chapter 2. Literature Survey

achieved by the presented algorithm is within 25% of that of the exact algorithm, for a

3×3 processor array. Briao et al. [112] present strategies based on bin-packing algorithms

for running soft real-time applications. They combine different types of algorithms to

get better allocation results. In order to save energy, the system turns off idle processors

and applies Dynamic Voltage Scaling (DVS) to processors with slack. Chou et al. [113]

propose a technique that considers multiple PEs operating at multiple voltage levels for

energy aware mapping.

Ngouanga et al. [114] describe a technique based on attraction forces between the

communicating tasks. The technique tries to place such tasks close to each other on the

MPSoC PEs in order to reduce communication overhead. Mehran et al. [115] present

a Dynamic Spiral Mapping (DSM) heuristic algorithm for 2-D mesh topologies where

placement for a task is searched in a Spiral path, trying to place the communicating

tasks close to each other. Before starting the spiral search, degree for each task in

an application is found and the task having maximum degree is placed at the center

of the mesh to facilitate the closer mapping of communicating tasks. Sassatelli et al.

[116] propose two different techniques called proactive and reactive communications and

conduct cycle-accurate evaluations of these techniques. Authors state that cycle-accurate

homogeneous systems may become a viable alternative in near future bringing the benefits

such as high performance, low power consumption and run-time load balancing. In

[118], run-time management problem is phrased as a multi-dimensional multiple-choice

knapsack (MMKP) problem. Moreira et al. [119] present a technique that first assigns

tasks to virtual cores (VCs) while trying to minimize total number of VCs and total

bandwidth used. Thereafter, the VCs are mapped to real cores.

Techniques Targeting Heterogeneous MPSoCs

These days MPSoCs are highly heterogeneous for better fulfilling the application’s re-

quirements. In case of heterogeneous MPSoCs, the task binding process is realized before

33

Chapter 2. Literature Survey

Task
Communication channel

Task Binding
(For each task, evaluating cost of mapping on

different supported PE types)

Microprocessor

Compiler
DSP

Compiler

Coarse

Grain

Reconf.

Compiler

Fine Grain

Reconf.

Compiler

Configuration

of Hardwired

Blocks

Performance

Estimation
Power

Estimation
Co-simulation

Design of one task with

different constraints

Figure 2.4: Task binding process

starting the mapping. For each task, the binding process defines the PE types on them

the task can be mapped along with the cost of mapping. Figure 2.4 shows the binding

process (design-time profiling) for an example application, where the application tasks

are analyzed on different type of PEs such as GPP, DSP, coarse grain reconfigurable

hardware etc. The profiling provides performance, power and resource utilization for

each task on different type of PEs.

Smit et al. [51] present an algorithm that first maps tasks needing scarce resources and

then all other tasks by taking availability of the platform resources into account. More

techniques to map streaming applications onto multi-core architectures are presented in

[27]. In the Smart chipS for Smart Surroundings (4S) [28] project, a spatial mapping

tool named SMIT is developed. The SMIT is excited by a RTOS when an application

needs to be mapped on the MPSoC. The tool (spatial mapper) takes description of

system architecture, functional description of application, process realizations, current

34

Chapter 2. Literature Survey

Description of

System Architecture

Functional

Description of

Application

Current System Status

Mapping

Process Realizations

(defines PE types on them

the process can be mapped)

Performance Constraints

Figure 2.5: Run-time mapping followed by SMIT Mapper tool

system status and performance constraints as input and outputs a mapping providing

placement of processes and communication channels in the system architecture, which is

used to configure the system, as shown in Figure 2.5. The process realizations are the

obtained by applying the task binding process described earlier. The SMIT tool performs

optimization over all the system PEs and communication network.

Holzenspies et al. [120] present a run-time spatial mapping technique consisting of

four steps to map streaming applications onto a heterogeneous MPSoC. The algorithm

is implemented on an ARM926 running at 100 MHz and it takes less than 4 ms to

run the HIPERLAN/2 example. Braak et al. [121] propose another run-time spatial

mapping technique that spans both the task graph and the MPSoC platform to find

optimal mapping of tasks. Nollet et al. [26] describe a run-time task assignment heuristic

for efficiently mapping the tasks in an MPSoC containing FPGA fabric tiles. With

the presence of FPGA fabric tiles, the heuristic is capable of managing a configuration

hierarchy and improves the task assignment success rate and quality.

35

Chapter 2. Literature Survey

Faruque et al. [122] present a run-time agent based distributed application mapping

technique targeting large MPSoCs such as 32×32 and 32×64 systems. For large MPSoCs,

the distributed mapping technique is better than the state-of-the-art run-time mapping

techniques that use Centralized Manager (CM) approach. The CM approach for large

MPSoCs may face the following problems:

• Single point of failure.

• Large volume of monitoring-traffic by the CM.

• High computational cost to calculate mapping inside CM.

• Bottleneck around the CM as every core sends its status to the CM after every

instance of mapping. Thus, the CM becomes a hot spot.

The distributed technique reduces the monitoring traffic and computational effort.

Schranzhofer et al. [123] propose a polynomial-time multiple-step heuristic consisting

of initial solutions followed by task re-mapping algorithms considering power constraints.

First, initial solutions for power-aware scenario are derived, and then task re-mapping

is performed to improve the solutions. Lei et al. [124] present a two-step Genetic Algo-

rithm that finds placement of tasks onto the available cores aiming at minimization of

the overall execution time. Becchi et al. [125] propose a mechanism where benefits of

heterogeneous cores are bolstered by exploiting thread migration between the cores. The

cores implement combination of Alpha EV5 and Alpha EV6 processors. By appropriate

mapping and then migration of different threads to heterogeneous processor cores, the

resource utilization is maximized.

Theocharides et al. [126] demonstrate a system-level bidding-based task allocation

strategy that provides significant performance improvements when compared to a round

robin allocation. The obtained results motivate for further investigation of system level

36

Chapter 2. Literature Survey

optimization. Schneider et al. [127] propose a placement methodology based on a hierar-

chical application and infrastructure description. The methodology places the application

components with higher communication demands close to each other in order to minimize

the overall communication costs. This also prevents blocking of long low-performance

communication links. Huang et al. [128] introduce self adaptability to a run-time task

allocation technique, which is achieved by dynamically adjusting a set of key parameters

based on current resource utilization. Carvalho et al. [129] present heuristics where tasks

are mapped on-the-fly according to the communication requests and the load in the NoC

links.

At run-time, some mapping techniques use task migration to migrate tasks from one

PE to another when performance bottleneck is detected or when the workload needs to

be distributed more homogenously in the whole system [112] [111] [125]. Task migration

may also be used in case user requirement is changed or a new application has entered

into the system in order to revise the placement of some of the presently executing tasks.

In migration, the tasks should be migrated without completely stopping and restarting

the already executing applications.

Some task migration mechanisms are presented in [130], [131] and [112]. The mecha-

nism in [130] uses task migration points as a point of reference for migrating a task from

one PE to another. Authors in [131] use checkpoints, to define the point of reference. In

[112], migration is based on a copy model. Issues related to the task migration such as

the cost to interrupt a given task, saving its context, transmitting all of the data to a

new PE and restarting the task in the new PE are discussed in [130], [131] and [132].

2.3.2.2 Based on Design-time Analysis Results

Mapping strategies based on design-time analysis results perform compute intensive anal-

ysis at design-time and use the analyzed results at run-time. This facilitates for a light-

37

Chapter 2. Literature Survey

weight run-time platform manager that dynamically and efficiently maps the applications

based on status of the platform resources.

Design-time analysis is performed by taking application description, platform speci-

fications and design objectives into account in order to explore design points to be used

at run-time. The design points contain tasks to PEs combinations, i.e. mappings, rep-

resenting trade-offs between different performance metrics. Exploring all the possible

tasks to PEs combinations exhaustively is not feasible within a limited time. Therefore,

faster analysis strategies having some design objectives are required to explore efficient

mappings.

Most of the design-time analysis techniques reported in literature provide a single

mapping for the application. Design-time mapping techniques to find a mapping for an

application reported in Section 2.3.1 can be used to accomplish such analysis. Some other

such analysis techniques are presented in [133], [134], [135], [136], [137] and [138]. They

perform exploration in view of some optimization parameters such as computational per-

formance and energy. The explored single mapping cannot handle dynamism in resource

availability and performance requirement at run-time.

Design-time analysis strategies that generate multiple mappings for the application

have recently been reported in [139], [140], [141], [142], [143], [144], [145] and [146]. The

generated mappings can be used to handle dynamism in resource availability and per-

formance requirement at run-time. In [139] and [140], exploration is performed in view

of optimizing for power consumption and performance in order to identify the best per-

formance/power trade-offs. Stuijk et al. [141] optimize for resource usage. Beltrame et

al. [142] optimize for energy and delay. They try to minimize number of simulations re-

quired to identify the mappings providing energy/delay trade-offs. Palermo [143] present

a multi-objective exploration framework that also provides energy/delay trade-off points.

In [144] and [145] too, authors present multi-objective exploration approach. Jia et al.

38

Chapter 2. Literature Survey

[146] present an infrastructure called NASA (Non Ad-hoc Search Algorithm), which uses

different combination of search strategies to explore the mapping.

There has been quite some research in multiple applications DSE. Some researchers

focus on scenario based approach where multiple application mapping scenarios are ex-

plored at design-time in order to handle dynamism in number of active applications at

run-time [141], [147], [148]. A scenario contains a set of simultaneously active applica-

tions. The scenarios have also been referred to as use-cases [84] [98] [149]. The scenario

based approaches are not scalable as the number of scenarios increases exponentially with

the number of applications, which might become intractable.

A few strategies that perform mapping using design-time analysis results are pre-

sented in [150], [151], [152] and [153]. In [150], analysis result includes only a single

mapping having minimum average power consumption. In [151] and [152], analysis re-

sults include multiple mappings having trade-off in terms of target power consumption

and performance. In [153], design-time analysis gives ideal PE count and memory re-

quired for current state of the application. The design-time analysis results have been

used by run-time platform manager in order to map applications on the platform. The

manager invokes run-time selection strategy to select the best mapping from the design-

time analyzed mappings in order to configure the applications on the platform resources.

2.3.3 Analysis of Mapping Techniques

So far, in this section, relevant existing techniques for mapping applications on MPSoC

platforms have been described. The aim of this sub-section is to critically examine the

existing techniques and identify avenues of research. The criteria for evaluation are

suitability for dynamic workloads in the systems, gain in different performance metrics

and computational complexity for scalability.

Design-time mapping techniques described in Section 2.3.1 consider a fixed set of

applications and a static platform as input and thus find mapping by having a global

39

Chapter 2. Literature Survey

view of the system. Therefore, they may provide better quality of mapping as compared

to run-time time techniques having normally a local view. However, these techniques are

not suitable for dynamic workload scenarios such as adding a new application into the

system at run-time. Run-time mapping techniques are required to handle such scenarios.

Run-time mapping techniques described in Section 2.3.2 load the application tasks

into the system at run-time as and when the application need to be supported. These

techniques split into two directions. Some tackle the mapping problem by defining effi-

cient heuristics described in Section 2.3.2.1, where new arriving tasks are assigned on the

system resources at run-time and all the processing is done at the same time, i.e. on-the-

fly. These on-the-fly heuristics cannot guarantee for schedulability, i.e. for strict timing

deadlines due to limited processing power at run-time. Others analyze applications at

design-time (offline) by defining efficient analysis strategies described in Section 2.3.2.2,

where schedules and allocations, i.e. mappings are computed that are then stored onto

the system. In order to support an application at run-time, the best mapping is selected

from the stored mappings based on the required performance and available system re-

source, which is then, used to configure the system. This facilitates for a light weight

run-time system manager and map applications more efficiently than on-the-fly heuris-

tics. However, flexibility in these approaches is limited, since all potential applications

must be known in entirety at design-time and analysis results will be applicable only to

the analyzed platform. Therefore, design-time analysis needs to be repeated when the

application set or platform changes. Further, storing analysis results introduces addi-

tional overhead. In contrast, on-the-fly heuristics are applicable to any application set

and any platform.

It has been observed that the mapping techniques target heterogeneous MPSoCs

for better fulfilling the application’s requirements as compared to their homogeneous

counterpart. Further, the MPSoCs are based on NoC communication infrastructure for

scalable and efficient architectures.

40

Chapter 2. Literature Survey

At the start of this research we witnessed that most of the existing on-the-fly heuris-

tics for NoC-based heterogeneous MPSoCs support only a single task on each PE, for

example, heuristics in [51], [27], [120], [26], [122] and [129]. Supporting a single task on

each PE is not a realistic scenario. Additionally, performance provided by the existing

mapping techniques is still a concern mainly due to communication bottlenecks. There-

fore, better mapping techniques should be investigated to provide better performance

and the techniques should be extended to MPSoCs containing PEs supporting multiple

tasks. Chapter 3 deals with our proposed run-time mapping techniques based on a pack-

ing strategy targeting MPSoC containing single task supported PEs and we show that

the performance is improvement. Chapter 4 deals with the extension of the proposed

techniques to MPSoCs containing multiple tasks supported PEs for realizing realistic

scenarios. The extended techniques based on the packing strategy do not consider com-

munication between tasks during mapping and therefore they need further investigation

in order to achieve better performance. Chapter 5 deals with the communication-aware

mapping techniques where communicating tasks are mapped on the same PE as far as

possible in order to reduce communication overhead, leading to significant performance

improvements.

The communication-aware mapping techniques proposed in Chapter 5 and reported

in literature such as in [127], [115], [114] and [129] do not consider computation load

balancing while reducing communication overhead. So, these techniques do not perform

well enough for the scenarios where computation overhead dominates communication

overhead or both the overheads become significant. Therefore, computation and com-

munication aware mapping techniques should be investigated to take care of both the

overheads. This will be at the cost of managing both the overheads at the same time.

Chapter 6 deals with such techniques, delineating substantial performance improvements.

Design-time analysis strategies take application and platform specifications as input

and explore mappings with some design objectives (exploration objectives) as shown in

41

Chapter 2. Literature Survey

Figure 2.6. The explored mappings (operating points) provide guidelines for configuring

the application at run-time, which is shown as run-time guidelines. The same analysis

strategies can be applied to all the applications one after another, which might need to

be supported into the system at run-time, as shown in Figure 2.6. Existing analysis

strategies reported in Section 2.3.2.2 have several drawbacks:

• The analysis results are applicable only to the pre-analyzed fixed platform. There-

fore, analysis needs to be repeated with any changes in the platform. In [146],

exploration is performed for multiple platforms, so the applicability gets extended.

However, it is limited to the set of explored platforms.

• They do not provide optimal mappings from throughput point of view in some

cases. These strategies perform optimization for some performance metrics like en-

ergy, resource optimization etc. and in turn map the potentially parallel executing

tasks on the same PE, forcing their execution in sequence. This often reduces the

available parallelism, thereby reduced throughput.

• They evaluate large number of mappings for relatively larger platforms including

some duplicate mappings and thus do not scale well with the platform size. There-

fore, they are not suitable for advanced available commercial platforms containing

hundreds of PEs [23] [24] and for anticipated MPSoCs [9] containing thousands of

PEs. The duplicate mappings just differ in placement of tasks on different PEs

with the same tasks to PEs allocation and provide the same throughput.

• The analysis results might not include mappings satisfying the constraints in case

of limited resources. At run-time, this case forces the application to be put into

a relaxed application set and it is not mapped immediately, which may result in

missing the strict timing deadline.

42

Chapter 2. Literature Survey

App1 App2 AppN

Exploration

Engine

Architecture

Model

Exploration

Objectives

App1 Run-time guidelines

Operating

Point

Operating

Point

Operating

Point

AppN Run-time guidelines

Operating

Point

Operating

Point

Operating

Point

Figure 2.6: Design-time analysis of applications

To overcome the above mentioned problems, there is a need to investigate efficient

analysis strategies. Chapter 7 deals with faster and efficient analysis strategies, overcom-

ing the problems.

In existing approaches, design-time analysis of multiple applications at the same time

has been handled by scenario based approaches, where a scenario represents number of

active applications at run-time. These approaches are not scalable as the number of

scenarios increases exponentially with the number of applications. Therefore, simultane-

ously active applications can be mapped one after another to overcome the scalability

issues.

At run-time, the platform manager need to select the best mapping from the stored

analysis results based on the desired performance and available resources. Chapter 7 deals

with run-time mapping heuristic that perform efficient selection of the best mapping,

which is then used to configure the platform. In case a new application need to be

supported for which analysis results are not available, on-the-fly heuristics can be used.

43

Chapter 2. Literature Survey

2.4 Summary

An in-depth literature survey on various multiprocessor architectures has been presented.

These architectures can be homogeneous or heterogeneous. Heterogeneous architectures

provide better performance by exploiting the distinct features of the different type of PEs

present in the architecture. However, they are difficult to program as compared to their

homogeneous counterpart.

Different communication infrastructures to fulfill the communication needs of the

PEs present in the MPSoC are described. It has been shown that NoCs are the future

communication infrastructure as these have several advantages over others such as scal-

ability and efficiency. However, the NoC architecture imposes some new challenges. For

example, mapping techniques need to consider properties of the NoC as well.

A detailed review on available design-time and run-time mapping techniques are pre-

sented. Their advantages and disadvantages for different type of workload scenarios are

described. For dynamic workload scenarios, run-time techniques are proven to be more

prevalent and useful. Additionally, they offer several other advantages over design-time

techniques such as ability to enable unforeseeable upgrades, ability to avoid defective

parts of a SoC etc. The mapping techniques are extensively analyzed to identify their

strengths and weaknesses. Based on the analysis, avenues of research have been identified,

which will be explored later in the thesis.

44

Chapter 3

Mapping
Single-Task-per-Processing-Element

Most of the existing run-time mapping techniques for NoC-based heterogeneous MPSoCs

consider a single task on each processing element (PE), for example, the techniques in

[51], [27], [120], [26], [122] and [129]. The performance provided by the existing tech-

niques is still a concern mainly due to communication bottlenecks. The Nearest Neighbor

(NN) and Best Neighbor (BN) techniques proposed in [129] try to reduce communication

bottlenecks up to some extend for certain scenarios. However, they are not efficient for

the scenarios where applications with varying number of tasks are considered.

In this chapter, we propose and evaluate three run-time mapping techniques for effi-

cient mapping of applications onto NoC-based Heterogeneous MPSoCs. The techniques

attempt to map the tasks of an application in close proximity in order to minimize the

communication overhead. In addition, they have been shown to alleviate NoC congestion

bottlenecks to maximize overall performance. Based on our evaluations to map appli-

cations with varying number of tasks onto an 8×8 NoC-based MPSoC, we demonstrate

that the techniques are capable of reducing total execution time of the applications along

with the average channel load and average packet latency in the NoC when compared

to state-of-the-art run-time mapping techniques. A preliminary version of this work has

been published in [C-1].

45

Chapter 3. Mapping Single-Task-per-Processing-Element

The rest of the chapter is organized as follows. The conceptual MPSoC architecture

used in this work is described in Section 3.1. We present a strategy called packing for

efficient application mapping in Section 3.2. Efficient run-time mapping heuristics based

on the packing strategy are presented in Section 3.3. Experimental results and their

comparisons are discussed in Section 3.4. Section 3.5 summarizes the chapter.

3.1 NoC-based MPSoC Architecture

The MPSoC architecture used in this work contains a set of processing nodes which in-

teract via a communication network [64] composed of routers (R) as shown in Figure 3.1.

Each processing node can support either a software task or a hardware task. Software

tasks execute in instruction set processors (ISPs) and hardware tasks execute in reconfig-

urable logics (reconfigurable areas-RAs) or in dedicated IP-cores (IPs). Induction of RAs

in the platform facilitates flexibility to hardware at a similar level to the software (ISPs)

for its programmability. The communication network [64] has a 2-D mesh topology that

uses wormhole packet switching, handshake control flow, input buffers and deterministic

XY routing algorithm. In the XY routing, first the packet is transferred in X-direction

and then in Y-direction for transferring packets from one processing node to another

processing node. For inter-task communication, message passing protocol is used, which

is similar to one described in [129].

Among the available processing nodes, one of them is used as the Manager Processor

(M) that is responsible for task mapping, task scheduling, resource control and configu-

ration control. The configuration overhead results are used to simulate the configuration

control process [154]. In heterogeneous MPSoCs, task binding is required before task

mapping. For each task, the binding process defines platform resource types on which

the task can be supported. For example, defining ISPs for software tasks and RAs for

hardware tasks. Task scheduling uses a queue strategy and there are three queues, one

46

Chapter 3. Mapping Single-Task-per-Processing-Element

Task

Memory

Task

Mapping

Configurati-

on Control

Resource

Control

Task

Scheduling

Device

Configuration Port

Manager Processor (M)

RA: Reconfigurable Area

ISP: Instruction Set Processor

IP: Intellectual Property Core

R

ISP

RR

RRRR

RRRR

RRR

RR

ISPRAISPIP

ISPISPISPISP

ISPIPISPRA

RAISPIP

Figure 3.1: Conceptual MPSoC architecture

for each type (i.e. hardware, software and initial) of task. These task types are defined

in the next section. Initial task is the starting task of an application that is mapped first.

A task enters into its corresponding queue (hardware, software or initial) if there is no

free supported resource in the platform. The task waits in the queue until a resource of

the same type is not available in the platform.

The Manager Processor knows only the initial tasks for each application. Once,

the initial tasks are mapped and their execution is started, the communication requests

are sent to the communicating tasks at run-time and they are loaded into the MPSoC

platform from the task memory if they are not already present in the platform. For

resource control, the resources’ status is updated at run-time to provide the Manager

Processor with an accurate information about the resource occupancy as task mapping

decision needs to be taken based on the PEs and NoC usage.

3.2 The Mapping Strategy

In this section, we present an improved approach for mapping tasks of applications in

a systematic manner. First we introduce some definitions necessary for proper under-

47

Chapter 3. Mapping Single-Task-per-Processing-Element

standing of the approach. Then, we discuss the techniques to find the placement of initial

tasks of applications followed by the improved approach (packing strategy) for efficiently

mapping rest of the tasks.

3.2.1 Definitions

The definitions necessary to explain our mapping approach are as follows:

• Application task graph: It is represented as an acyclic directed graph TG = (T,

E), where T is set of all tasks of an application and E is the set of all edges in the

application. Figure 3.2 (a) describes an application having initial (INI), software

(SW) and hardware (HW) tasks along with the edges (E) connecting these tasks.

A connection (edge) between two tasks defines master-slave pair (communicating

task) as in Figure 3.2 (b), i.e., a connection contains master and salve tasks. Initial

task has no master. A task ti ∈ T is represented as (tid, ttype, texec), where tid

is the task identifier, ttype is the task type (hardware, software, initial) and texec

is the task execution time. E contains all the pair of communicating tasks and is

represented as (mtid, stid, (Vms, Rms, Vsm, Rsm)), where mtid represents the master

task identifier, stid represents the slave task identifier; Vms and Rms are the data

volumes and data rate respectively sent from master to slave (ms); Vsm and Rsm are

the data volumes and data rate respectively sent from slave to master (sm). The

message rates (Rms, Rsm) are described as percentage of available link bandwidth.

As mentioned earlier, deterministic XY routing algorithm is used to transmit and

receive the messages, and both rates are relevant in the model as the path taken

by messages may be different.

• MPSoC architecture: A NoC-based heterogeneous MPSoC architecture is repre-

sented as a directed graph AG = (P, V), where P is the set of tiles and V is the

48

Chapter 3. Mapping Single-Task-per-Processing-Element

Initial (INI) Task

(425,30,105,25)

SW Task

HW Task

(325,30,94,35)(45,30,10,25)

(110,35,105,10)

(540,30,100,25)

3.2.a: Application Modeling with INI, SW, HW tasks
and edges

Master

Slave

(Vms, Rms,Vsm,Rsm)

3.2.b: Master-Slave pair
representing master and
slave tasks

Figure 3.2: Application modeling and master-slave pair

set of physical channels between the tiles. A tile pi ∈ P contains a router (R), a

network interface, a processing element (PE), local memory and a cache. A router

is represented as R = (padd, ptype), where padd represents the unique PE address

used to receive packets and ptype represents the type of PE (hardware or software)

connected to the router. When tasks get mapped on a tile, the tile gets associated

with following additional attributes: tasks mapped on the tile represented as ptasks,

the number of tasks mapped on the tile represented as ptasksnum and the capacity

of tile showing the maximum number of tasks it can support represented as pcap.

If ptasksnum reaches to pcap then no further task can be mapped on the tile. In this

chapter, single task supported PEs are considered, so the task set ptasks can contain

maximum one task and maximum value of ptasksnum can be one as the value of pcap

is set to one. Each physical channel vi,j ∈ V keeps the channel width information

in bits and available bandwidth usage (% of available bandwidth) for transmission

of data.

• Mapping: The task mapping is represented by function mpg : ti ∈ T 7−→ pi ∈ P,

49

Chapter 3. Mapping Single-Task-per-Processing-Element

which maps a task of an application to a tile in the MPSoC platform. Task mapping

is activated when a mapped task need to communicate with a not yet mapped task

at run-time.

3.2.2 Placing Initial Tasks

Initial tasks are considered as software tasks and hence these are mapped onto software

processing elements. Initial tasks placement has significant impact on the performance

of run-time mapping techniques used to map rest of the tasks.

The initial tasks can be mapped in two different ways. In the first method, the

initial tasks can be mapped on the first free position found in the network that can

support the tasks. This may cause the initial tasks to be placed very close to each other.

Therefore, when rest of the tasks of different applications are requested to be mapped,

the applications need to share the same NoC region, resulting in longer waiting time

for a resource to become free for mapping the tasks. This also increases the channel

congestion as all the applications are tried to be mapped within a small region. In the

second method, virtual clusters are found by partitioning the NoC into regions as shown

in Figure 3.3. The clusters are evenly distributed over the NoC to facilitate for uniform

utilization of the PEs. The size of each cluster (in terms of number of PEs) is estimated

in proportion to the size of the application (in terms of number of tasks) to be mapped in

the cluster. One initial task is placed into each virtual cluster in order to map the initial

tasks in a distributed manner. This method reduces the interference between different

applications and facilitates in the mapping of remaining tasks for each application close

to each other, resulting in reduced communication overhead. The cluster boundaries are

virtual and hence a common region can be shared by tasks of different applications. This

work considers the second method, i.e., the clustering approach.

The Manager Processor (M) knows only the initial tasks. It does not know the whole

application graphs. When initial tasks start their execution, communication requests are

50

Chapter 3. Mapping Single-Task-per-Processing-Element

Hardware

Resources

Software

Resources

3

1

2

4

Manager

Processor

Initial Task

Placement
Application

packing

(mapping)

direction

Virtual

Cluster

M

M

Figure 3.3: Initial tasks placement for mapping (packing) applications

sent to the M to map the slave tasks at run-time. Efficient strategies are required to

map the requested slave tasks. Next, we present our packing strategy to accomplish the

job of mapping.

3.2.3 Packing Strategy for Minimizing Communication Costs

Our packing strategy attempts to map all the tasks of an application close to each

other within a particular region referred to as virtual clusters. The initial task (starting

task) of each application is mapped at top-right position within the virtual clusters in a

distributed manner using the clustering approach defined above, as shown in Figure 3.3.

The packing strategy attempts to map a requested task on the PEs which are around the

PE making the request. The PEs are searched in sequence of left, down, top and right

denoted as 1, 2, 3 and 4 respectively in Figure 3.3. This way, first, left and down side

PEs are searched to find the placement. Now, if neither left nor down side PE is able

51

Chapter 3. Mapping Single-Task-per-Processing-Element

to execute the task, only then task is tried to be mapped on the top or right side PE

according to the above defined sequence. The same strategy is repeated from lower to

higher hop distances until a free supported PE is found. Each application follows above

defined strategy to map the requested tasks on the MPSoC platform resources.

In case of multiple task nodes communicating with the initial task, the communicating

task nodes are requested to be mapped in the order of their assigned task identifier

number. For example, if initial task identifier is 0 and its two communicating tasks’

identifiers are 1 and 2, then first the task with identifier number 1 gets requested. By

requesting the communicating tasks from higher identifier number to lower identifier

number (i.e., first 2, then 1) might affect the performance slightly depending upon the

number of connected slave tasks to the requested tasks and communication overhead with

the slave tasks. In order to achieve maximum performance, the identifiers of tasks are

assigned at design-time to optimize performance, based on the communication overhead

and connections (edges) between the tasks.

The packing strategy tries to pack (map) each application within a particular vir-

tual cluster with initial task positions as specified above. The strategy tries to map the

communicating tasks of an application close to each other within a virtual cluster in a

compact manner in order to reduce the communication overhead between the communi-

cating tasks.

3.3 Run-time Mapping Heuristics

In this section, we present run-time mapping heuristics that are motivated by the pack-

ing strategy discussed in the previous section. The run-time mapping heuristics are

used to find the placement of new requested tasks. These heuristics are light-weight in

terms of execution cycles, channel load and packet latency as the heuristics reduce the

communication overhead on which all the performance metrics are highly dependent.

52

Chapter 3. Mapping Single-Task-per-Processing-Element

Algorithm 1: Packing-based Nearest Neighbor (PNN)

Input: TG(T,E), AG(P,V) // task ti ∈ T ; PE pi ∈ P
Output: mpg (mapping TG(T,E) → AG(P,V))

// NFR[type] : number of free resource(s) of type type in NoC
1: Map the initial task (INI ∈ T) at right-top position in a cluster (Figure 3.3);
2: for all unmapped task ti ∈ T that is requested do
3: if NFR[titype] != 0 then
4: for all hop distance = 1 to NoC limit do
5: PE list = get packing ordered list(hop distance);
6: for all PEs ∈ PE list do
7: if pi is free AND titype==pitype then
8: Map ti onto PE pi and exit to step 17;
9: end if
10: end for
11: end for
12: else
13: insert(ti to Queue(titype));
14: wait until NFR[titype] != 0;// updated at run-time
15: release(ti from Queue(titype));
16: Map ti onto the freed node pi;
17: insert(pi to mpg); update(resources by mpg);
18: wait and goto step 3 if new task ti ∈ T is requested;
19: end if
20: end for

3.3.1 Packing-based Nearest Neighbor

This algorithm is based on the packing strategy along with the search space of Nearest

Neighbor (NN) heuristic proposed in [129], where the search space goes from lower to

higher hop distances. The algorithm is presented in Algorithm 1. In order to map a new

requested task, the number of free supported resources in the platform is found. If any

supported resource is available (step 3) then mapping for the requested task is found as

follows. First, resources (PEs) at hop distance of one (step 4) are selected and evaluated

to map the task. If none of the PE can support the task then PEs at higher hop distances

are selected and evaluated until the mapping is found. The search space to select the

PEs goes up to the max hop distance (NoC limit). The selection at each hop distance

is done by function get packing ordered list(hop distance) (step 5), where PEs are

53

Chapter 3. Mapping Single-Task-per-Processing-Element

selected according to the packing strategy, i.e. in left, down, top and right order. As

soon as, a free supported PE is found, the task is mapped onto the PE, and selection and

evaluation process is stopped (step 8). If there is no free supported PE in the platform

for the requested task then the task is entered into its corresponding queue (step 13)

and waits until a supported PE becomes free (step 14) by finishing execution of some

previously mapped task. The queued task is mapped onto the freed supported PE as

and when the PE is available (step 16). After mapping the requested task, it is entered

onto the mapped list (mpg) and resources are updated to have their correct status for

next requested task. The same strategy is repeated for each requested task until all the

tasks of the application are mapped.

To map multiple applications onto the MPSoC platform, the above described al-

gorithm (PNN) is applied for each application. First, initial tasks of applications are

mapped in a distributed manner by the clustering approach as in Figure 3.3. Then, new

requested tasks from each application are mapped dynamically, by applying Algorithm

PNN. The PNN algorithm reduces the communication overhead by mapping the commu-

nicating tasks close to each other in a systematic manner. Therefore, providing improved

performance.

3.3.2 Packing-based Best Neighbor

This algorithm is a combination of path load computation approach and the PNN algo-

rithm. The algorithm is presented in Algorithm 2. For each mapping z, the path load

(step 9) is computed by Equation Eq. 3.1, where rch(i,j) and rch(j,i) are the rates in the

individual channels, from the master to the new requested slave and the rates in the

channels in opposite direction, respectively.

costz =
∑

rch(i,j) +
∑

rch(j,i) (Eq. 3.1)

54

Chapter 3. Mapping Single-Task-per-Processing-Element

Algorithm 2: Packing-based Best Neighbor (PBN)

Input: TG(T,E), AG(P,V) // task ti ∈ T ; PE pi ∈ P (PE)
Output: mpg (mapping TG(T,E) → AG(P,V))
1: Map the initial task (INI ∈ T) at right-top position in a cluster (Figure 3.3);
2: for all unmapped task ti ∈ T that is requested do
3: if NFR[titype] != 0 then
4: for all hop distance = 1 to NoC limit do
5: weight = MAX VALUE; // some large value
6: PE list = get packing ordered list(hop distance);
7: for all PEs ∈ PE list do
8: if pi is free AND titype==pitype then
9: weightTemp = calcChannelLoad(when ti mapped onto pi);
10: if weightTemp < weight then
11: weight = weightTemp;
12: Select node pi temporarily to map ti;
13: end if
14: end if
15: end for
16: if weight < MAX VALUE then
17: Map ti onto PE pi and exit to step 22;
18: end if
19: end for
20: else
21: Perform steps 13 to 16 from Algorithm PNN;
22: insert(pi to mpg); update(resources by mpg);
23: wait and goto step 3 if new task ti ∈ T is requested;
24: end if
25: end for

In algorithm PNN, after finding the PE list at each hop distance, the evaluation stops

when first free supported PE is found. However, in algorithm PBN, all the free supported

PEs are evaluated (selected temporarily- step 12) after finding the PE list and the PE

with minimum path load is chosen for final mapping in order to get the best neighbor

from the available neighbors. The evaluation process is stopped for higher hop distances

if a mapping is found.

As this heuristic includes path load computation, it is a congestion aware mapping

heuristic that tries to distribute the channel load in the NoC. Thus, in addition to map-

ping the tasks in close proximity to reduce the communication overhead, this heuristic

55

Chapter 3. Mapping Single-Task-per-Processing-Element

also tries to distribute load in the channels more uniformly, resulting in reduced average

channel load. Average packet latency also gets reduced as it depends on distance between

source and destination PE and congestion in the communication path which gets reduced

by considering congestion in channels during path load computation.

3.3.3 Packing-based Time-bounded Best Neighbor

The PBN heuristic mentioned earlier takes additional time for performing path load com-

putations over the PNN, resulting in increased overall execution time. The additional

time in PBN can get compensated with possible reduction in communication time that

might get minimized due to communication overhead reduction by distributing the chan-

nel loads more uniformly. This requires suitable scenarios to be evaluated. The path load

computation time can be reduced in all the scenarios if we allow the load computation

for some particular time instead of allowing it until the best PE is found.

The Packing-based Time-bounded Best Neighbor (PTBN) algorithm incorporates

time bounded evaluation of the neighbors and is presented in Algorithm 3. The time

bounded consideration discards evaluation of all the neighbors for their path load in or-

der to reduce the overall execution time. The time bound starts from the point where

PNN converges (step 11, Algorithm 3). The algorithm evaluates neighbors for a par-

ticular time (TIME BOUND) towards getting a better neighbor, which is then selected

for final mapping. Therefore, the algorithm tries to reduce overall execution time. For

a large value of time bound, this algorithm will behave like PBN and like PNN for a

very small value of the time bound. The algorithm is analyzed for varying values of time

bound and its behavior on different performance metrics has been discussed in Section

3.4.

56

Chapter 3. Mapping Single-Task-per-Processing-Element

Algorithm 3: Packing-based Time-bounded Best Neighbor (PTBN)

Input: TG(T,E), AG(P,V), TIME BOUND // task ti ∈ T ; PE pi ∈ P (PE)
Output: mpg (mapping TG(T,E) → AG(P,V))
1: Map the initial task (INI ∈ T) at right-top position in a cluster (Figure 3.3);
2: for all unmapped task ti ∈ T that is requested do
3: if NFR[titype] != 0 then
4: for all hop distance = 1 to NoC limit do
5: StartTime = 0; PEevaluated = 0; weight = MAX VALUE;
6: PE list = get packing ordered list(hop distance);
7: for all PEs ∈ PE list do
8: if pi is free AND titype==pitype then
9: PEevaluated++;
10: if PEevaluated == 1 then
11: StartTime = CurrentTime(); // time when PNN will converge
12: end if
13: weightTemp = calcChannelLoad(when ti mapped onto pi);
14: if weightTemp < weight then
15: weight = weightTemp;
16: Select node pi temporarily to map ti;
17: end if
18: if CurrentTime() - StartTime > TIME BOUND then
19: Go to step 23;
20: end if
21: end if
22: end for
23: if weight < MAX VALUE then
24: Map ti onto PE pi and exit to step 29;
25: end if
26: end for
27: else
28: Perform steps 13 to 16 from Algorithm PNN;
29: insert(pi to mpg); update(resources by mpg);
30: wait and goto step 3 if new task ti ∈ T is requested;
31: end if
32: end for

3.4 Performance Evaluation

Experiments are performed by co-simulation in ModelSim (System-C for applications

and RTL-VHDL for the NoC). Evaluated performance metrics are total execution time,

average channel load and average packet latency for applications.

57

Chapter 3. Mapping Single-Task-per-Processing-Element

The simulation platform used for our experiments is similar to that in [129]. The

processing elements (PEs) are modeled using System-C. Two different System-C threads

are used to model the PEs, one for the Manager Processor (M) and another for rest

of the PEs as Mthread and TASKthread, respectively. The Mthread is responsible for

the MPSoC resource management, task mapping, task scheduling and task configuration.

This thread contains channels occupation metrics, PEs occupation metrics and schedul-

ing queues to manage system use. The resource metrics are updated at run-time by

monitoring the resources status with the help of monitors attached to all the NoC ports.

The TASKthread is responsible for the task behavior implementation that is described

by a configuration file. This file contains execution time and communication rates, which

can be customized.

Each application is modeled as in Figure 3.2, with an initial task, hardware tasks

and software tasks. The values present on the edges represent the volume and rate of

data to be exchanged between the master and slave as explained in application task

graph definition of Section 3.2.1. Each task transmits from 200 to 500 packets (data

volumes (V) on the edges as in Figure 3.2) with size varying from 100 to 400 16-bit

flits. The packet processing time is fixed. Hardware and software tasks allocation time is

taken as 1300 and 100 clock cycles respectively [154]. Initial tasks are mapped onto the

processors, so the configuration time is the same as that of software tasks. The simulation

is performed at varying time bound to find the optimal point providing better results for

all the considered performance metrics.

The experiments are performed for different scenarios. In each scenario, 20 identical

tree like applications (parallel benchmarks have this profile) are taken with varying injec-

tion rate (% usage of available channel bandwidth). The applications are generated using

Task Graph For Free (TGFF) tool [92]. The results are shown for following simulation

scenarios:

58

Chapter 3. Mapping Single-Task-per-Processing-Element

(i) Each application having 4 tasks (1 initial, 2 software and 1 hardware task).

(ii) Each application having 7 tasks (1 initial, 4 software and 2 hardware tasks).

(iii) Each application having 10 tasks (1 initial, 6 software and 3 hardware tasks).

(iv) Each application having 20 tasks (1 initial, 13 software and 6 hardware tasks).

(v) Each application having 30 tasks (1 initial, 20 software and 9 hardware tasks).

The NoC is modeled in VHDL [64], in an 8×8 2D-mesh topology. NoC is responsible

for data transfer between the tasks mapped on different PEs. As handshake protocol is

used to transfer the data, each flit is transmitted in two clock cycles, thereby limiting the

available channel bandwidth to 50% of its capacity. In the NoC (Figure 3.3), one PE is

used as manager processor (M), 16 as hardware resources and 47 as software resources.

Figure 3.3 shows placement of initial tasks within the clusters for executing nine applica-

tions at a time. Each cluster corresponds to an independent application. As clusters are

virtual, an application can occupy resources of other clusters. The number of initial task

supported nodes determines the maximum number of simultaneously running applica-

tions and the number is changed according to the number of tasks in each application for

the considered scenario. For applications containing large number of tasks, the number

of initial task supported nodes are reduced so that the tasks queuing overhead in case

of no free supported resources can be kept almost the same for all the scenarios. This

consideration avoids extra queuing overhead for applications containing large number of

tasks and facilitates for lesser overall execution time.

Results obtained from our proposed heuristics PNN, PBN and PTBN are compared

with the state-of-the-art run-time mapping heuristics Path Load (PL), Nearest Neighbor

(NN) and Best Neighbor (BN) proposed in [129]. The PL, NN and BN also try to reduce

communication bottlenecks but do not perform well for all the scenarios.

59

Chapter 3. Mapping Single-Task-per-Processing-Element

3.4.1 Total Execution Time

The total execution time is the time taken to finish the execution of all the applications to

be mapped on the platform. It comprises of mapping time (time to find the placement in

the 8×8 2D-mesh), configuration time, communication time, waiting time (when no free

resource in the platform) and computation (processing) time, amongst which communi-

cation time dominates. The computation of a packet corresponding to a task mapped

on a PE starts just after it has been received and the computation is finished before

receiving the next packet for the same task. So, if the computation time is less than the

time interval between receiving two consecutive packets corresponding to the same task

on the PE, then the computation time will get absorbed within the communication time.

At this stage of our work, the computation time is taken small enough so that it does

not contribute much to the total execution time, i.e. communication overhead dominates

computation overhead.

Our proposed mapping heuristics map the communicating tasks in close proximity,

resulting in reduced communication overhead and generated traffic in channels (channel

congestion). The communication overhead and generated traffic are more when the

communicating tasks are mapped on distant apart PEs. The reduced communication

overhead facilitates for faster communication, i.e. reduced communication time and thus

the reduced total execution time.

Figure 3.4 shows average execution time for three simulation scenarios at varying

injection rates (% usage of available bandwidth) when heuristics PL, NN, PNN, PBN

and PTBN are employed. For each task, time bound for PTBN has been considered

as quotient of (the difference of the time taken by PBN and PNN heuristics in order

to find a mapping for the task)/2, which is like allowing for about half of the time to

PTBN as compared to PBN for exploring the best mapping. The following observations

can be made from the Figure 3.4. First, the execution time decreases with increase

60

Chapter 3. Mapping Single-Task-per-Processing-Element

0.2

0.25

0.3

0.35

0.4

0.45

0.5

5 10 15 20E
x

e
c
u

ti
o

n
 T

im
e

(x
1

,0
0

0
,0

0
0

 C
lo

ck
 C

y
cl

es
)

PL NN PNN

PBN PTBN

0.7

0.8

0.9

1

1.1

1.2

5 10 15 20E
x

e
c
u

ti
o

n
 T

im
e

(x
1

,0
0

0
,0

0
0

 C
lo

ck

C
y
cl

es
)

PL NN PNN

PBN PTBN

0.6

0.7

0.8

0.9

1

5 10 15 20E
x

e
c
u

ti
o

n
 T

im
e

(x
1

,0
0

0
,0

0
0

 C
lo

ck

C
y
cl

es
)

PL NN PNN

PBN PTBN

Communication Rate (% usage of available bandwidth)

(i) Applications having 4 tasks (ii) Applications having 7 tasks (iii) Applications having 10 tasks

Figure 3.4: Total execution time for PL, NN, PNN, PBN and PTBN heuristics for three
simulation scenarios

in communication rate as communication time is reduced by using more percentage of

available bandwidth that provides faster communication. Second, execution time by PNN

is reduced over the PL and NN. Third, execution time by PBN is more when compared

to PNN due to path load computation overheads. Fourth, PTBN shows execution time

close to that of the PNN as it performs time bounded path load computations. It has

been observed that the difference in execution time by PBN and PNN increases when

applications containing larger number of tasks are considered. This happens because

path load computation overhead in PBN increases with the number of tasks.

The complexities of the heuristics have been computed in terms of number of PEs

that can be identified to map a task. In order to map the task, the worst-case requires

identification of all the PEs of the NoC in order to map the task. Therefore, the com-

plexity has a linear relationship to the number of PEs. Our analysis in time complexity

shows that all the heuristics have time complexity of the same level and is of the order

of O(C), where C is the number of PEs in the NoC. All the heuristics execute almost in

similar time with minimal differences.

61

Chapter 3. Mapping Single-Task-per-Processing-Element

3.4.2 Average Channel Load

The average channel load represents the NoC use. It is calculated by looking the loads

in all the channels at a fixed clock cycle interval until all the applications finish their

execution. The load in the channels depends upon the traffic produced by the commu-

nicating tasks while communicating from different PEs. The traffic produced can be

reduced if the communication overhead between the tasks is lowered by mapping them

close to each other. Additionally, it has to be noted that the reduced traffic decreases

the communication overhead of other communicating tasks mapped on different PEs.

In our mapping heuristics, first heuristic (PNN) does not consider traffic during map-

ping, but explores the proximity of communicating tasks. In the second heuristic (PBN),

we consider the traffic during mapping, thus trying to distribute the channel load more

uniformly leading to reduced average channel load. However, the heuristic involves sig-

nificant traffic consideration overhead. The third heuristic (PTBN) reduces traffic con-

sideration overhead while trying to distribute the channel load. Our heuristics map tasks

for each application in a systematic manner within a particular cluster, thereby reducing

the chances of interference for the used channels by different applications. This reduces

the chance of having high load in channels. Thus, average channel load is significantly

reduced when proposed heuristics are employed.

Figure 3.5 plots average channel load for three simulation scenarios at varying injec-

tion rates (% usage of available bandwidth) when heuristics BN, PBN and PTBN are

employed. We have not shown channel load when PNN is employed as it always shows

worst channel load than PBN. A couple of observations can be made from the Figure

3.5. First, the average channel load increases with increased communication rate as more

traffic gets generated in the channels. Second, average channel load by PBN is less when

compared to BN and PTBN as it gets chance for exploring the best neighbor till it has

not been found. Third, PTBN shows the average channel load close to that of the PBN

62

Chapter 3. Mapping Single-Task-per-Processing-Element

7.5

8

8.5

9

9.5

n
el

 L
o

a
d

(%
 o

f
b

an
d

w
id

th
)

BN PBN PTBN

4.5

5

5.5

6

6.5

7

7.5

el
 L

o
a

d
(%

 o
f

b
an

d
w

id
th

)

BN PBN PTBN

2.5

3

3.5

4

4.5

n
el

 L
o

a
d

(%
 o

f
b

an
d

w
id

th
)

BN PBN PTBN

6

6.5

7

7.5

8

5 10 15 20

A
v
er

a
g

e
C

h
a

n
n

el
 L

o
a

d

2.5

3

3.5

4

4.5

5

5 10 15 20

A
v
er

a
g

e
C

h
a

n
n

el
 L

o
a

d

1

1.5

2

2.5

5 10 15 20

A
v
er

a
g

e
C

h
a

n
n

el
 L

o
a

d

Communication Rate (% usage of available bandwidth)

(i) Applications having 4 tasks (ii) Applications having 7 tasks (iii) Applications having 10 tasks

Figure 3.5: Average channel load for BN, PBN and PTBN heuristics for three simulation
scenarios

as it finds the same best neighbor as of the PBN for most of the tasks in the allowed

time bounds. In the first scenario (Scenario i), PBN and PTBN reduces the channel load

by 3.74% and 2.87%, by 15.8% and 13.55% in the second scenario (Scenario ii) and by

22% and 18.58% in the third scenario (Scenario iii) when compared to BN. It can be seen

that the improvement by PBN and PTBN does not differ much so it would be better to

employ PTBN for performing mapping as it reduces total execution time as well. The

channel load reduction trend shows that when number of tasks in each application is less,

our heuristic performs better because of better packing of the tasks.

3.4.3 Average Packet Latency

The average packet latency depends on 1) the distance between the source and desti-

nation PEs on which communicating tasks are mapped and 2) the congestion in the

communication path. It is measured as the average time each packet takes in traversing

from source to destination PE. As described earlier, the proposed mapping heuristics

map the communicating tasks close to each other and thereby reduce NoC congestion as

well. The congestion in the communication path is reduced more by PBN and PTBN as

63

Chapter 3. Mapping Single-Task-per-Processing-Element

BN PBN

5% 144 139

10% 233 224

15% 344 332

20% 438 423

227

338

428

Applications

having 10

tasks

Avereage Packet Latency (Clock Cycles)

Scenarios Rates PTBN

141

Table 3.1: Average Packet Latency Measured in Clock Cycles

they consider congestion in channels during mapping. Thus, PBN and PTBN provide

reduced average packet latency over BN.

Table 3.1 presents the latency results for a simulation scenario at varying injection

rates (% usage of available bandwidth) when different heuristics are employed. Network

congestion depends directly on the communication rate and thus the average packet

latency, as shown in Table 3.1. It can be seen that average packet latency for our heuristics

PBN and PTBN get reduced when compared to BN. Similar results are obtained for other

simulation scenarios.

3.4.4 Effect of Time Bound

The effect of different time bound values has been analyzed on execution time in order

to find a time bound value that should lead to better results for all the performance

metrics when heuristic PTBN is employed. It is evident that the heuristic will find a

better neighbor as we allow for more time bound to evaluate the neighbors. Average

channel load and packet latency decrease with the time bound as selecting the better

neighbors for mapping helps in homogeneous distribution of channel loads (congestions).

The reduced congestion helps in faster communication and thus in reducing the total

execution time. However, the allowed time bound gets added to the total execution time,

so we may not get optimized execution time at all the time bound values.

In order to perform the time bounded analysis of PTBN heuristic, first, mapping

time for each task is captured by employing PNN and PBN. The time bound provided

64

Chapter 3. Mapping Single-Task-per-Processing-Element

26.4

26.6

26.8

27

27.2
Applications having 30 tasks

18.3
Applications having 20 tasks0

0
 C
lo
ck

 C
y
cl
e
s)

26.4

9.1

9.2

Applications having 10 tasks

17.5

17.7

17.9

18.1

18.3
Applications having 20 tasks

c
u

ti
o
n

 T
im

e
 (
x1
,0
0
0
,0
0

 C
lo
c

8.8

8.9

9

9.1

9.2

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

Applications having 10 tasks

17.5

Time Bound (Micro Seconds)

E
x

e
c
u

ti
o

n

Time Bound (Micro Seconds)

16

k

Figure 3.6: Execution time at varying time bound values

to PTBN starts from the time taken by PNN to find a mapping. The difference in

mapping time by PBN and PNN provides the maximum value of time bound that should

be provided to PTBN in order to have its behavior like PBN. Providing a time bound

value of more than the difference value would not affect the performance further and the

algorithm will behave like the PBN.

Figure 3.6 shows total execution time for three simulation scenarios when heuristic

PTBN is employed at different values of time bound. The execution time shown is for

the injection rate of 10% (% usage of available bandwidth). Similar behavior is obtained

at other injection rates too. A couple of observations can be made from Figure 3.6.

First, scenarios containing large size applications (applications containing larger number

of tasks) show higher execution time at all the time bound values as more number of

tasks needs to be executed. Second, execution time for all the scenarios first falls for

some initial values of time bound and then starts increasing after reaching a minimum

and finally becomes constant after some value of time bound. The initial falling trend

is obtained due to more reduction in communication time than the allowed time bound,

65

Chapter 3. Mapping Single-Task-per-Processing-Element

contributing to the total execution time. Communication time gets reduced as better

neighbors are selected which provide lower congestion and thus faster communication.

The falling trend continues till the reduction in communication time is greater than the

allowed time bound. Thereafter, the increasing trend is obtained as allowed time bound

adds more to the total execution time than the reduction in the communication time.

After some values of time bound, execution time does not get affected as the heuristic

terminates after evaluating all the neighbors even before the allowed time bound. It can

be observed that for applications with larger number of tasks, the minimum execution

time and start of constant execution time region is obtained at higher values of time

bound. This is because the heuristic needs to evaluate larger number of neighbors to get

better neighbors for the tasks, which provide more reduction in communication time than

the allowed time bound. It can also be observed that the difference in maximum and

minimum execution time increases with the number of tasks in considered applications.

Therefore, all the performance metrics can be optimized simultaneously when employing

PTBN for a particular time bound.

3.5 Summary

In this chapter, we have proposed a packing strategy that aims to map communicating

tasks within a virtual cluster in order to reduce the communication overhead. Three

efficient run-time mapping heuristics based on the packing strategy have been presented.

The heuristics target NoC-based heterogeneous MPSoCs, where each PE is assumed to

support a single task. The PE can be either a software PE (Instruction Set Processor)

or a hardware PE (Reconfigurable Hardware).

The first heuristic tries to map the tasks of an application in close proximity, thereby

reducing the communication overhead of the communicating tasks. For each task to be

mapped, the heuristic chooses the first available supported PE that is found with respect

66

Chapter 3. Mapping Single-Task-per-Processing-Element

to its master task PE. While this approach is fast, it does not consider traffic during

mapping. The second heuristic evaluates all the free supported neighboring PEs and

selects the best neighboring PE for the mapping in order to reduce the traffic. As this

heuristic considers traffic in addition to the proximity of tasks, it results in more uniform

distribution of channel loads but at the cost of increased evaluation overhead. In particu-

lar, the evaluation overhead for determining the best neighbor increases with the number

of tasks in the applications to be mapped. The third heuristic overcomes the overhead

limitation by restricting the number of evaluations by setting an evaluation time bound.

Detailed analysis show that the evaluation time bound facilitates the identification of

better neighbors for each task such that all the performance metrics are optimized. This

has led to a marginal decrease in the overall execution time when compared to the second

heuristic.

The proposed heuristics have been evaluated using an 8×8 NoC-based MPSoC plat-

form for different application scenarios. We clearly demonstrate that the proposed heuris-

tics can consistently result in notable reduction in the communication overhead. In ad-

dition, we have investigated different scenarios and evaluated performance metrics of

interest such as total execution time, average channel load and average packet latency.

Experimental results show that reduction in the average channel load can be up to 22%

when compared to a state-of-the-art mapping heuristic. The total execution time and

average packet latency are also reduced. While the proposed techniques in this chapter

have led to significant gains, they are applicable for MPSoCs that support a single task

on each PE. In the next chapter, we will present mapping heuristics for MPSoCs with

multi-task supported PEs in order to demonstrate the applicability and efficiency of our

methods in more realistic scenarios.

67

Chapter 4

Mapping Multiple-Tasks-per-
Processing-Element

In the previous chapter (Chapter 3), we presented three run-time mapping techniques

for NoC-based heterogeneous MPSoCs. The techniques were shown to outperform state-

of-the-art techniques. However, each processing element (PE) of MPSoCs was able to

support only a single task. Supporting a single task on each PE is not a realistic scenario.

Further, we cannot exploit the possible advantages by the existing techniques when multi-

task supported PEs are considered. Therefore, the techniques need to be extended to

MPSoCs where more than one task can be mapped on each PE.

In this chapter, we extend the mapping techniques proposed in Chapter 3 to MPSoCs

containing multi-task supported PEs. The extended techniques take the advantage of

multi-task supported PEs by allowing the mapping of communicating (adjacent) tasks on

the same PE whenever possible, which results in reduced communication overhead. We

validate our extended techniques with different type of application sets and demonstrate

that the extended techniques show significant performance improvement when compared

to the existing techniques. Part of the work in this chapter has been published in [C-2],

[C-3] and [J-1].

The rest of the chapter is organized as follows. In Section 4.1, we introduce the ex-

tended MPSoC architecture containing multi-task supported PEs and analyze the multi-

68

Chapter 4. Mapping Multiple-Tasks-per-Processing-Element

task mapping on the MPSoC PEs. Section 4.2 introduces the packing strategy applied

to the extended architecture. The extended run-time mapping techniques based on the

packing strategy are presented in Section 4.3. We present our experimental results in

Section 4.4 and summarize the chapter in Section 4.5.

4.1 Target MPSoC Architecture

The MPSoC architecture used here is an extended version of that used in Chapter 3. In

Chapter 3, each processing element (PE) was capable of supporting only a single task. In

the extended version, the PEs are modeled to support more than one task. The maximum

number of tasks to be supported on the PEs depends upon the available memory space

and reconfigurable area for the software and hardware tasks respectively.

In an MPSoC where each processor supports a single task, there is no sharing of

the processor by multiple tasks. Thus, the task assigned to the stand-alone processor is

executed without interruptions as it is the sole master of all available processing capability

of the processor. However, in case of a multi-task supported processor, tasks assigned

to the processor compete with each other for acquiring the processor attention and end-

up preempting each other as a result of mutual competition. The assigned tasks can

manage their execution by switching among them after completing one operation of a

task, similar to the execution in OSs by serving the tasks in time multiplexed manner.

Tasks mapped on the same processor can communicate through some common register or

memory space if required. For supporting multiple tasks on hardware PEs, reconfigurable

areas (RAs) used as the hardware PEs can be considered large enough to support multiple

configurations for multiple tasks in parallel.

Incorporating multi-task supported PEs in the platform can lead to performance im-

provement. The main advantage of the PEs can be taken by mapping the communicating

69

Chapter 4. Mapping Multiple-Tasks-per-Processing-Element

tasks on the same PE that will result in reduced communication overhead. The commu-

nicating tasks mapped on the same PE can interact with each other very fast as they do

not require any network resources. The reduced communication overhead minimizes the

time and energy required in communication. Thus, the performance metrics depending

upon the communication overhead are optimized.

The work in this chapter too focuses on task mapping, task scheduling, resource control

and configuration control similar to Chapter 3.

4.2 Supporting Multiple-Tasks-per-Processing-Element

In this section, we describe the packing strategy for the extended MPSoC architecture.

The definitions of the application task graph, MPSoC architecture and mapping are the

same as described in Chapter 3. In this chapter, the PEs of the MPSoC are capable of

supporting multiple tasks, so the task set ptasks of a tile in the MPSoC can contain more

than one task and the maximum number of tasks on the tile can go up to its capacity

pcap. The capacity of a tile is determined by the available memory space or reconfigurable

area to configure the tasks on the tile.

4.2.1 Placing Initial Tasks

Before applying the packing strategy, the initial tasks (defined in application task graph

definition of Chapter 3) of the applications should already be mapped in the MPSoC

architecture. After the initial tasks are mapped, the remaining tasks of each application

are mapped by applying the packing strategy at run-time.

Similar to Chapter 3, here also, a clustering approach has been adopted to find the

placement of initial tasks. They are mapped as far away as possible while avoiding the

edges in a distributed manner, as shown in Figure 4.1. The distributed mapping of the

initial tasks reduces the interference between different applications and helps in mapping

70

Chapter 4. Mapping Multiple-Tasks-per-Processing-Element

Hardware

Resources

Software

Resources

3

2

1 4

Manager

Processor

Initial Task

Placement
Application

packing

(mapping)

direction

Virtual

ClusterM

M

Figure 4.1: Initial tasks placement for mapping applications

of the new communicating tasks for each application close to each other in order to reduce

communication overhead.

After the initial tasks are mapped and start their execution, communication requests

are sent to the manager processor (M) to map the slave tasks at run-time. The requested

tasks can be mapped by the packing strategy described subsequently.

4.2.2 Packing Strategy to Support Multiple-Tasks-per-Processing-
Element

To map a requested task, firstly, the task is tried to be mapped at the same node (master

task PE) making the request as the processing resources can support more than one

task. If the task is not supported by the node making the request then it is tried to

be mapped on the PEs around the node making the request at hop distance of one.

The PEs are searched in sequence of left, down, top and right denoted as 1, 2, 3 and 4

respectively in Figure 4.1 for one application in the most bottom-left cluster. The same

71

Chapter 4. Mapping Multiple-Tasks-per-Processing-Element

strategy is followed from lower to higher hop distances until a free supported PE is found.

Each application follows the similar strategy to map the requested tasks on the MPSoC

resources.

With this strategy, each application tries to map its requested task towards bottom-

left (either on down or left PE) side within the cluster, hence the PEs present on top-right

edge of the cluster may be used by tasks of other applications that are also trying to map

their tasks towards the bottom-left. In this manner if one application is getting mapped

then the applications that are tried to be mapped on top-side, right-side or top-right side

may get the free resources on the top and right edges of the first application’s cluster

and tasks of the other applications can be mapped on these resources. This strategy is

applied to all the applications to be mapped and most of the applications get the free

resources from other application’s top-right edge of the cluster. Thus, resource utilization

is increased. Additionally, as each platform resource can support more than one task,

communicating tasks get mapped on the same resource, resulting in further reduction in

communication overhead and making the mapping more compact.

4.3 Run-time Mapping Heuristics

This section describes the run-time mapping heuristics that are motivated by the packing

strategy extended for the multi-task per PE mapping. The heuristics are used to find

the best placement for new requested tasks.

4.3.1 Packing-based Nearest Neighbor

This algorithm is an extension of the algorithm PNN proposed in the previous chapter.

The extended algorithm assumes multi-task supported PEs in the MPSoC platform. In

order to map a requested task, the extended algorithm first selects and evaluates resource

(PE) at the requesting node position (at zero hop distance; step 4 of Algorithm PNN)

72

Chapter 4. Mapping Multiple-Tasks-per-Processing-Element

to map the task unlike evaluating the resources at one hop distance as in the previous

chapter. If the requesting node PE can’t support the task then PEs at higher hop

distances are selected and evaluated until the mapping is found. The search space to

select the PEs goes up to the NoC limit (max hop distance) and the selection at each

hop distance is done by function get packing ordered list(hop distance) as in PNN

described in the previous chapter. The selection and evaluation process is stopped as

soon as a free supported PE is found to map the task (step 8). The same strategy is

followed by each requested task of the application to be mapped. In order to map multiple

applications, the algorithm PNN is applied for each of the application after mapping the

initial tasks in a distributed manner by the clustering approach as in Figure 4.1.

4.3.2 Packing-based Best Neighbor

This algorithm is an extension of the PBN algorithm proposed in the previous chap-

ter. The extended algorithm facilitates mapping of multiple tasks on the same PE.

Therefore, the PEs are searched from the requesting node position to the NoC limit

(from hop distance = 0 to NoC limit; step 4 of PBN in the previous chapter). At

each hop distance, all the free supported PEs are evaluated for their imposed path load,

whereas the PNN stops evaluation as soon as a free supported PE is found. The path

load (PL) is computed from Equation Eq. 3.1 of Chapter 3 and the PE imposing min-

imum PL is chosen for final mapping. The free supported PE at zero hop distance has

zero path load as no channel is involved.

This heuristic reduces average channel load and packet latency when compared to

PNN as congestion in channels get reduced by considering the traffic in channels during

mapping. As mentioned in the previous chapter, total execution time may get increased as

compared to PNN due to additional time taken in path load computation for considering

the traffic.

73

Chapter 4. Mapping Multiple-Tasks-per-Processing-Element

4.3.3 Packing-based Time-bounded Best Neighbor

This algorithm incorporates time bounded path load computations for evaluating neigh-

boring PEs so that total execution time can be reduced along with the average channel

load and packet latency. The PTBN algorithm proposed in the previous chapter is ex-

tended to support multiple tasks on each PE. Time bounded computation tries to reduce

overall execution time and also tries to find a better neighbor in order to distribute the

channel loads more homogeneously. The algorithm behaves like PNN for a small value

of time bound and like PBN for large values of time bound.

4.4 Performance Evaluation

In this section, we present our results for the extended mapping techniques targeting

MPSoC platforms containing multi-task supported PEs. The evaluated performance

metrics are total execution time, average channel load and average packet latency.

The simulation platform used for experiments is an extended version of that used in

Chapter 3. The platform was first extended such that multiple tasks can be mapped onto

each hardware resource (PE) by incorporating large reconfigurable area (RA). Later, it

was extended to support multiple tasks by each processing node (e.g., ISPs & RAs).

However, it is known that larger memory space and reconfigurable area will be required

to support more number of software and hardware tasks respectively. The memory space

required at each node depends on both the number of tasks and size of the tasks to be

mapped. All the tasks mapped on a node need to be considered because while one task is

running others need to be stored (kept active) in memory. The tasks mapped on a node

get executed one after another in time multiplexed manner. For the experimentation, all

the tasks are considered of the same size so the memory space is governed by the number

of tasks (all same size). We have performed the experiments by varying the number of

tasks per node.

74

Chapter 4. Mapping Multiple-Tasks-per-Processing-Element

For tasks of different sizes, the mapping techniques need to check for available memory

space at a PE while trying to map a task on the PE. If required memory space is

available on the PE, the task gets mapped; otherwise the task is mapped on a different

PE satisfying the memory requirement. After mapping the task on PE, the remaining

capacity of the resource (PE) in terms of available memory space is updated to have

accurate information about the resource availability for the following task mappings.

The optimal number of tasks per PE will depend upon the imposed computation and

communication overhead on the PEs while supporting multiple tasks. The application

structure governs the computation and communication overhead and thus the number of

optimal tasks per PE. For finding optimal number of tasks per PE, the strategy can be

executed repeatedly by considering different number of tasks per PE. Thereafter, based

on the execution providing maximum performance, the optimal number of tasks per PEs

can be found.

Each application is modeled as in the previous chapter (Figure 3.2 of Chapter 3),

with an initial task, hardware tasks and software tasks. Each task transmits from 200 to

500 packets (data volumes) on the edges. After receiving a packet corresponding to some

particular task on a PE, the packet is processed for some definite time before starting

the processing of next packet corresponding to the same task on the PE. If two tasks are

mapped on the receiver PE, then processing time of packets corresponding to each task

get doubled as the packets are processed in time multiplexed manner. The processing

time gets tripled for packets when processed on a PE containing three tasks and so on.

The packet processing time on a PE containing a single task is fixed. The allowed time

bound to evaluate the neighbors is varied to analyze the behavior of PTBN heuristic on

different performance metrics.

A lot of scenarios have been evaluated to validate our extended mapping techniques.

Here, we present results for the following two scenarios:

75

Chapter 4. Mapping Multiple-Tasks-per-Processing-Element

Initial (INI)

Task

SW Task

HW Task

4.2.a: An application for scenario i.

Initial (INI)

Task

SW Task

HW Task

4.2.b: An application for scenario ii.

Figure 4.2: Applications for the two simulated scenarios

(i) Applications having hardware communicating tasks at leaf (Figure 4.2.a).

(ii) Applications having hardware communicating tasks in between initial and leaf tasks

(Figure 4.2.b).

In each scenario, 20 identical applications, each one with 10 tasks (Figure 4.2) are

considered. The injection (communication) rate is varied from 5 to 20% of available

bandwidth.

An 8×8 NoC-based MPSoC has been considered. In the MPSoC architecture, one

node is used as manager processor (M), 44 nodes as software (SW) resources and 19

nodes as reconfigurable areas. The node used for the manager processor is considered to

support a single task as it has additional overhead for managing the whole system.

The number of simultaneously running applications (initial tasks) is varied according

to the processing capability of the platform that gets increased when number of tasks

to be supported at each PE is increased. This variation is required to utilize all the

platform resources, otherwise some resources might be just idle and doing nothing. The

best results are obtained with 10, 18 and 20 simultaneously running applications (initial

tasks) when each platform PE supports 2, 4 and 8 tasks (except for PE used as manager

processor) respectively.

76

Chapter 4. Mapping Multiple-Tasks-per-Processing-Element

Results obtained from our proposed heuristics PNN, PBN and PTBN are compared

with the latest approaches Nearest Neighbor (NN) and Best Neighbor (BN) presented in

[129]. NN and BN are extended so that multiple tasks can be mapped on the PEs in order

to make a fair comparison with our extended heuristics. The NN and BN are executed for

the platform where each PE is considered to support a single task and for the extended

platform to observe the improvement by incorporating multi-task supported PEs. While

executing for the platform supporting Single Task on each PE (ST/PE), NN and BN

are referred to as NN(ST/PE) and BN(ST/PE), respectively. As mentioned earlier, the

platform was first extended to support Multiple Tasks on each RA (MT/RA). In this case,

NN and BN are referred to as NN(MT/RA) and BN(MT/RA), respectively. Finally, the

platform was extended to support Multiple Tasks on each PE (MT/PE), and heuristics

NN and BN are referred to as NN(MT/PE) and BN(MT/PE), respectively.

4.4.1 Total Execution Time

The total execution time is the time taken to finish the execution of all the applications,

which is computed in the similar manner as in Chapter 3. Similar to Chapter 3, here also,

computation overhead is negligible as compared to the communication overhead. There-

fore, communication time dominates the total execution time. Our mapping heuristics

take advantage of the multi-task supported PEs by mapping the communicating tasks on

the same PE in order to reduce communication overhead and thus the communication

time.

Figure 4.3 shows total execution time for the two simulated scenarios at different

communication rate (% usage of available bandwidth) when different heuristics are em-

ployed. The shown results are for maximum two tasks per node. For each task, time

bound for PTBN has been considered as (the difference of the time taken by PBN and

PNN heuristics in order to find a mapping for the task)/2, to allow for a reasonable time

77

Chapter 4. Mapping Multiple-Tasks-per-Processing-Element

10

11

12

o
n

 T
im

e

k
 c
y
cl
e
s)

NN(ST/PE) NN(MT/RA) NN(MT/PE) PNN(MT/PE) PBN(MT/PE) PTBN(MT/PE)

6

7

8

9

10

11

5% 10% 15% 20% 5% 10% 15% 20%

T
o
t
a
l
E
x
e
c
u
t
io
n

 T
im

e

(x
1
0
0
,0
0
0

 c
lo
ck

 c
y
cl
e
s)

5% 10% 15% 20% 5% 10% 15% 20%

Scenario1 Scenario2

Communication Rate (% usage of available bandwidth)

55e o

5% 10% 15% 20% 5% 10% 15% 20%

Figure 4.3: Total execution time for two simulated scenarios at different communication
rates

for exploring the best mapping. It can be observed from the figure that the execution

time is significantly reduced when heuristic NN is employed for the extended platforms.

Our heuristics show further reduction. PNN and PTBN show almost the same and mini-

mum execution time. PBN has higher execution time over PNN and PTBN as it explores

for the best mapping for a longer time. All the heuristics have similar execution time for

the extended final platform due to their similar time complexity that is of O(C), where

C is the number of PEs in the NoC.

4.4.2 Average Channel Load

The average channel load is calculated in the same manner as in Chapter 3. Figure 4.4

shows average channel load for the two simulated scenarios at different communication

rate (% usage of available bandwidth) when different heuristics are employed to support

maximum two tasks on each node. The channel load is not shown for NN and PNN

heuristics as they will always provide worst values than the congestion aware heuristics

shown in the figure. When extended heuristics are employed, adjacent tasks get mapped

on the same node, resulting in reduced communication overhead. Thus, channel load is

reduced as it depends directly on communication overhead.

78

Chapter 4. Mapping Multiple-Tasks-per-Processing-Element

5

6

7

8

9
BN(ST/PE) BN(MT/RA) BN(MT/PE) PBN(MT/PE) PTBN(MT/PE)

e
 C
h
a
n
n
e
l
Lo
a
d

o
f
b
a
n
d
w
id
th
)

2

3

4

5

5% 10% 15% 20% 5% 10% 15% 20%

Scenario1 Scenario2

A
v
e
ra
g
e

cc
c(
%
o

5% 10% 15% 20% 5% 10% 15% 20%

Scenario1 Scenario2

Communication Rate (% usage of available bandwidth)

Figure 4.4: Average channel load for two simulated scenarios at different communication
rates

A couple of observations can be made from Figure 4.4. First, average channel load

is greatly reduced when heuristic BN is employed for the extended platforms allowing

mapping of the adjacent (communicating) tasks on the same PE. Second, average channel

load by our proposed heuristics PBN and PTBN is reduced when compared to BN.

Third, PBN shows minimum average channel load as the heuristic distributes loads in

the channels more uniformly after finding the best neighbor for each task, whereas PTBN

tries to find a better neighbor within the allowed time bound.

4.4.3 Average Packet Latency

Average packet latency is the average time taken by each packet when traversing from

source to destination PE. The time taken depends upon distance between the source and

destination PE and congestion in the network. The incorporation of multi-task supported

PEs facilitates mapping of the communicating tasks on the same PE, reducing the traffic

produced. Therefore, average packet latency for other tasks communicating from different

PEs gets reduced. The latency for the packets of the communicating tasks mapped on

the same PE is reduced significantly as the packets can be easily exchanged on the PE

without needing any channel but we have not considered latency for these packets while

79

Chapter 4. Mapping Multiple-Tasks-per-Processing-Element

Average Packet Latency (Clock Cycles)

BN

(ST/PE)

BN

(MT/RA)

BN

(MT/PE)

PBN

(MT/PE)

PTBN

(MT/PE)

5% 134 130 125 124 124

10% 237 231 221 216 218

15% 331 329 327 323 324

20% 436 432 427 421 421

Scenario1

Rates

Table 4.1: Average packet latency at different communication rates

calculating the average packet latency. In addition to mapping the tasks on the same

PE, our heuristics map the tasks of an application close to each other and thus try to

reduce the distance between the source and destination PE, resulting in reduced average

packet latency. Table 4.1 shows average packet latency for the first simulated scenario at

varying communication rate (% usage of available bandwidth) when different heuristics

are employed. It can be seen that PBN and PTBN provide almost the same average

packet latency.

4.4.4 Effect of Time Bound

Heuristic PTBN has been analyzed for different performance metrics at varying allowed

time bounds. The heuristic finds a better neighbor for each task as the allowed time bound

increases. Selecting a better neighbor for mapping each task will help to distribute the

loads in the channels (congestions) more homogeneously. Therefore, average channel load

and packet latency decrease with the time bound. The allowed time bound gets added to

the total execution time and thus nullifying the advantage of reduced congestion providing

faster communication. The total execution time behavior at different time bound values

has been analyzed in order to find trade-offs between the execution time and time bound.

For finding a mapping for each task, the provided time bound to PTBN varies from

zero to the difference in mapping time by PBN and PNN. At lower values of time bound,

PTBN behaves like PNN and like PBN at higher values of time bound. Providing a time

80

Chapter 4. Mapping Multiple-Tasks-per-Processing-Element

bound of more than the difference value does not affect the performance as the algorithm

gets terminated after evaluating all the neighbors.

Figure 4.5 shows total execution time for first simulated scenario when heuristic PTBN

is employed at different values of time bound for three different considered platforms

where each PE supports 2, 4 and 8 tasks. The results shown are for an injection rate of

15% (% usage of available bandwidth). Similar behavior is obtained at other injection

rates for all the scenarios. A couple of observations can be made from Figure 4.5. First,

total execution time decreases as platforms supporting larger number of tasks on each

PE are considered. This is because of reduction in communication overhead by allowing

mapping of larger number of communicating tasks on the same PE. Second, execution

time for all the platforms first falls with the time bound and then starts increasing after

reaching a minimum and finally becomes constant. The falling trend shows that reduc-

tion in communication time due to better neighbor selection is more than the allowed

time bound. The increasing trend shows that the allowed time bound adds more to the

total execution time than the reduction in the communication time. The constant region

is obtained due to termination of the heuristic even before the allowed time bound just

after evaluating all the neighbors. It can also be observed that as the platforms sup-

porting larger number of tasks on each PE are considered, the falling trend, minimum

and constant region are obtained earlier. This shows that the dependency on the best

neighbor decreases with the platforms supporting larger number of tasks on each PE.

It has also been seen that the difference in the maximum and minimum execution time

decreases as platforms supporting larger number of tasks per PE are considered.

4.5 Summary

In this chapter, we have proposed mapping techniques for the run-time mapping of ap-

plications onto NoC-based heterogeneous MPSoC platforms containing multi-task sup-

81

Chapter 4. Mapping Multiple-Tasks-per-Processing-Element

6.65

6.67

6.69

6.71
Platform containing 2tasks/PE

ck
 C
y
cl
e
s)

6.63

6.65

6.67

3.32

3.33

3.34

3.35

3.36
Platform containing 4tasks/PE

2.01
Platform containing 8tasks/PEti

o
n

 T
im

e
 (
x1
,0
0
0
,0
0

 C
lo
ck

 C
y
cl
e

3.32

1.93

1.95

1.97

1.99

2.01

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

Platform containing 8tasks/PE

Time Bound (Micro Seconds)

E
x

e
c
u

ti
o

n
 T

im

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

Time Bound (Micro Seconds)

Figure 4.5: Execution time at varying time bound values

ported PEs. The techniques take advantage of multi-task supported PEs by mapping

communicating tasks on the same PE whenever possible in order to reduce the com-

munication overhead. This is possible as communicating tasks that are mapped on the

same PE do not require any network resource for their communication, hence resulting

in significant reduction in communication time. For each application, the first technique

maps the tasks on the same PE or in close proximity and the second technique considers

traffic in addition to the proximity of tasks. The traffic is reduced by considering the

best neighbor from the available neighbors to map the tasks. However, the overhead in

finding the best neighbor has significant impact on the total execution time. The third

technique reduces the overhead by providing a time bound to evaluate the neighbors

so that all the performance metrics are optimized simultaneously. When compared to

MPSoC with single task supported PEs, the technique requires a lower evaluation time

bound for obtaining optimal execution time and average channel load. This is possible

as the evaluation needs to be performed only for tasks that are not mapped with their

communicating task on the same PE. In addition, the difference in total execution time

82

Chapter 4. Mapping Multiple-Tasks-per-Processing-Element

by the time bounded and non-time bounded approaches have decreased notably. Com-

parisons with existing techniques show that total execution time, average channel load

and average packet latency have been reduced. In addition, we have shown that state-of-

the-art run-time mapping techniques extended for multi-task supported PEs also achieve

performance improvement.

Mapping techniques reported in the literature and those proposed here do not con-

sider communication between tasks during mapping. They can map many of the non-

communicating requested tasks on the same PE if they cannot be supported on their

master task PEs due to resource availability issues. The requested non-communicating

tasks can be mapped on separate PEs by considering communication between the tasks

so that remaining requested tasks can be mapped with their master (communicating)

tasks. Thus, communication overhead can be further reduced. In the next chapter, we

present communication-aware mapping techniques that consider communication between

tasks during mapping in order to further improve the performance metrics governed by

the communication overhead.

83

Chapter 5

Communication-aware Mapping

In this chapter, communication-aware mapping techniques for the multi-task supported

PEs are proposed and evaluated. Mapping techniques reported in the literature and those

proposed in the previous chapters do not consider communication between tasks during

mapping at run-time and thus are not capable of exploiting the PEs efficiently. Instead,

they map many non-communicating tasks on the same PE and in turn the communicating

tasks get mapped on separate PEs due to resource availability issues on the PEs. Several

design-time mapping techniques that perform mapping in communication-aware manner

are reported in literature [103] [155], but they can not handle dynamism incurred at

run-time such as addition of a new application in the system.

The proposed communication-aware run-time mapping techniques for efficient map-

ping of applications onto MPSoCs have been shown to overcome the drawbacks of existing

techniques. The proposed techniques examine the available resources prior to recom-

mending the adjacent communicating tasks on to the same PE. In addition, they give

priority to the tasks of an application to be mapped in close proximity so as to further

minimize the communication overhead. Our investigations show that the proposed tech-

niques consistently lead to reduction in the average channel load, total execution time,

average packet latency and energy consumption. In particular, we show that energy sav-

ings can be up to 46% and average channel load is improved by 10% for some cases. The

84

Chapter 5. Communication-aware Mapping

work discussed in this chapter has been published in [C-4] and [J-1].

The rest of the chapter is organized as follows. In Section 5.1, we provide an overview

of the proposed communication-aware strategy and discuss their advantages over the

existing approaches when applied to MPSoCs containing multi-task supported PEs. Ef-

ficient run-time mapping techniques based on the communication-aware strategy are

presented in Section 5.2. In Section 5.3, performance of the techniques is evaluated and

compared with existing techniques. We summarize the chapter in Section 5.4.

5.1 Communication-aware Strategy

In this section, we introduce our communication-aware strategy that take maximum

advantage of the multi-task supported PEs by carefully mapping the communicating

tasks on the same PE as far as possible. This result in reduced communication overhead

and the tasks on the same PE can communicate faster as they do not need any network

resource. The definitions of application task graph, MPSoC architecture and mapping are

the same as described in Chapter 3.

Existing strategies do not map the communicating tasks in a highly communication-

aware manner and thus are not able to efficiently utilize the multi-task supported PEs of

MPSoCs. Figure 5.1 shows one possible mapping of an application on part of the MPSoC

architecture by applying Nearest Neighbor (NN) run-time mapping strategy proposed in

[129]. For the mapping example shown in Figure 5.1, each PE is assumed to support a

maximum of three tasks. However, in practice, the PEs can support larger number of

tasks and the results for varying number of tasks on each PE are presented in Section

5.3. For mapping the application task graph, first, the initial task (0) is mapped and

other tasks are mapped at run-time when a communication to them is required. When

the initial task starts its execution, it requests its communicating slave tasks (1 & 2) and

their mapping is found on the nearest possible neighbor PE. As each PE is assumed to

85

Chapter 5. Communication-aware Mapping

3,4,5
0

1 2

3 4 6

Initial Task (INI)

7 8 9

5

10

7,8,10

6,90,1,2

Figure 5.1: Mapping of an application by state-of-the-art mapping heuristic

support three tasks, the requested tasks (1 & 2) can be mapped onto the same position

as task 0 (hop distance = 0). After mapping tasks 1 and 2, they start their execution

and their slave tasks (tasks 3 & 4 for task 1; tasks 5 & 6 for task 2) are requested and

their mapping is found by the NN mapping strategy. The possible mapping for tasks 3,

4, 5 and 6 is shown. Now, when these tasks (3, 4, 5 & 6) start executing, their slave

tasks (7, 8 & 9) are requested and their mapping is found. In the same manner, task

10 gets requested and mapped when task 7 starts its execution. A possible mapping for

all the requested tasks of the application by NN strategy is shown in Figure 5.1. The

communication between the communicating tasks start when they are mapped.

Communicating task pairs (0, 1), (0, 2), (6, 9) and (7, 10) as highlighted in Figure 5.1

get mapped onto the same PE. Thus, communication overhead gets reduced. However,

the remaining communicating pairs need to communicate from different PEs, thus a

lot of communication overhead still remains. Other existing approaches show similar

behavior. The overhead can be further reduced if more communicating pairs can be

mapped onto the same PE. Next, we provide an overview of our proposed communication-

aware strategy that make it possible to reduce the communication overhead by a large

amount.

86

Chapter 5. Communication-aware Mapping

In our proposed communication-aware strategy, the requested tasks are mapped by

looking at the previously mapped tasks on the PEs. The placement for a requested task

is searched in increasing hop distances (hop distance = 0 to max hop distances) that

results in mapping of all the tasks of an application close to each other. After finding the

placement (PE) for the requested task, previously mapped tasks at the PE are found.

If found PE does not have any previously mapped task then the PE is evaluated for

mapping. Otherwise, the previously mapped task(s) are checked to have communication

with the requested task. The requested task is mapped at the same position (PE) if

they communicate; otherwise it is mapped onto the next possible position even if it is

supported by the current PE. The same process is adapted for each requested task. This

strategy forces mapping of the communicating tasks onto the same PE if they can be

supported and avoids mapping of the non-communicating tasks onto the same PE. This

process may cause some leaf tasks to occupy the whole PE without sharing it with other

tasks if they are not mapped on the same PE as their masters. The leaf tasks don’t have

any slave that can be requested. However, in dynamic scenarios it may not be able to

predict future tasks, so some leaf tasks can occupy the whole PE.

One possible mapping for the same application onto the part of the MPSoC is depicted

in Figure 5.2. After mapping initial task (task 0), communicating tasks 1 and 2 are

requested. Tasks 1 and 2 communicate with task 0 and are thus mapped on the same

PE allowing for maximum three tasks. Now, tasks 1 and 2 request their communicating

tasks 3&4 and 5&6 respectively. Task 3 is mapped on a neighboring PE to its master

(task 1) as it cannot be mapped on the same PE that is fully occupied. Task 4 is also

mapped onto a neighboring PE to its master (task 1). Unlike the NN strategy that maps

task 4 with task 3, here, task 4 is mapped on a new PE as it does not communicate

with task 3. The new PEs are chosen for mapping so that other communicating tasks

can be mapped with their master tasks. Similarly, tasks 5 and 6 are mapped on a new

87

Chapter 5. Communication-aware Mapping

3,7,10
0

1 2

3 4 6

Initial Task (INI)

7 8 9

5

10

5,8

40,1,26,9

Figure 5.2: Mapping of application by communication-aware strategy

PE closed to their master tasks as shown in Figure 5.2. Now, when tasks 3, 4, 5 and 6

start executing, their slave tasks (7, 8 & 9) are requested to be mapped on the PEs. The

tasks are tried to be mapped with their master (communicating) tasks in order to reduce

the communication overhead. Tasks 7, 8 and 9 are mapped with their master tasks 3, 5,

and 6 respectively. In the similar manner, task 10 gets requested when task 7 starts its

execution. Task 10 is mapped with its master (communicating) task 7.

This strategy forces the mapping of most of the communicating pairs onto the same

PE. The communicating task pairs (0, 1), (0, 2), (3, 7), (5, 8), (6, 9) and (7, 10) as

highlighted in Figure 5.2 are mapped onto the same PE, resulting in reduced communi-

cation overhead. The leaf task 4 occupying the whole PE can be mapped on the PEs

already containing some tasks in order to increase the resource utilization, but the com-

munication overhead might get increased if the task gets mapped far from its master

(communicating) task. So, we leave mapping of such leaf tasks as it is. The communi-

cation overhead is greatly reduced by mapping maximum communicating pairs onto the

same PE.

A static mapping approach can provide better solution than dynamic mapping ap-

proaches provided the applications’ structure and workload of their tasks is known at

88

Chapter 5. Communication-aware Mapping

design-time. The static approach is performed at design-time with well known com-

putation and communication behavior of tasks and resources status, enabling to explore

better mapping decisions. However, the dynamic approaches are adequate for the scenar-

ios where the applications’ structure, their workload and resources status is available only

at run-time. So, if applications are known at design-time, the static approach provides a

better solution and thus an ideal mapping solution.

By knowing all the tasks at design-time, most of the communicating pairs can be

mapped onto the same PE to reduce the communication overhead. In order to find an

ideal mapping (containing maximum communicating pairs on the same PE), the whole

application graph is partitioned into groups of connected tasks to 1) minimize the number

of groups, and 2) maximize the number of tasks in each group that is limited by memory

space available on the PE. The tasks of each group are then mapped on separate PEs.

The ideal mapping provides optimal mapping in terms of number of communicating pairs

to be mapped onto the same PE. The ideal mapping of an application onto the part of

MPSoC is depicted in Figure 5.3. The communicating task pairs (0, 1), (1, 4), (2, 5), (5,

8), (3, 7), (7, 10) and (6,9) are mapped onto the same PE, providing a better solution

than the dynamic mapping strategies where maximum number of communicating pairs

are tried to be mapped on the same PE at run-time. Although, the ideal static mapping

decisions provide better solution; these cannot be applied to dynamic scenarios where

workload of tasks is unknown at design-time.

5.2 Run-time Mapping Heuristics

This section details mapping heuristics developed with the communication-aware map-

ping strategy introduced in the previous section.

Applications’ mapping is started by first mapping the initial tasks in a distributed

manner by dividing the NoC into clusters in the similar manner as described in Figure

89

Chapter 5. Communication-aware Mapping

2,5,8
0

1 2

3 4 6

Initial Task (INI)

7 8 9

5

10

3,7,100,1,46,9

Figure 5.3: Ideal mapping of application with static mapping decision

4.1 of Chapter 4. When the initial tasks start their execution, communicating tasks are

requested and their mapping is found.

To find the placement for a requested task, first it is checked to see if there is any free

resource in the platform, having the same type (hardware, software or initial) as of the

requested task. If yes, then placement would be found by scanning the whole network

in increasing hop distances starting from the requesting node (hop distance = 0) to the

max hop distance (NoC limit). The NoC limit is the maximum hop distance up to which

the network can be scanned to find the mapping. The maximum hop distance is the

Manhattan distance from starting point of the scan to the farthest boundary corner of

the NoC. If there is no supported (same type) free resource in the platform then the task

is entered into its corresponding queue and waits until a supported resource becomes free.

The queued task is mapped on the freed supported resource and the control is transferred

to find the placement for another unmapped requested task after updating the resources’

status. The same strategy is applied to all the tasks whenever they get requested. The

requested tasks can be mapped by the following developed mapping heuristics.

90

Chapter 5. Communication-aware Mapping

5.2.1 Communication-aware Packing-based Nearest Neighbor

This algorithm is explained through Algorithm 4. At each hop distance, PEs list is found

by function get packing ordered list(hop distance) (step 5), where PEs are selected in

left, down, top and right order as in the PNN heuristic proposed in the previous chapter.

Now, the PEs are evaluated in their selection order, to find the most suitable PE for

the requested task. If the selected PE can support the task (step 7) then previously

mapped tasks onto the PE are found (step 8). If there is no previous mapped task (i.e.

first task onto the PE) (step 13) then the requested task is mapped onto the PE (step

14); otherwise previously mapped tasks are checked to have communication with the

requested task (step 10). If they are communicating, then only the task is mapped onto

the PE (step 11); otherwise next possibility is evaluated so that the PE can accommodate

another task having communication with the already (previously) mapped one. After

finding the mapping, the selection and evaluation process is stopped (step 11 and 14)

even if there might be another supported PE at the same hop distance. Resources are

updated after mapping in order to have accurate information about their occupancy for

other requested tasks. This heuristic maps tasks of each application almost similarly as

in Figure 5.2.

By choosing left and down side PEs first, the PEs of top and right edge of the cluster

(Figure 4.1 of Chapter 4) are intentionally made free so that these can be used by tasks of

other applications running on top and right side. This way all the applications’ tasks are

mapped in bottom-left fashion utilizing the PEs on the top and right edge of the cluster

from other applications. Thus, resource utilization increases that results in improved

performance.

5.2.2 Communication-aware Packing-based Best Neighbor

This algorithm is a combination of path load computation approach and the CPNN

algorithm and is presented through Algorithm 5. Path load computation approach is

91

Chapter 5. Communication-aware Mapping

Algorithm 4: Communication-aware Packing-based Nearest Neighbor (CPNN)

Input: TG(T,E), AG(P,V) // task ti ∈ T ; PE pi ∈ P (PE)
Output: mpg (mapping TG(T,E) → AG(P,V))

// NFR[type] : number of free resource(s) of type type in NoC
1: Map the initial task (INI ∈ T) at the centre of the cluster;
2: for all unmapped task ti ∈ T that is requested do
3: if NFR[titype] != 0 then
4: for all hop distance = 0 to max hop distance do
5: PE list = get packing ordered list(hop distance);
6: for all PEs ∈ PE list do
7: if titype==pitype AND resource available at pi then
8: Find previously mapped tasks on pi;
9: if previous tasks != NULL then
10: if comm[ti][any previous task] then
11: Map ti onto PE pi and exit to step 24;
12: end if
13: else
14: Map ti onto PE pi and exit to step 24;
15: end if
16: end if
17: end for
18: end for
19: else
20: insert(ti to Queue(titype));
21: wait until NFR[titype] != 0;// updated at run-time
22: release(ti from Queue(titype));
23: Map ti onto the freed resource at node pi;
24: insert(pi to mpg); update(resources by mpg);
25: wait and goto step 3 if new task ti ∈ T is requested;
26: end if
27: end for

incorporated by calculating the path load (step 15) for each PE (from Equation Eq. 3.1

of Chapter 3). In CPNN algorithm, at each hop distance, if any evaluated PE is suitable

for the requested task then it is selected for mapping and other PEs at the same hop

distance are not evaluated. In contrast to CPNN, here, all the PEs are evaluated (selected

temporarily- step 18) and finally, the PE with minimum path load is considered for final

mapping. The same strategy is followed at each hop distance until placement for the

requested task is found.

92

Chapter 5. Communication-aware Mapping

Algorithm 5: Communication-aware Packing-based Best Neighbor (CPBN)

Input: TG(T,E), AG(P,V) // task ti ∈ T ; PE pi ∈ P (PE)
Output: mpg (mapping TG(T,E) → AG(P,V))
1: Map the initial task (INI ∈ T) at the centre of the cluster;
2: for all unmapped task ti ∈ T that is requested do
3: if NFR[titype] != 0 then
4: for all hop distance = 0 to max hop distance do
5: weight = MAX VALUE; // some large value
6: PE list = get packing ordered list(hop distance);
7: for all PEs ∈ PE list do
8: if titype==pitype AND resource available at pi then
9: Find previously mapped tasks on pi;
10: if previous tasks != NULL then
11: if comm[ti][any previous task] then
12: Map ti onto PE pi and exit to step 29;
13: end if
14: else
15: weightTemp = calcChannelLoad(when ti mapped onto pi);
16: if weightTemp < weight then
17: weight = weightTemp;
18: Select node pi temporarily to map ti;
19: end if
20: end if
21: end if
22: end for
23: if weight < MAX VALUE then
24: Map ti onto PE pi and exit to step 29;
25: end if
26: end for
27: else
28: Perform steps 20 to 23 from Algorithm CPNN;
29: insert(pi to mpg); update(resources by mpg);
30: wait and goto step 3 if new task ti ∈ T is requested;
31: end if
32: end for

This algorithm considers traffic (congestion in channels) while finding the placement

for a requested task, hence it is a congestion-aware mapping heuristic that tries to dis-

tribute the channel load more homogeneously in the NoC. Additionally, it takes advantage

of the packing strategy and communication-aware strategy.

93

Chapter 5. Communication-aware Mapping

5.3 Performance Evaluation

In this section, we evaluate performance provided by the proposed mapping techniques.

The evaluated performance metrics are total execution time, energy consumption, average

channel load and average packet latency for varying set of applications.

The simulation platform used to perform the experiments is the same as in Chapter

4, where each processing node supports more than one task. We have performed the

simulation by varying the number of tasks to be supported at each node. However, it is

known that larger memory space and reconfigurable area will be required to support more

number of software and hardware tasks respectively. So, we have performed simulation up

to a maximum four tasks per node in order to avoid the memory space and reconfigurable

area availability issues.

Application modeling is done similar to the previous chapters, with an initial task,

hardware tasks and software tasks. The packets transmission between the tasks takes

place in the same manner. The processing time of packets corresponding to each task

mapped on the same PE is proportional to the number of tasks mapped on the PE as the

packets for each task are served in time multiplexed manner. The simulation is performed

at varying processing time to analyze the computation-communication behavior.

The evaluated scenarios are:

(i) 20 identical Tree like Applications having all tasks as software tasks : (parallel

benchmarks have this profile), each having 10 tasks, where one task is taken as

initial (starting task) and rest 9 as software tasks.

(ii) 20 identical Tree like Applications having hardware and software tasks : each having

10 tasks, where one task is taken as initial, 2 as hardware and rest 7 as software

tasks.

94

Chapter 5. Communication-aware Mapping

(iii) 20 random applications having hardware and software tasks : random generated

applications using Task Graph For Free (TGFF[92]). Each has one initial and

random number of hardware/software tasks (varying from 4 to 9).

In the first two scenarios, simulation is performed with injection rate varying from 5

to 20% (% usage of available channel bandwidth) and in third it is random from 5 to

30%.

For scenario (i) evaluation, 8×8 NoC-based homogeneous MPSoC is taken, where all

the PEs are processors. For evaluating scenarios (ii) and (iii), 8×8 NoC-based heteroge-

neous MPSoC is taken with 52 nodes as processors and 12 nodes as reconfigurable areas.

In all the scenarios, one software node is used for the Manager Processor (M) that is

considered to support a single task. Scenarios (i), (ii) and (iii) have also been referred to

as scenarios 1, 2 and 3 respectively.

The number of simultaneously running applications (initial tasks) is increased as

processing capability of the platform is increased by supporting more number of tasks at

each platform PE. This is required for maximum utilization of all the platform resources.

For the considered MPSoC platforms containing 2, 3 or 4 tasks supported PEs, the best

results are obtained at 10, 14 and 18 simultaneously running applications respectively.

The initial task placement is done by a clustering approach, where the processing

capability of a cluster is determined by the non-shared PEs within the cluster. The

processing capabilities of clusters are stored in advance. The applications to be mapped

are sorted in descending order by the number of tasks in them, before the actual mapping

starts. The initial tasks of the sorted applications are mapped on the center of the

clusters sorted in their decreasing processing capability. Thus, an application containing

more number of tasks is tried to be mapped into a more processing capability cluster

and an application containing relatively less number of tasks into a lower processing

capability cluster, resulting in better resource utilization. This approach is not useful for

95

Chapter 5. Communication-aware Mapping

the scenarios where all the applications contain same number of tasks like scenario (i)

and (ii). Scenario (iii) contains applications with varying number of tasks in them so the

approach is useful.

The mapping heuristics NN & BN proposed in [129], PNN & PBN proposed in the

previous chapter, CPNN, CPBN and the ideal static mapping (ISM) decision are evalu-

ated on three different platforms that contain PEs supporting two, three or four tasks.

5.3.1 Total Execution Time

It is the time taken to finish the execution of all the applications, which is computed in

similar manner as in the previous chapters. The total execution time mainly consists of

computation and communication time of the packets. However, if the computation time

is less than the time interval between receiving two consecutive packets corresponding

to the same task on the PE then the computation time will get absorbed within the

communication time. Thus, the computation time should be large enough in order to

contribute to the total execution time.

The proposed mapping heuristics map the maximum number of communicating pairs

onto the same PE, resulting in reduced communication overhead and the traffic in chan-

nels (channel congestion) that gets generated when communicating pairs communicate

from different PEs. The reduced traffic decreases the communication overhead of other

communicating tasks that communicate from different PEs. The communicating pairs

mapped on the same PE can communicate faster and the reduced traffic facilitates for the

faster communication of the communicating tasks mapped on different PEs. Therefore,

communication time is reduced and thus the total execution time.

Figure 5.4 shows average execution time required for the first simulated scenario

at different platforms when heuristics NN, PNN, CPNN and ISM are employed. The

average for each heuristic is taken after executing it at varying injection rate. A couple

96

Chapter 5. Communication-aware Mapping

20

22

24

0
0
0

 c
lo
ck

 c
y
cl
e
s)

NN PNN CPNN ISM

10

12

14

16

18

20

2 tasks/PE 3 tasks/PE 4 tasks/PEE
x
e
cu
ti
o
n

 T
im

e
 (
x
 1
0
0
0
0

 c
lo
c

10

2 tasks/PE 3 tasks/PE 4 tasks/PEE
x
e
cu

Figure 5.4: Execution time for NN, PNN, CPNN and ISM heuristics at different platforms

of observations can be made from the Figure 5.4. First, PNN always perform better than

NN. Second, CPNN performs better than NN at each platform and thus are scalable for

platforms containing PEs to support even higher number of tasks. Third, the largest gain

for CPNN over NN is witnessed for 3 tasks/PE platform. For this platform, CPNN shows

an average gain of 27.93%. Forth, ISM outperforms all the heuristics at each platform as

the mapping decision is taken at design-time with a global view of the platform resources

and takes maximum advantage from the task graph structure. However, this cannot be

applied to dynamic scenarios. It has also been observed that gain of CPBN over NN is

27.03%. CPBN shows lesser gain as it searches for the best neighbor for each task and

the searching time gets added to the total execution time.

The proposed heuristics have been analyzed for their time complexity. All the heuris-

tics have time complexity of the same level and is of the order of O(C), where C is the

number of PEs in the platform. Thus, the heuristics execute almost in similar time.

97

Chapter 5. Communication-aware Mapping

5.3.2 Energy Consumption

Energy is required when a packet needs to be transmitted from source PE to destination

PE and then to process the packet at the destination PE after it is received. The

energy required in transmission and processing are referred to as communication and

computation energy respectively.

The communication energy depends on the number of bits to be transmitted, the

number of links to be traversed between both the PEs and energy required in transmitting

each bit through one link. The transmitted bits are calculated by multiplying number of

packets by the average packet size in bits. Here, number of packets is considered as data

volume Vms and average packet size as ten flits each of 16 bits denoted as Psize, when

transferred from master to slave. As communication takes place from slave to master too,

so the total bits include the number of packets transferred from slave to master as well and

the number is considered as Vsm having the same average packet size. The number of links

to be traversed between the source and destination PE is calculated from the Manhattan

distance (∆Xms + ∆Yms) between the PEs as XY routing algorithm is used. The energy

required to transmit one bit through each link is considered as ELbit [156] [157]. The

ELbit value used in this work has been estimated as the product of power required to

transfer one bit through each link (11.26mW) and transfer delay. The communication

energy is estimated as product of number of bits to be transmitted, the number of links

to be traversed between source and destination PE and the energy required to transmit

one bit through one link, for each master-slave pairs from Equation Eq. 5.1.

Ecomm =
∑

[(Vms + Vsm)× Psize × (∆Xms +∆Yms)× ELbit] (Eq. 5.1)

The computation energy depends on the number of bits to be processed on the receiver

PE, time required to process each received bit and power needed to process the bit. The

bits to be processed are the same that were transmitted from some source PE and are

98

Chapter 5. Communication-aware Mapping

calculated by multiplying number of packets (Vms) by the average packet size (Psize),

when received by the slave. The total bits for each master-slave pair includes the bits

to be processed on the master PE (Vsm × Psize) as well, when received by master and

sent by slave. The time required to process each bit is calculated by dividing the time

taken to process each packet (tcomp) by the average packet size (Psize). The value of tcomp

is provided by a configuration file. The power needed to process the bits on a PE is

estimated from the power efficiency of Tile64 processor [158]. In [158], power efficiency

is varied from 15-22W when all the 64 PEs operate at 700MHz simultaneously. The

power is scaled for one PE operating at 25MHz and is referred as PEpower. The scaling

is done for 25MHz as the NoC [64] also operates at 25MHz and it is very reasonable

for the PEs to operate at the same frequency. An average power dissipation of 20W is

considered while scaling is performed. The computation energy is estimated as product

of the number of bits to be processed, time required to process one bit and power needed

to process the bit, for each master-slave pairs from Equation Eq. 5.2.

Ecomp =
∑

[(Vms + Vsm)× tcomp × PEpower] (Eq. 5.2)

Total energy consumption is estimated as the sum of communication and computation

energy from Equation Eq. 5.3. Our proposed mapping strategy reduces the distance

between source and destination PE by placing the communicating tasks onto the same

PE, where bits can be exchanged very easily through some common memory or register

without the need of much communication energy. Thus, total energy consumption is

greatly reduced.

Etotal = Ecomm + Ecomp (Eq. 5.3)

Figure 5.5 shows energy consumption (Etotal) for all the simulated scenarios at differ-

ent platforms when heuristics PBN and CPBN are employed. The energy for heuristics

PNN and CPNN is not shown as it will be lesser than PBN and CPBN respectively.

99

Chapter 5. Communication-aware Mapping

25

30

35

40

0
0
0
0
0
0
0

 m
J) PBN CPBN

5

10

15

20

e
n
a
ri
o
 1

e
n
a
ri
o
 2

e
n
a
ri
o
 3

e
n
a
ri
o
 1

e
n
a
ri
o
 2

e
n
a
ri
o
 3

e
n
a
ri
o
 1

e
n
a
ri
o
 2

e
n
a
ri
o
 3

E
n
e
rg
y
!(
x
 1
0

S
ce
n
a
ri
o

S
ce
n
a
ri
o

S
ce
n
a
ri
o

S
ce
n
a
ri
o

S
ce
n
a
ri
o

S
ce
n
a
ri
o

S
ce
n
a
ri
o

S
ce
n
a
ri
o

S
ce
n
a
ri
o

2!tasks!per!PE 3!tasks!per!PE 4!tasks!per!PE

40

100

40

CCR

n

0 5 1 1 5 2 2 5 3 3 5 4 4 5 5 5 5 6 6 5 7

Figure 5.5: Energy consumption for PBN and CPBN heuristics in different platforms for
all scenarios

The reason behind this is that PBN and CPBN try to distribute traffic in the channels

uniformly and thus facilitate for lower energy consumption during communication. A

number of observations can be made from the Figure 5.5. First, CPBN always performs

better than PBN and maximum gain of CPBN over PBN is witnessed for Scenario-1

at each platform. At 4 tasks per PE platform, CPBN shows an improvement of 46.3%

over PBN. Second, the energy consumption for all the heuristics is lowest for Scenario-2

at each platform when compared with other scenarios. Therefore, CPBN needs to be

employed for optimizing energy consumption.

5.3.3 Average Channel Load

The average channel load represents the NoC use and is calculated in the similar manner

as in previous chapters. The load in the channels that depends upon the traffic produced

by the communicating tasks is reduced by the proposed mapping heuristics by mapping

maximum number of communicating pairs onto the same processing node. Thus, average

100

Chapter 5. Communication-aware Mapping

2

2.5

3

3.5

4

4.5
PBN CPBN

C
h
a
n
n
e
l
Lo
a
d

b
a
n
d
w
id
th
)

1

1.5

2

5% 10% 15% 20% 5% 10% 15% 20% random

Scenario 1 Scenario 2 Scenario

3

A
v
e
ra
g
e

 C

cc
c(
%
o
f
b

Communication Rate (% usage of available bandwidth)(g)

Figure 5.6: Average channel load for PBN and CPBN heuristics for all simulation sce-
narios

channel load is significantly reduced when proposed heuristics are employed.

Figure 5.6 plots average channel load for all simulation scenarios at varying injection

rates, for 3 tasks per PE platform. When executing for other platforms, a similar behavior

is obtained. The average channel load increases with communication rate as more traffic

gets generated in the channels with increase in the communication rate. CPBN reduces

the average channel load for all the scenarios when compared to other heuristics. CPBN

shows an average gain of 10.67% over PBN.

5.3.4 Average Packet Latency

The average packet latency is calculated in the similar manner as described in the previous

chapter. It depends on the congestion in the path and the distance between the source

and destination PE on which communicating tasks are mapped. The proposed mapping

heuristics try to map the maximum communicating task pairs onto the same processing

node, reducing the traffic produced (congestion) in the channels. The reduced congestion

101

Chapter 5. Communication-aware Mapping

Rate BN PBN CPBN ISM

5% 118 115 113 110

10% 216 216 216 211

15% 316 314 309 303

20% 419 414 405 411

5% 116 116 116 105

10% 214 214 213 212

15% 310 309 307 303

20% 410 407 403 397

288 287 275 NA

 0.62% 2.08%

267.444444 265.77778 261.88889

Average Packet Latency (Clock Cycles)Scenarios

Scenario 1

Scenario 2

% Gain

Scenario 3

Table 5.1: Average Packet Latency for all simulated scenarios when BN, PBN, CPBN
and Ideal Static Mapping (ISM) mapping decision are employed.

helps in reducing packet latency for other tasks communicating from different PEs. Thus,

proposed mapping heuristics reduce the average packet latency.

Table 5.1 shows the latency results for all simulated scenarios for two tasks per PE

platform. Communication-aware mapping heuristic CPBN reduce the average packet

latency when compared to BN and PBN. Improvements are shown as % Gain in the

last row of table 5.1 for PBN and CPBN over BN. Improvements are not significant as

packets for the communicating tasks mapped on the same PE are not considered. ISM

performs better than all other heuristics for Scenario-1 and Scenario-2 but cannot be

applied to Scenario-3 as applications’ structure and their workload are random and not

known at design-time. Other evaluated platforms show almost similar results.

5.3.5 Effect of Computation-Communication Ratio

The Computation-Communication Ratio (CCR) is estimated as the ratio of desired com-

putation time (in cycles) and desired communication time (in cycles) for all the packets

from the following equation, where tcomputation and tcommunication are the desired compu-

102

Chapter 5. Communication-aware Mapping

tation and communication time for individual packets.

CCR =
∑

[tcomputation]÷
∑

[tcommunication] (Eq. 5.4)

The number of packets to be transferred (communicated) and processed (computed)

remains the same as all the transferred packets need to be processed at some PE.

Since every packet is considered identical, each has the same desired computation time

(tcomputation) that is provided through a configuration file, and the same desired communi-

cation time (tcommunication) that is calculated for NoC [64] operating at 25 MHz for a given

injection rate (% usage of available bandwidth). Thus, CCR simply reduces to the ratio

of tcomputation and tcommunication due to the same number of identical packets. The value of

tcommunication remains fixed for a given rate. Therefore, in order to get varying values of

CCR, different values of tcomputation (clock cycles) are provided through the configuration

file.

The total execution time mainly consists of computation and communication time.

The computation of a packet starts just after it is received on a PE and gets finished

before receiving the next packet. So, the computation time should be greater than the

time interval between receiving of two consecutive packets in order to contribute to the

total execution time.

Figure 5.7 shows the total execution time for mapping heuristics NN and CPNN at

varying CCR when applied to the first scenario at an injection rate of 5% (% usage of

available bandwidth). The execution time behavior is shown for 2 tasks per PE platform.

Other platforms also show almost similar behavior. It is clear that CPNN always performs

better than NN. The gain by CPNN over NN varies for different CCR. The gain behavior

for different platforms is described subsequently.

Figure 5.8 shows gain (%) in total execution time for mapping algorithm CPNN over

NN when applied to the first scenario for different platforms at varying CCR. The gains

103

Chapter 5. Communication-aware Mapping

16

18

y
cl
e
s)

NN CPNN

4

6

8

10

12

14

16

18

n
 T
im

e
 (
x
M
il
li
o
n
s
cl
o
ck

 c
y
cl
e
s)

NN CPNN

0

2

4

6

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

CCR

E
x
e
c
u
t
io
n

 T
im

e
 (

Figure 5.7: Total execution time for NN and CPNN at varying CCR for 2 tasks per PE
platform

shown are for the injection rate of 5%. A couple of observations can be made from the

Figure 5.8. For 2 tasks per PE platform, the gain is constant for some initial values

of CCR. For these CCR values, the total execution time for both the algorithms (NN

and CPNN) remain fixed as different values of computation time for each packet gets

absorbed in the time intervals between receiving of consecutive packets. The constant

gain is due to the communication time saved by employing the CPNN algorithm to

map most of the communicating task pairs on the same PE. The communication time

is saved as the packets for most of the communicating tasks are processed on the same

PE without sending to any other PE. With further increment in CCR, we see continuous

gains up to some CCR values and then a falling trend. The initial continuous gain is

very drastic as increase in computation time adds to total execution time very much

for NN when compared to the CPNN. The NN gets affected to a great extend as the

computation times for most of the packets don’t get absorbed between the time interval

104

Chapter 5. Communication-aware Mapping

100

40

50

60

70

80

90

100

2!tasks!per!PE

3!tasks!per!PE

n
!t
im

e
!g
a
in
!(
%
)

0

10

20

30

40

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

CCR

4!tasks!per!PE

E
x
e
cu
ti
o
n

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

CCR

Figure 5.8: Improvement in total execution time for CPNN over NN at varying CCR for
different platforms

of receiving consecutive packets, whereas in CPNN, most of the packets are exchanged on

the same PE. Therefore, the total execution time for CPNN is not affected much as the

computation time for the packets of the communicating tasks mapped on the same PE

gets absorbed within the communication and computation time of other tasks’ packets

processed in parallel. The falling trend at higher values of CCR is obtained when the

computation time starts adding to the total execution time significantly for the packets

of the communicating tasks mapped on the same PE too for the CPNN heuristic. In the

falling trend region, for CPNN, the computation time does not get absorbed within the

computation and communication time of other parallely processed packets and thus the

total execution time gets affected by all the packets for both the heuristics.

For 3 tasks per PE platform, the gain falls for some initial values of CCR and then

shows a similar trend as in the case of 2 tasks per PE platform. For initial values of

CCR, increase in computation time starts affecting total execution time for the CPNN

heuristic as the computation time for the packets of communicating tasks mapped on the

105

Chapter 5. Communication-aware Mapping

same PE does not get absorbed within the communication and computation time of other

tasks’ packets due to longer time required to process the packets. The time required in

processing gets longer as the packet for a particular task is processed for some fixed clock

cycles in time multiplexed manner along with packets of other tasks mapped on the same

PE. Additionally, here, more number of tasks gets mapped on a PE. However, the total

execution time for NN remains same for smaller values of CCR as computation time for

these values of CCR does not add to the total execution time due to the same reason

as in case of 2 tasks per PE platform. Thus, a falling trend is obtained for some initial

values of CCR. The reason for the similar trend after some values of CCR is the same as

explained for 2 tasks per PE platform. The drastic gain starts relatively at lower CCR

values as compared to the 2 tasks per PE platform due to more tasks getting mapped

on the PEs. For 4 tasks per PE platform, a similar trend is obtained with drastic gain

starting relatively earlier due to the similar reason.

The initial gain for 3 tasks per PE platform is higher than other platforms. The

almost flat region in mid values of CCR is longer for platforms supporting more number

of tasks. Other heuristics also show similar behavior.

5.3.6 Clustering vs. Non-clustering

The clustering approach benefits the evaluated metrics only in the third simulation sce-

nario, where applications contain varying number of tasks. In the clustering approach,

first, applications are sorted by the number of tasks within them and then initial tasks of

applications are mapped at the center of the clusters sorted by their processing capability

as explained earlier. In non-clustering approach, applications are not sorted and their

initial tasks are mapped at any random location.

Figure 5.9 shows gain obtained by the clustering approach over the non-clustering

approach for average channel load, energy consumption, average packet latency and total

106

Chapter 5. Communication-aware Mapping

25
ChLoad Energy Latency ExecTime

10

15

20

G
a
in

 (
%
)

0

5

NN BN PNN CPNN PBN CPBN

Figure 5.9: Improvements in clustering approach when different mapping algorithms are
employed

execution time at the two tasks per PE platform when different mapping heuristics

are employed. Average channel load and energy consumption is improved by around

15% with some improvement in packet latency and execution time. Similar behavior is

obtained at other evaluated platforms too.

5.4 Summary

In this chapter, we have proposed run-time communication-aware mapping heuristics

that try to map maximum communicating task pairs on the same PE in order to reduce

communication overhead. The communicating tasks mapped on the same PE can com-

municate faster as they do not need any network resource. It has been observed that

the communication-aware heuristics provide better results when compared to existing

and earlier proposed heuristics. A simulation platform supporting more than one task

on each PE has been considered. The PEs can be either a processor or a reconfigurable

hardware (RH) block.

We show that the ideal static mapping solution can lead to performance improvement.

The ideal static mapping has been shown to improve the overall performance when all

107

Chapter 5. Communication-aware Mapping

the applications and their workloads are known prior to the mapping process. However,

this does not cater for realistic scenarios in which the run-time characteristics call for

dynamic mapping strategies.

Based on our investigations all the proposed heuristics have been evaluated using an

8×8 NoC-based MPSoC platform. We clearly demonstrate that the presented heuristics

can consistently provide for notable reduction in the communication overhead. The po-

tential of mapping adjacent communicating tasks and those of the same application onto

the same PE whenever possible has contributed to the overall reduction in the commu-

nication overhead. We have investigated different scenarios depending on performance

metrics of interest and show that the improvement in the total execution time can be up

to 90% when the packet execution time is increased.

The communication-aware mapping strategies do not consider computation load bal-

ancing while reducing communication overhead. Therefore, they cannot perform well for

the scenarios where computation overhead dominates communication overhead. In the

next chapter, we present computation and communication aware mapping strategies that

perform well in such scenarios.

108

Chapter 6

Computation and Communication
Aware Mapping

Computation and communication aware mapping is desirable for scenarios where com-

putation overhead dominates communication overhead or both the overheads become

significant. In the previous chapter, we presented communication-aware mapping strate-

gies that try to map maximum communicating task pairs on the same PE in order

to reduce communication overhead. These techniques perform well when computation

overhead is not of significant importance as compared to the communication overhead.

However, when both the overheads are significant, mapping strategies taking care of both

the overheads should be investigated in order to optimize the performance.

In this chapter, we propose strategies that efficiently map the application tasks on

MPSoC processing elements (PEs) by taking computation overhead, communication over-

head and resource utilization into account. The proposed strategies attempt to balance

the computation load on the PEs while reducing communication overhead by mapping

highly communicating tasks on the same PE. Based on our evaluations to map applica-

tions with varying number of tasks onto NoC-based MPSoCs, we show that the proposed

strategies outperform the communication-aware strategies. In particular case study for

mapping multiple MPEG-4 applications, we show that total execution time, energy con-

sumption and resource usage are reduced by 33%, 39% and 37% respectively when com-

109

Chapter 6. Computation and Communication Aware Mapping

pared to communication-aware mapping strategies. The work in this chapter has been

published in [C-6], [C-8] and [C-10].

The rest of the chapter is organized as follows. Section 6.1 introduces some prelimi-

naries necessary for proper understanding of the computation and communication aware

mapping. In Section 6.2, we introduce our computation and communication aware run-

time mapping strategies targeting homogeneous and heterogeneous MPSoC architectures

respectively. In Section 6.3, performance of the techniques is evaluated and compared

with communication-aware strategies. We summarize the chapter in Section 6.4.

6.1 Preliminaries

The definition of application task graph described in Chapter 3 is modified in order to

model behavior of real-life streaming applications. Similar to Chapter 3, an application is

represented as a directed task graph TG = (T, E), where T is the set of application tasks

and E is the set of all edges in the application. The edges connect the tasks and represent

their communication. Here, each task is considered to be executable on both software and

hardware resources, having different execution time on them. The difference in execution

time on the resources determines suitability of a task to be executed on hardware or

software resource. Figure 6.1 shows an example application task graph “A”. A task ti ∈

T is represented as (tid, thwcomp, tswcomp), where tid is the task identifier, thwcomp is the task

hardware computation load in cycles when the task is executed on reconfigurable area

and tswcomp is the task software computation load in cycles when the task is executed on

general purpose processor (GPP). An edge ei ∈ E represents the connection between two

tasks and contains communication information between the tasks. The communication

information is denoted as tcomm, which represents number of cycles taken for transferring

the data volume for a single packet between the communicating tasks when full channel

bandwidth is available. Similar to earlier chapter’s definition, the communicating tasks

110

Chapter 6. Computation and Communication Aware Mapping

t1

t3t2

t4

Continuous Data Stream

e1 (w1)
e2 (w2)

e3 (w3)

t1

e1

e2

t3
t2
e3

e4

t4
t5

Application Graph “A” Execution Trace of Application “A”

r1 [h1,s1]

r4[h4,s4]

r2[h2,s2]

r1

w1

thwcomp

tcomm

edge

tid

t5

e4 (w4)

r5[h5,s5]

r3[h3,s3]

tswcomp

Figure 6.1: An example application and its execution trace

form a master-slave pair and the master task remains active till the last packet is sent to

its slave tasks. A slave task starts executing once it has received a complete packet from

its master task. For master-slave example, t1 is master and t2 & t3 are slaves as shown

in Figure 6.1.

The definitions of MPSoC architecture and mapping are the same as described in

Chapter 3. Similar to previous chapter, each processing node of the MPSoC supports

multiple tasks and channels support varying bandwidth (% usage of available bandwidth).

However, for evaluation purpose, communicating tasks have been allocated full available

channel bandwidth.

6.2 Computation and Communication Aware Map-

ping Strategies

In this section, we present computation and communication aware mapping strategies

that consider computation load balancing while reducing communication overhead be-

tween tasks. First, we analyze communication-aware mapping strategies in order to find

their drawbacks when applied to scenarios where both computation and communication

111

Chapter 6. Computation and Communication Aware Mapping

overhead are significant. Then, we introduce our proposed strategies to overcome the

drawbacks of communication-aware strategies.

State-of-the-art communication-aware mapping strategies do not consider computa-

tion load balancing while reducing communication overhead between tasks and thus are

not able to perform well. One possible mapping of an application task graph on part

of the MPSoC architecture is shown in Figure 6.2, which is obtained by applying the

communication-aware mapping technique CPBN proposed in the previous chapter. This

technique has been considered as the reference technique because it optimizes for perfor-

mance metrics energy consumption, channel load and packet latency by the maximum

amount with some improvement in total execution time too when compared to the ex-

isting techniques as discussed in the previous chapter. It has been assumed that each

PE acts as a GPP and can support maximum four tasks. First, the initial task (task 0)

is mapped. When task 0 starts executing, it requests it’s communicating slave tasks (1

& 2). Tasks 1 and 2 communicate with task 0 and are thus mapped on the same PE

allowing for a maximum of four tasks. Now, tasks 1 and 2 request their communicating

tasks 3&4 and 5 respectively. Task 3 is mapped with its master task (task 1) as the PEs

can support four tasks. Task 4 and 5 are mapped on neighboring PEs to their masters

(task 1 for task4; task 2 for task 5) according to the CPBN strategy. The strategy maps

them on two separate PEs by evaluating the neighboring PEs as shown in Figure 6.2.

Now, when tasks 3, 4 and 5 start executing, their slave tasks (6, 7, 8, 9 & 10) are re-

quested to be mapped on the PEs. The tasks are tried to be mapped with their master

(communicating) tasks in order to reduce the communication overhead. Tasks 7, 8, 9

and 10 are mapped with their master tasks and task 6 is mapped on a separate PE close

to its master. In the similar manner, tasks 11 and 12 get requested when task 9 starts

its execution. Task 11 is mapped with its master (communicating) task 9. Task 12 is

mapped on a new PE as it cannot be mapped with its master where maximum limit has

already reached.

112

Chapter 6. Computation and Communication Aware Mapping

6

0

Mapping

5,9,10,

11
12

0,1,2,34,7,8
3

21

6

4

7 8

5

9
10

11 12

Initial Task

Figure 6.2: An example application mapping by CPBN heuristic

The CPBN technique tries to reduce communication overhead by mapping maximum

communicating task pairs on the same PE as highlighted in Figure 6.2. However, it

has various drawbacks. First, the technique does not try to balance the computation

load on the PEs while reducing communication overhead between tasks. This may lead

to unbalanced execution on PEs, resulting in high computation load variance among

different PEs. Next, it has a restricted approach rather than a global approach towards

minimizing communication overhead as communication can be avoided only between

the master and the requested slave tasks during mapping. Further, when the MPSoC

contains GPPs and reconfigurable areas (RAs) as PEs, the technique does not fully

utilize the capabilities of the RAs by sparsely executing the computation intensive tasks

on them. Next, we discuss proposed computation and communication aware mapping

strategies that overcome the mentioned drawbacks.

The proposed mapping strategies first perform pre-processing of the given applications

followed by mapping on the MPSoC platform, as shown in Figure 6.3. Here, the platform

manager is responsible for pre-processing too in addition to mapping, scheduling, resource

control and configuration control. The applications are handled one after another, i.e. one

113

Chapter 6. Computation and Communication Aware Mapping

R RR

R RR

GPP

R RR

GPP GPP

RAGPPGPP

GPP GPPRA

Appl_2

Appl_n

Platform Manager

Pre-Processing Mapping

Appl_1

MPSoC Platform

.

.

.

Figure 6.3: Run-time pre-processing and mapping

application is first pre-processed and then mapped before handling next application. Pre-

processing is performed based on the known properties of the application and platform,

and involves some extra effort for managing computation overhead in addition to the

communication overhead.

6.2.1 Pre-processing for Balancing Computation and Commu-
nication

In the proposed pre-processing techniques, the application task graph is taken as an input

and the techniques try to minimize communication latencies among various tasks while

simultaneously trying to balance the processing load on various PEs. The techniques

start by targeting the communication intensive edges in the application and attempt

to merge these highly communicating tasks on the same PE. The merging operation

takes place only if memory or area constraint of the involved PE is satisfied, i.e., the

PE must have sufficient memory or area to configure for both the tasks and sufficient

shared memory for their local communication if required. The proposed strategy forms

a global approach as complete application graph is seen in entirety for removing commu-

nication bottlenecks. However, the communication-aware mapping techniques proposed

in the previous chapter merge tasks on the same PE only when communicating tasks are

requested during execution.

114

Chapter 6. Computation and Communication Aware Mapping

The main purpose of pre-processing is to remove any bottleneck that may arise due

to overhead of transferring data among communicating tasks. Such bottlenecks can be

found by examining the execution trace of the application graph. In Figure 6.1, execution

trace of application graph “A” is shown, where ri represents the time taken by task ti (∈

T) to process a packet after it is completely received and wi represents the time taken to

transfer a packet by edge ei (∈ E) at full available channel bandwidth. The processing

and transfer times are referred to as computation and communication loads, respectively.

When task ti is assigned to a GPP then ri contains task’s software computation load

in cycles (tswcomp) and when assigned to a RH then ri contains the task’s hardware

computation load in cycles (thwcomp).

The execution trace clearly expresses the execution pattern of tasks and edges. The

trace can be analyzed to remove bottlenecks in order to achieve high performance. For

example, edge e2 taking maximum time to transfer a packet appears to be the main

bottleneck in Figure 6.1. If the communicating tasks of edge e2 (t1 & t3) are merged

together on a single PE, then e2 no longer remains the active bottleneck of the system

and the whole execution trace will shrink leading to lower overall execution time. The

improvements rely on the fact that eliminating the slowest step in a pipeline will certainly

lead to performance improvement. Based on eliminating the slowest steps repeatedly,

next, we present two pre-processing techniques to be applied when targeting homogeneous

and heterogeneous MPSoCs respectively.

6.2.1.1 Pre-processing for Homogeneous MPSoCs

The proposed pre-processing technique for homogeneous MPSoCs is decomposed into two

phases and is presented through Algorithm 6. In first phase (step 1 to 12), the strategy

examines the application graph and attempts to remove the communication bottlenecks.

From the application graph, first, the task having maximum computation load max pload

115

Chapter 6. Computation and Communication Aware Mapping

Algorithm 6: Pre-processing Technique for Homogeneous MPSoCs

Input: TG(T,E)
Output: Optimized TG(T,E)
1: repeat
2: Find node ti ∈ T having maximum computation load max pload from TG(T,E);
3: Find edge ei ∈ E having maximum communication load max cload from TG(T,E);
4: if max pload < max cload then
5: Find computation load of connecting nodes tp & tq of the edge ei, i.e., pload(tp) and pload(tq);
6: if (pload(tp) + pload(tq)) ≤ max cload then
7: Merge tp & tq to a single node if their memory requirements are satisfied and update

TG(T,E);
8: else
9: break; // goto to second phase for optimization, i.e. start from step 13
10: end if
11: end if
12: until max cload > max pload
13: repeat
14: Find communicating nodes ti and tj having minimum computation loads pload(ti) and pload(tj)

from updated TG(T,E);
15: if (pload(ti) + pload(tj)) < max pload in updated TG then
16: Merge ti & tj to a single node if their memory requirements are satisfied and update TG(T,E);
17: end if
18: until max pload > (pload(ti)+ pload(tj))

(step 2) and edge having maximum communication load max cload (step 3) are deter-

mined. If the maximum communication load is greater than maximum computation

load (step 4) and addition of computation loads of communicating tasks is less than the

maximum communication load (step 6), then the communicating tasks are merged on

a single PE (step 7). This process is continued till the computation load on any PE

becomes the bottleneck and further reduction in communication overhead will not yield

any performance improvement.

Once the processor becomes the bottleneck, second phase (step 13 to 18) is carried

out for resource optimization. The tasks with minimum computation load are merged

such that the communication overhead or computation load does not overshoot the com-

putation bottleneck determined in the first phase. This phase not only enhances resource

utilization but also tries to balance the computation load among several PEs by bringing

the computation load of each PE as close as possible to the computation bottleneck.

116

Chapter 6. Computation and Communication Aware Mapping

The worst case complexity (C) of the pre-processing strategy has been calculated

in terms of number of tasks in the application. For a given number of tasks ‘n’, the

complexity (C) is calculated as follows:

C = (n choose 2) + ((n− 1) choose 2) + ((n− 2) choose 2) ++ (2 choose 2)

=n C2 +
(n−1) C2 +

(n−2) C2 ++2 C2 =
n∑

p=2

(nC2) =
n3 − n

6

(Eq. 6.1)

In the Equation Eq. 6.1, n choose 2 specifies the number of ways for choosing two

nodes from n nodes. The chosen nodes are merged on the same PE. Similarly, (n-

1) choose 2 specifies the number of ways for choosing two nodes from n− 1 nodes where

one task is already combined, (n-2) choose 2 specifies the number of ways for choosing

two nodes from n − 2 nodes where two tasks are already combined and so on. The

worst case complexity is O(n3) which allows us to preprocess the applications with even

large number of tasks in a limited time. However, the preprocessing may converge earlier

depending upon the type of application. The preprocessing is not an exhaustive search

as tasks mapped on a node are not split up for the next iteration of node merging. On

the other hand in an exhaustive search, splitting of the merged nodes is required in order

to evaluate all the combinations exhaustively.

For an example demonstration, consider the pre-processing of the same application

graph as in Figure 6.2. The computation and communication loads were not shown in

Figure 6.2 as the CPBN strategy does not need loads’ information. Figure 6.4 shows the

same application as ‘initial application’ with computation and communication load values

in cycles when tasks are executed on GPPs and edges are allocated full communication

(channel) bandwidth. Initially, the edge between task 4 and 8 is the main bottleneck

(maximum communication load) and computation load of task 4 & task 8 is less than the

communication load, so task 4 and task 8 are merged together. Next, the edge between

117

Chapter 6. Computation and Communication Aware Mapping

0

3

21

6

4

7 8
5

9
10

11 12

a

d

cb

e

[5]

[2]

[5]

[2]

[5][3]

[5]

[2]

[10]

[3]

[1]

[6]
[3]

(4) (4)

(8)

(6)

(20)

(25)(10)

(1
3)

(2)(5)

(10)

(7)

Continuous Data

Stream

[13]

[17]

[8] [5]

[9]

(4)

(10)

(10)

(13)

Continuous Data

Stream

Initial Application

Optimized Application

(0, 2, 5, 10) a

(1, 4, 8) b

(9, 11, 12) c

(3, 6) d

(7) e

Figure 6.4: Pre-processing to get optimized application by Algorithm 6

task 1 and 4 becomes the bottleneck (maximum communication load in the updated TG)

and the sum of computation load of task 1 and task 4 is less than the communication load,

so task 1 and task 4 are merged together. This process is repeated till computation load

on any GPP becomes the bottleneck, i.e. maximum computation load on a GPP becomes

greater than maximum communication load. The GPP bottleneck arises when tasks 1, 4

and 8 are merged on the same PE. Thereafter, resource optimization is carried out first by

merging communicating tasks 2 and 5 as they have minimum sum for their computation

loads. This process is also repeated till an optimized graph is obtained where further

resource optimization cannot be done without overshooting the computation bottleneck.

The output of the pre-processing operation is an optimized application graph named

‘Optimized Application’ as shown in Figure 6.4. This graph contains different set of tasks

at each node, like, tasks 0, 2, 5 and 10 on node a, tasks 1, 4 and 8 on node b, tasks 9, 11

and 12 on node c, tasks 3 and 6 on node d and task 7 on node e.

118

Chapter 6. Computation and Communication Aware Mapping

Algorithm 7: Pre-processing Technique for Heterogeneous MPSoCs

Input: TG(T,E)
Output: Optimized TG(T,E)
1: Repeat steps 1 to 18 of Algorithm 6 by considering hardware computation load phw load in place of

computation load pload and area requirement in place of memory requirement; // First phase
(steps 1 to 12) for removing communication bottlenecks; Second phase (steps 13 to 18) for resource
optimization

2: for all node ti in the updated graph do
3: Σ = Sum of software computation load psw load of individual merged tasks on node ti;
4: if Σ < max phw load then
5: Assign ti to a software resource having computation load equal to Σ and update TG(T,E);
6: end if
7: end for

6.2.1.2 Pre-processing for Heterogeneous MPSoCs

The proposed pre-processing technique for heterogeneous MPSoCs is composed of three

phases and is presented through Algorithm 7. The first two phases are similar to those

of Algorithm 6, where, communication bottlenecks are removed in the first phase and

resource optimization is carried out in the second phase. The technique assumes that

each task can be executed on both hardware and software PEs. The algorithm starts by

examining the application graph when all the tasks are assigned to hardware resources,

i.e. RAs and hence it starts optimizing the application graph by considering hardware

computation load of each task. Therefore, in the first and second phase of Algorithm 7,

the same steps as of the Algorithm 6 are repeated by considering hardware computation

load phw load in place of computation load pload and checking for area requirements in

place of memory requirements while merging on a single RA node.

After first and second phase, the resulted optimized application graph contains hard-

ware computation bottleneck as the graph has been obtained by considering hardware

computation load of each task. The limited number of hardware resources in the platform

restricts the possibility of mapping the optimized graph onto the platform. Therefore, in

the third phase of Algorithm 7 (step 2 to 7); we confine the usage of hardware resources

depending upon the hardware computation bottleneck max phw load. The nodes of the

119

Chapter 6. Computation and Communication Aware Mapping

optimized graph are analyzed and considered to be executed on software resources if the

total software computation time of tasks on the node does not exceed the hardware com-

putation bottleneck obtained earlier. The resultant graph is a combination of hardware

and software nodes that need to be executed on the platform. In the graph, computation

intensive tasks are assigned to RAs in order to provide improved performance.

For an example demonstration, consider pre-processing of an application graph named

‘Initial Application’ as shown in Figure 6.5. The application is shown with its tasks’ and

edges’ indicating their computation and communication load values in cycles, respectively.

For each task, computation load values are shown when the task is executed on both the

hardware (RA) and software (GPP) as [thwcomp, tswcomp]. After pre-processing by applying

Algorithm 7, we get an optimized application graph named ‘Optimized Application’ as

shown in Figure 6.5. This graph contains set of tasks at each node, like, tasks 0, 2, 4

and 7 on node a, tasks 1 and 3 on node b, tasks 5 and 8 on node c, task 6 on node d and

task 9 on node e. The third phase of the algorithm determines that nodes a and c need

to be mapped on hardware resources, whereas the remaining nodes on software resources

as shown in the figure.

6.2.2 Mapping of the Processed Application

The optimized application graph thus obtained by the pre-processing can be mapped on

the MPSoC by using any of the mapping algorithms proposed in the previous chapters.

For demonstration, mapping algorithm PBN proposed in Chapter 4 is applied on the

optimized application graph of Figure 6.5 in order to map it on MPSoC. Figure 6.6

shows mapping of the optimized application on part of the MPSoC. First, initial node a

is mapped and its slave nodes b, c and d are requested to be mapped. Their placement

is found on nearest possible PE with respect to the master node a. After mapping nodes

b, c and d, slave node e is requested and mapped. A possible mapping for all the nodes

is shown in the Figure 6.6.

120

Chapter 6. Computation and Communication Aware Mapping

0

3

21

4

6 7
5

8
9

a

d

cb

e

[4,8]

[2,10]

[3,7]

[5,5]

[1,1]

[5,5]

[1,2]

[6,6]

[6,12] [5,5]

(10) (4)

(13)

(10)

(5)(11)

(2
5)

(2)

Continuous Data

Stream

[10]

[6]

[5]
[5]

[12]
(10)

(1
1

)

(10)

(13)

Continuous Data

Stream

Initial Application

Optimized Application

(20)

a

c

HW

HW

SW

SW

SW

(0, 2, 4, 7) a

(1, 3) b

(5, 8) c

(6) d

(9) e

Figure 6.5: Pre-processing to get optimized application by Algorithm 7

c

(5,8)

d

(6)

a

(0,2,4,7)

b

(1,3)

e

(9)

GPP RH

a

d

cb

e

[10]

[6]

[5]
[5]

[12]
(10)

(1
1
)

(10)

(13)

Continuous Data

Stream

Optimized Application

a

c

HW

HW

SW

SW

SW

(0, 2, 4, 7) a

(1, 3) b

(5, 8) c

(6) d

(9) e

Figure 6.6: Mapping of optimized application

121

Chapter 6. Computation and Communication Aware Mapping

6.3 Performance Evaluation

In this section, we evaluate performance provided by the proposed computation and

communication aware mapping strategies. The evaluated performance metrics are total

execution time, energy consumption, resource utilization and computation load variance.

The simulation platform used to perform the experiments is the same as in Chapter 4,

where each processing node supports more than one task. We have performed simulation

by assuming maximum four tasks per node in order to avoid the memory space and

reconfigurable area availability issues.

Applications are modeled to describe data stream processing behavior with tasks

and edges as described in Section 6.1. Each task is considered to be executable on

both software and hardware resources, and edges are allocated full channel bandwidth.

The simulation is performed by varying the number of streams to be processed by the

application.

The evaluated scenarios are:

(i) multiple random, pipeline & tree like streaming applications having 5, 10, 15 and

20 tasks.

(ii) 20 similar MPEG-4 application, where 5 instances are run concurrently.

Evaluations are performed by employing both the pre-processing techniques targeting

for homogeneous and heterogeneous MPSoCs. NoC-based 2D-mesh architectures have

been considered. In the homogeneous MPSoC, all the PEs are GPPs and in the hetero-

geneous MPSoC, 24 PEs are GPPs and rest are RHs. In both the MPSoCs, one PE is

used as manager processor. Similar to previous chapter, the PEs reserved for the initial

task are pre-defined.

The communication-aware packing-based best neighbor (CPBN) mapping technique

proposed in the previous chapter and those proposed in this chapter are evaluated and

122

Chapter 6. Computation and Communication Aware Mapping

compared. The CPBN technique optimizes for performance metrics energy consump-

tion, channel load and packet latency by a maximum amount with some improvement

in total execution time too. We have considered CPBN as the reference technique to

compare with the techniques proposed in this chapter. When employing pre-processing

for homogeneous and heterogeneous MPSoCs, the mapping strategies are referred to

as preprocessing-based homogeneous (PHomog) and preprocessing-based heterogeneous

(PHeterog) strategy, respectively.

6.3.1 Total Execution Time

The total execution time is the overall duration to execute the applications for a defined

number of streams. It includes pre-processing, mapping, configuration, computation

and communication time. The communication overhead stands out as the predominant

bottleneck, which is greatly reduced by our proposed strategy. Thus, overall execution

time gets reduced.

Figure 6.7 (a) shows overall execution time for the first simulated scenario when map-

ping heuristics CPBN and PHomog are employed. Figure 6.8 (a) shows the same when

heuristics CPBN and PHeterog are employed. In Figure 6.7, result is for homogeneous

architectures, whereas in Figure 6.8, it is for heterogeneous architectures. The figures

show that our heuristics PHomog and PHeterog perform better than the communication-

aware heuristic CPBN at varying number of tasks in the considered applications. It is

evident that rise in complexity of the application in terms of number of tasks corresponds

to rise in the improvement in execution time with our techniques.

6.3.2 Energy Consumption

Energy is consumed while transmitting a packet from source PE to destination PE and

then in processing the packet at the destination PE once it is received. The same energy

123

Chapter 6. Computation and Communication Aware Mapping

0

5

10

15

20

25

5 10 15 20

%
 S
a
v
in
g

 i
n

 P
E
s
u
se
d

 (
w
.r
.t
.
C
P
B
N
)

PHomog

0

100

200

300

400

500

600

700

800

5 10 15 20

E
x
e
cu
ti
o
n

 T
im

e
 (
x
1
,0
0
0

 C
lo
ck

 C
y
cl
e
s)

CPBN PHomog

0

20

40

60

80

100

120

140

160

5 10 15 20

E
n
e
rg
y

 (
x
1
,0
0
0

 m
J)

CPBN PHomog

Number of Tasks in the considered Applications

(a) Total Execution Time (b) Energy Consumption (c) Resource Optimization

Number of Tasks in the considered Applications

(a) Total Execution Time (b) Energy Consumption (c) Resource Optimization

Figure 6.7: Total execution time, energy consumption and resource utilization when
CPBN and PHomog heuristics are employed

consumption model as proposed in the previous chapter has been adapted, where energy

required in transmission and processing are referred to as communication and compu-

tation energy, respectively. For packet transmission, full channel bandwidth has been

allocated but it may be varied.

Figure 6.7 (b) shows energy consumption for the first simulated scenario when map-

ping heuristics CPBN and PHomog are employed. Figure 6.8 (b) shows the same when

heuristics CPBN and PHeterog are employed. It can be seen that our approaches PHo-

mog and PHeterog reduce energy consumption as they aim to remove the bottlenecks

involved in communication intensive edges, which reduces communication energy. Fur-

ther, reduction in energy consumption is more as the complexity of application (number

of tasks) increases.

6.3.3 Resource Optimization

The resource optimization is measured as the percentage decrease (saving) in the number

of PEs (hardware or software) utilized by our approaches over the existing approaches.

Figure 6.7 (c) shows software resources savings by our PHomog mapping technique over

124

Chapter 6. Computation and Communication Aware Mapping

20

25

30

35

40

45
Hardware Savings

Software Savings

200

250

300

350

400

450

(x
1
,0
0
0

 C
lo
ck

 C
y
cl
e
s) CPBN PHeterog

30

40

50

60

y
 (
x
1
,0
0
0

 m
J)

CPBN PHeterog

s
u
se
d

 b
y

 P
H
e
te
ro
g

.r
.t
.
C
P
B
N
)

0

5

10

15

5 10 15 20
0

50

100

150

200

5 10 15 20

E
x
e
cu
ti
o
n

 T
im

e

0

10

20

5 10 15 20

E
n
e
rg
y

%
 S
a
v
in
g

 i
n

 P
E

(w
.

Number of Tasks in the considered Applications

5 10 15 205 10 15 20 5 10 15 20

Number of Tasks in the considered Applications

(a) Total Execution Time (b) Energy Consumption (c) Resource Optimization

Figure 6.8: Total execution time, energy consumption and resource utilization when
CPBN and PHeterog heuristics are employed

the CPBN technique for applications having different number of tasks. Figure 6.8 (c)

shows hardware and software resources savings by our PHeterog technique over the CPBN

technique.

Our techniques reduce the number of hardware and software resources used by the

application as they try to map maximum number of tasks on the same PE while reducing

communication overhead and balancing the processing load among various PEs. There-

fore, our techniques provide resource savings. Further, it can be observed that resource

savings get increased as applications having larger number of tasks are considered. For

applications with 20 tasks, PHomog shows an improvement of 23.33%, as shown in Figure

6.7 (c). For applications with 15 tasks, PHeterog shows an improvement of 33.33% and

40.00% for hardware and software resources respectively, as shown in Figure 6.8 (c).

6.3.4 Computation Load Variance

The computation load variance is measured as the standard deviation of computation

loads on different PEs. It determines how uniformly computation loads are distributed

on the PEs. Lower value of standard deviation shows better uniform distribution of loads

125

Chapter 6. Computation and Communication Aware Mapping

GPP 1 GPP 2 GPP 3 GPP 4 GPP 5

CPBN 14 21 3 19 6 7.0597

PHomog 14 17 18 7 5 5.26

CPBN 2 10 11 15 13 5.3124

PHomog 13 17 8 5 9 4.176

Computation Load (in cylcles)

on different Software (GPP) PEs

Standard

Deviation

1
0

T
a
sk
s

1
5

T
a
sk
s

GPP 6

NA

NA

1

NA

Table 6.1: Computation load distribution and their variance for applications with 10 and
15 tasks when heuristics CPBN and PHomog are employed.

on the PEs. Fair distribution of computation load among the several PEs minimizes the

probability of reaching the situation when a single PE remains active for most of the

time due to high computation load, whereas other PEs remain idle. This scenario leads

to poor power efficiency and performance bottlenecks due to overloading of a single PE.

Our proposed heuristics attempt to fairly distribute the computation load among several

PEs by combining the less computation intensive tasks onto a single PE till performance

bottleneck is detected.

Table 6.1 shows distribution of computation load among several PEs and its standard

deviation for applications in the first simulation scenario when CPBN and PHomog

heuristics are employed. The GPPs are used as PEs. The distribution and its standard

deviation clearly indicate that our heuristic PHomog provides more uniform distribution

and thus smaller deviation from the mean computation load.

Table 6.2 shows the distribution of computation load among hardware and software

PEs when CPBN and PHeterog heuristics are employed. When employing CPBN, the

distribution indicates that hardware resources are lightly loaded along with highly uneven

distribution of loads among PEs. Our heuristic PHeterog provides efficient utilization

of hardware and software resources and better distribution of loads when compared to

CPBN.

126

Chapter 6. Computation and Communication Aware Mapping

RH 1 RH 2 RH 3 GPP 1 GPP 2 GPP 3 GPP 4 GPP 5

CPBN 3 3 5 14 6 1 11 NA 4.35655

PHetero 11 12 NA 6 5 5 NA NA 3.42053

CPBN 1 5 1 15 9 3 4 2 4.5

PHetero 12 12 NA 4 5 8 NA NA 3.768291
5

T
a
sk
s

Computation Load (in cylcles)

on different Hardware (RH)/Software (GPP) PEs

1
0

T
a
sk
s

Standard

Deviation

Table 6.2: Computation load distribution and their variance for applications with 10 and
15 tasks when heuristics CPBN and PHeterog are employed.

30

32

34

36

38

40

Execution Time Resource Optimization Energy Consumption

P
e
rc
e
n
ta
g
e

 I
m
p
ro
v
e
m
e
n
t

b
y

 P
H
o
m
o

 (
w
.r
.t
.
C
P
B
N
)

Figure 6.9: MPEG4 decoder application case study

6.3.5 Case Study - MPEG4 Decoder

The proposed heuristics have been applied on real-life MPEG-4 decoder applications as

mentioned in scenario (ii). The MPEG4-decoder is used in de-compression of encoded

video digital data. It has been modeled as a task graph composed of 13 tasks intercon-

nected with each other in a cyclic tree like structure. Figure 6.9 shows improvement in

execution time, resource utilization and energy consumption by our proposed technique

PHomog when compared to CPBN. The proposed technique reduces total execution time

by 33.59%, resource utilization by 37.5% and energy consumption by 39.35%.

127

Chapter 6. Computation and Communication Aware Mapping

6.4 Summary

In this chapter, we have proposed novel computation and communication aware mapping

strategies, where placement for a task is found aiming at balancing the computation load

on different PEs and reducing communication overhead in the MPSoC platform. The

strategies pre-process the application before actual mapping is done. In pre-processing,

communication bottlenecks are removed while balancing computation load on different

PEs at the same time. The pre-processing also performs resource optimization by merging

the tasks on the same PE if performance is not degraded and memory or area requirements

on the PE are satisfied. The preprocessed application is then mapped on the platform

PEs.

Based on our investigations to map models of real-life streaming applications on MP-

SoC platforms, we have shown that the proposed mapping strategies outperform existing

mapping strategies. We have evaluated total execution time, energy consumption, re-

source optimization and computation load variance for different application scenarios.

The improvements in different scenarios are clearly enunciated in performance evalua-

tion.

The run-time mapping strategies proposed till now (from Chapter 3 to this chapter)

perform all the processing at run-time, i.e. on-the-fly processing. These strategies cannot

guarantee for strict timing deadlines due to limited compute resources at run-time. In

the next chapter, we present a hybrid mapping strategy that performs compute intensive

analysis at design-time and uses the analysis results at run-time in order to accelerate

the run-time mapping process towards meeting the deadlines.

128

Chapter 7

Hybrid Strategy for Accelerating
Run-time Mapping

In the previous chapters (Chapter 3 to Chapter 6), we have presented run-time mapping

strategies where all the processing is performed at run-time in order to cater for dynamism

in applications. However, these strategies cannot always guarantee for schedulability,

i.e., for strict timing deadlines due to lack of any prior analysis and limited compute

resources at run-time. Thus, there is a need to devise a strategy that should perform

compute intensive analysis at design-time and should use the analyzed results at run-time

to overcome the above mentioned problem.

In this chapter, we present a hybrid approach for efficient run-time mapping of appli-

cations on MPSoCs. For each application to be supported in the MPSoC, the approach

performs extensive design-space exploration (DSE) at design-time to derive multiple de-

sign points representing throughput and energy consumption at different resource combi-

nations. One of these points is selected at run-time efficiently depending upon the desired

throughput while optimizing for the energy consumption and resource usage. While most

of the existing DSE strategies consider a fixed multiprocessor platform architecture, our

DSE considers a generic architecture making DSE results applicable to a large set of

target platforms. Further, existing DSE strategies do not scale well with the application

129

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

& platform size and do not always provide the largest throughput design points. Ex-

perimental results reveal that the proposed approach provides faster DSE, better design

points and efficient run-time mapping when compared to other approaches. In particular,

we show that DSE is faster by 83% and run-time mapping is accelerated by 93% for some

cases. Part of the work in this chapter has been published in [C-9] and [C-11]. Extended

versions of the work has been accepted to be published in [J-2] and [J-3].

The remainder of the chapter is organized as follows. Section 7.1 introduces some

preliminaries necessary to understand the hybrid mapping strategy. The hybrid mapping

flow that first performs design-time analysis of applications and then map the applications

on a multiprocessor platform at run-time is presented in Section 7.2. In Section 7.3, we

demonstrate implementation of the hybrid strategy with some example applications.

The performance of the strategy is evaluated in Section 7.4. Section 7.5 summarizes the

chapter.

7.1 Preliminaries

This section covers some preliminaries necessary to explain our proposed hybrid map-

ping flow. We describe the target platform and application model with the underlying

assumptions and terminology.

Multiprocessor Platform Model

The multiprocessor platform model used in this work is similar to that of previous chap-

ters. The platform contains a set of tiles and an interconnection network to connect

the tiles. Here, end-to-end connections (c) with fixed latency between tiles are used to

connect the tiles. The connections of the network can be reserved in advance to avoid

resource contention and to provide guaranteed throughput. In contrast, in a packet

switched network as used in the previous chapters, providing throughput guarantee is

130

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

12

24

43

31 32

14

23

41

t1 t2

t3 t4

Figure 7.1: Example multiprocessor platform.

tile ptype m ci co iω oω pwr connection L
t1 GPP 1000000 8 8 12 12 1000 c12, c24, c43, c31 3
t2 RH 1000000 8 8 12 12 4.60 c14, c23, c41, c32 6
t3 RH 1000000 8 8 12 12 4.60
t4 DSP 1000000 8 8 12 12 330

Table 7.1: Properties of the example platform.

difficult since there are no dedicated connections [59] [159] [64]. Figure 7.1 shows an

example platform, where end-to-end connections are used to connect the tiles t1, t2, t3 &

t4. Each connection may have a different latency, so the latency of connections through

a network-on-chip (NoC) can be taken into account [160], i.e., any type of interconnec-

tion network can be modeled so long the latencies between tiles are provided. Similar

to previous chapters, each tile contains a processor (for example, general purpose pro-

cessor (GPP), digital signal processor (DSP) or reconfigurable hardware (RH) as shown

in Figure 7.1), a local memory (M) and a network interface (NI) containing set of com-

munication buffers that are accessed both by the interconnect and the local processor.

Next, we provide a formal definition of the multiprocessor platform.

Definition 7.1 (Platform Graph (PG)) A PG is represented as (T,C,L), which con-

tains a set T of tiles, a set C of connections and a latency function L that provides latency

(in time-units) of each connection (L(c)). A tile t ∈ T is a 7-tuple (ptype,m,ci,co,iω,oω,pwr),

131

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

where, ptype ∈ PT (PT is set of processor types), m is the memory size (in bits), ci & co

are the maximum number of input and output connections supported by the NI, iω & oω

are the maximum incoming and outgoing bandwidth (in bits/time-unit) and pwr is the

power consumption (in milliwatts) of the processor type ptype..

Table 7.1 shows the values of all the elements in the example platform graph (Figure

7.1). Multiprocessor systems such as StepNP [34], PROPHID [35] and Eclipse [36] fit

nicely into this platform model.

Similar to previous chapters, the communication network in Figure 7.1 is arranged

in a 2D-mesh topology and distance between two tiles is referred to as hop distance.

The latencies of end-to-end connections are modeled according to the 2D-mesh network.

Tiles t1 & t2 are at hop distance of 1 (just adjacent) and t1 & t4 at hop distance of 2 as

communications are via tile t2 (1 hop in X-direction to reach tile t2 and then 1 hop in

Y-direction to reach tile t4). The hop distance between the tiles determines the latency

of the connections that connect the tiles. The application edges are mapped onto the

connections between tiles. Each edge occupies one connection between the tiles at its full

bandwidth and the occupied connection always serves only to the assigned edge in order

to provide through guarantee. Unoccupied connections can be used for other edges when

required. The latency is directly proportional to the hop distance that determines the

length of the connection. Table 7.1 shows the latencies of connections according to the

hop distance. To incorporate that two tiles are at higher hops, we change the latency

of the connections between the tiles according to the hops. This incorporation helps in

finding mappings when the tiles are further apart in the actual platform.

Application Model

The models of streaming applications described in the previous chapter do not con-

sider timing constraints. However, modern embedded systems need to support time-

constrained streaming multimedia applications. Therefore, application models having

132

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

mc

idct

iq

vld

2376

2376

11

1

1

1

1

d1 d2

d3

d4

actor

edge
input rate

output rate
initial tokens

2

Figure 7.2: SDFG model of an H.263 decoder.

actors ptypes GPP(ET,mem) ACC(ET,mem) RH(ET,mem) edges sz mreqt mreqsrc mreqdst ω
vld GPP,ACC (26018,10848) (13009,10848) (–,–) d1 512 2376 2376 1 5
iq GPP,ACC (559,400) (450,400) (–,–) d2 512 1 1 1 5
idct GPP (486,400) (–,–) (–,–) d3 512 2376 1 2376 5
mc GPP,RH (10958,8000) (–,–) (5479,8000) d4 1216512 3 1 1 5

Table 7.2: Resource requirement of actors and edges of H.263 decoder.

timing constraints need to be considered to realize realistic scenarios. Here, Synchronous

Dataflow Graphs (SDFGs) [161] are used to model concurrent multimedia applications

with timing constraints as they facilitate for easier modeling [93]. The SDFG model of

H.263 decoder is shown in Figure 7.2. The nodes model the tasks and are referred to

as actors, which communicate with tokens sent from one actor to another through the

edges modeling dependencies. The H.263 decoder is modeled with four actors vld, iq,

idct & mc and four edges d1, d2, d3 & d4. An actor fires (executes) when there are

sufficient input tokens on all of its input edges and sufficient buffer space on all of its

output channels. Every time an actor fires, it consumes a fixed amount of tokens from

the input edges and produces a fixed amount of tokens on the output edges. These token

amounts are referred to as rates. The rates determine how often actors have to fire with

respect to each other. The edges may contain initial tokens, which are indicated by a

bullet point, as in Figure 7.2.

Definition 7.2 (SDFG) An SDFG (A,E) consists of a set A of actors and a set E of

edges. An edge e = (a1,a2,tk1,tk2) represents a dependency of actor a2 on a1. When

a1 fires, it generates tk1 tokens on e and when a2 fires, it consumes tk2 tokens from e.

Initial tokens on edges are defined as TokIn : E → natural numbers including 0.

133

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

Analysis techniques to calculate throughput and storage requirements for an SDFG

already exist [162]. Throughput is an important constraint for multimedia applications.

Throughput is defined as the inverse of the long term period, i.e., the average time needed

for one iteration of the application. Iteration is defined as the minimum non-zero ex-

ecution such that the original state of the SDFG is obtained. For example, in Figure

7.2, period of H.263 decoder is = ExecTime(vld) + 2376.ExecTime(iq) + 2376.Exec-

Time(idct) + ExecTime(vld), where ExecTime is execution time. It should be noted

that actors iq and idct have to execute 2376 times. This period is just for demonstration

and does not include network and memory access delays. An SDFG with a throughput

of 100 Hz takes 10 ms to complete one iteration.

For modeling an application, resource requirements of the actors and edges are clearly

specified. The application model also specifies a throughput-constraint that must be

satisfied when the application is mapped onto the platform.

Definition 7.3 (Application Graph (AG)) An AG is represented as (A,E,AP,EP)

which is derived from SDFG (A,E). AP and EP provide resource requirement of ac-

tors and edges on the platform, respectively. For each actor a ∈ A, AP provides a tuple

(ET,mem) for each implementation alternative (∈ ptypes), where, ptypes represents the im-

plementation alternatives of the actor, ET and mem represent the execution time (in time-

units) and memory needed (in bits) on the implementation alternative, respectively. AP

provides null values for ET and mem for unsupported implementation alternatives. For

each edge e = (a1,a2,tk1,tk2) ∈ E, EP provides a 5-tuple (sz,mreqt,mreqsrc,mreqdst,ω),

where, sz is size of a token (in bits), mreqt is the memory (in tokens) needed when a1 and

a2 are allocated to the same tile, mreqsrc and mreqdst is the memory (in tokens) needed in

source and destination tile respectively and ω is the bandwidth (in bits/time-unit) needed

when a1 and a2 are allocated to different tiles. The throughput constraint of the AG is

represented as τ .

134

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

vld

d1

iq

d2

idct
.
.
.

260180

. . .

Time

Figure 7.3: Execution trace of H.263 decoder.

Table 7.2 represents the values of AP and EP for actors and edges of the H.263

decoder application. In the previous chapter, it was assumed that each actor have its

implementation alternatives as GPP & RH and each edge to be assigned full connection

bandwidth between the tiles. Here, implementation alternatives and required bandwidth

are varied. Execution pattern of the H.263 decoder (consisting of 4 actors) mapped on

a 4-tile MPSoC platform such that each actor is mapped on a different GPP (ARM

processor) tile is shown in Figure 7.3. It is clearly seen that actors iq and idct have

potential to execute in parallel. It has been observed that when the existing strategies

are applied to perform design-time analysis for the H.263 decoder on a 3-tile platform, in

some cases, the best produced mapping contains actors iq and idct on the same tile while

optimizing for some performance metrics such as power and resource optimization. For

example, the strategy in [138] maps actors iq and idct on the same tile while optimizing

for load balancing on the three used tiles for the application. This forces their execution

sequentially, resulting in reduced throughput. However, we will show that our approach

finds the best mapping which has the maximum throughput where actor iq and idct are

not allocated on the same tile, but sequentially executing actors like vld and iq on the

same tile. Mapping the connected and sequentially executing actors on the same tile

results in reduced communication overhead between the actors, which may maximize the

throughput even when using smaller number of tiles.

135

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

Appln.

Graphs
max_hop_distance

Optimal Mappings

with Throughput

& Energy

Run-time

Manager

Applns. Throughput of Applns.

Mapping

Platform

Design-time Analysis

DSE

Mappings with

Throughput &

Energy

Optimization

Run-time Mapping

Figure 7.4: Hybrid mapping strategy.

7.2 Hybrid Mapping Strategy

This section details our hybrid mapping strategy. The strategy is presented in Figure 7.4.

It has two main steps: 1) analysis of applications at design-time (Design-time Analysis),

and 2) mapping of the applications on a platform by using the analysis results (Optimal

Mappings with Throughput & Energy) with the help of a platform manager (Run-time

Manager) at run-time.

7.2.1 Design-time Analysis

The Design-time Analysis step evaluates a number of mappings for each application

to be supported onto a hardware platform. The applications are evaluated one after

another. The evaluation considers finding different mappings and their throughput &

energy consumption. For each mapping, actors (A) and edges (E) of the application

graph AG are bound to tiles (T) and connections (C) between two tiles or the memory

inside a tile in the platform graph PG. This binding gives a resource allocation for the

application graph AG on the platform graph PG with the following constraints for each

tile t ∈ T :

(i) (memory imposed by actors and edges bound on t) ≤ (memory (m) on t),

(ii) (allocated input connections on t) ≤ (maximum input connections ci on t),

(iii) (allocated output connections on t) ≤ (maximum output connections co on t),

136

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

(iv) (allocated incoming bandwidth on t) ≤ (maximum incoming bandwidth iω on t),

(v) (allocated outgoing bandwidth on t) ≤ (maximum outgoing bandwidth oω on t).

Throughput & Energy Consumption Computation

The throughput for a mapping is computed by taking the resource allocations into ac-

count. First, static-order schedule for each tile is constructed that orders the execution

of bound actors. A list-scheduler is used to construct the static-order schedules for all

the tiles at once. Then, all the binding and scheduling decisions are modeled in a graph

called binding-aware SDFG. Finally, throughput is computed by self-timed state-space

exploration of the binding-aware SDFG [162].

The energy consumption for a mapping is computed as sum of the communication and

computation energy for all the tasks for one iteration of the application. Communication

energy is required to transfer data from source tile to destination tile through a connec-

tion when actors mapped on the two tiles need to communicate with each other. The

communication energy is estimated as product of the number of bits to be transferred,

number of hops to be traversed between the two tiles and energy required to transfer

one bit through one hop, for each edge (e) mapped to a connection (conn) from equa-

tion Eq. 7.1. The transferred bits through a connection are calculated as the product

of the number of tokens to be transferred and the token size for the edge mapped on

the connection. The number of tokens for an edge (e) is computed as the product of

repetition vector of source (or destination) actor and source (or destination) port rate of

the edge from equation Eq. 7.2. The energy required to transfer one bit through one hop

is denoted as ELbit [156] [157]. Computation energy is required to process the transferred

token on the destination tile after it is received and able to fire (execute) the mapped

actor. The computation energy for each actor (a) mapped to tile (t) is estimated as

product of the number of executions of actor a, execution time and power consumption

137

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

of a on tile t from equation Eq. 7.3. Total energy consumption is measured as sum of

communication and computation energy.

Ecomm =
∑

[(e → nrTokens)× (e → tokenSize)× hopCount× ELbit] (Eq. 7.1)

e → nrTokens = repV ector[e → srcActor]× (e → srcPortRate) (Eq. 7.2)

Ecomp =
∑

[repV ector[a]× (a → execT ime(t → procType))× procPower] (Eq. 7.3)

The Design-time Analysis for an application (Appln. Graph) first performs design

space exploration (DSE) to obtain design points that contain mappings and their corre-

sponding throughput and energy consumption (Mappings with Throughput & Energy).

Then, an optimization on the explored design points to get only the Pareto-optimal de-

sign points (Optimal Mappings with Throughput & Energy) providing through and energy

consumption at different resource combinations (Fig. 7.4). The DSE flow is presented in

Fig. 7.5.

The DSE flow first considers a generic platform graph (T,C,L) that can cover all the

possible mappings for the application graph (A,E,AP,EP) to be analyzed currently. A

platform containing n tiles of each implementation alternative provided in the application

is considered, where n is the number of actors in the application. This platform is capable

of covering all the potential mappings. Considering any bigger platform wouldn’t provide

better performance as the considered one can exploit all the parallelism present in the

application. However, all the parallelism might not be exploited if a small size platform

is considered where concurrent executing tasks will get mapped on the same tile.

Initially, the considered platform contains tiles with separation between them as one

hop distance (hop distance = 1), which provides a minimum fixed latency for all the

138

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

Consider a Platform of n Tiles of each

implementation alternative

Appln. Graph max_hop_distance

Evaluate Homogeneous Tiles mappings

No

Yes

hop_distance = max_hop_distance ?

Finish

h
o
p
_
d
is
ta
n
ce
+
+

n = nrActors(Appln. Graph);

IA[] = ImplementAlternatives(Appln. Graph);

Evaluate Heterogeneous Tiles mappings and

add them to the mapping set M

Select best mappings at

each resource combination

hop_distance = 1

M

Updated set M

Mappings with

Throughput & Energy

(MTED)

Figure 7.5: Design-time DSE flow.

connections between the tiles. The DSE flow is repeated by considering a similar plat-

form that contains tiles with separation of one higher hop distance (hop distance++)

between them, i.e., with increased latency for connections, till the hop distance reaches

to max hop distance (one of the input to the DSE flow). The designers can choose an ap-

propriate value of max hop distance depending upon the expected hardware platform at

run-time, where, maximum separation between the tiles can be up to max hop distance.

For a higher value of max hop distance, the design-time DSE evaluates larger number

of mappings. This requires more evaluation time but the applicability of mappings get

increased. For example, evaluated mappings with max hop distance value of 6 are appli-

cable to any platform where maximum separation between the tiles is less than or equal

to 6 hops such as mesh of 2×2, 2×3, 3×3 and 4×4 tiles platforms.

By considering varying values of hop distance, we get mappings where each edge of

the application is mapped to a connection at hop distance of one (to account for minimum

latency) to max hop distance (to account for maximum latency). This facilitates us to

139

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

cater for the run-time aspects when the available tiles are at different hop distances. A

strategy to find the best mapping in such run-time scenarios is presented in Section 7.2.2.

We have considered generic tile architecture so any type of interconnection network can

be modeled. The main steps of the DSE flow (highlighted in Fig. 7.5) and optimization

technique are described subsequently.

7.2.1.1 Evaluating Homogeneous Tiles Mappings

This step evaluates mappings using only GPP tiles. The mappings can be explored in

different ways. One way could be exhaustive design space exploration where all the

possible actors to tiles combinations, i.e. mappings are evaluated. However, exhaustive

exploration is not scalable as the number of combinations grows exponentially with the

number of actors or tiles. Thus, it may take days or weeks for large application and/or

platform size. The application and platform size are referred to as the number of actors

and tiles, respectively. To overcome the large exploration overhead, we have devised

pruning-based DSE strategies, where evaluation of inefficient mappings is discarded and

almost the same quality of mappings is produced. Next, we present an exhaustive and

pruning-based DSE strategies.

Homogeneous Exhaustive Design Space Exploration (HomEDSE)

In HomEDSE, the exploration of mappings follows a set of steps described subsequently.

An application with one actor (a1) to be mapped on GPP tiles has only one unique

actor to tile mapping, which is computed from equation Eq. 7.4. An application with

two actors (a1,a2) has two unique mappings that is computed from equation Eq. 7.5.

One mapping contains actors on separate tiles (1C0 implies that from the remaining one

actor a1, it is not chosen to combine it with actor a2) and another on the same tile (1C1

implies that actor a1 is chosen to combine it with actor a2). Similarly, for an application

with three actors (a1,a2,a3), the unique mappings are computed from equation Eq. 7.6.

140

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

First, actor a3 is mapped separately, i.e., not combined with others (from the remaining

two actors a1 & a2, none is chosen to combine with a3, indicated as 2C0) and remaining

two actors are mapped by using equation Eq. 7.5 (fEDSE(2,a1,a2)), providing two unique

mappings. Then, from the remaining two actors one actor is chosen to combine with actor

a3 (2C1) and the remaining actor is mapped separately, providing two unique mappings.

Next, from the remaining two actors, both are chosen to combine with actor a3, providing

one unique mapping. Thus, for an application with three actors, a total of five unique

actors to tiles mappings are evaluated. In the similar manner, for an application with

four actors (a1,a2,a3,a4), all the unique mappings are computed from equation Eq. 7.7

and we get a total of 15 unique mappings.

The equations are extended in the similar manner to evaluate all the unique map-

pings when an application contains large number of actors. For an application with

n actors (a1,a2,...,an), the mappings can be computed from equation Eq. 7.8. It can

be observed that when computing mappings for larger number of actors, the mappings

computed at lower number of actors are used, such as fEDSE(n − 1,a1,a2,...,an−1) in

fEDSE(n,a1,a2,...,an).

fEDSE(1, a1) = 1 (Eq. 7.4)

fEDSE(2, a1, a2) =
1C0 × fEDSE(1, a1) +

1C1 (Eq. 7.5)

fEDSE(3, a1, a2, a3) =
2C0 × fEDSE(2, a1, a2)

+2C1 × fEDSE(1, remain actor) + 2C2

(Eq. 7.6)

fEDSE(4, a1, a2, a3, a4) =
3C0 × fEDSE(3, a1, a2, a3)

+3C1 × fEDSE(2, remain actors)

+3C2 × fEDSE(1, remain actor) + 3C3

(Eq. 7.7)

141

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

.

.

.

fEDSE(n, a1, a2, ..., an) =
(n−1)C0 × fEDSE(n− 1, a1, a2, ..., an−1)

+(n−1)C1 × fEDSE(n− 2, remain actors)

+(n−1)C2 × fEDSE(n− 3, remain actors)

.

.

+(n−1)Cn−2 × fEDSE(1, remain actor) + (n−1)Cn−1

(Eq. 7.8)

Homogeneous Pruning-based Design Space Exploration (HomPDSE)

In HomPDSE strategy, first 1 actor-to-1 GPP tile mapping is evaluated, where n actors

of the application are mapped onto n GPP tiles so that each GPP tile contains exactly one

actor and the edges are mapped onto connections. The mapping is added to a mapping

setM . Then, mappings at reduced tile count (p = n−1), i.e. mappings using (n−1) GPP

tiles are evaluated by Algorithm 8. The algorithm takes the best mapping using (p+ 1)

GPP tiles as input and evaluates mappings using p GPP tiles. First, (p + 1) GPP tiles

containing actor(s) are selected. Then, for each pair of selected tiles, all the actors from

one GPP tile are moved to another to generate a new mapping. Each generated mapping

is added to a mapping set M after computing its throughput and energy consumption.

For the selected (p+ 1) GPP tiles, the algorithm finds (p+ 1)-choose-2 ((p+1)C2) unique

pairs and thus evaluates the same number of mappings using p GPP tiles, where 0 < p

< n.

Out of all the evaluated mappings using p GPP tiles, the maximum throughput

mapping is selected as the best mapping to evaluate mappings at further reduced tile

142

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

Algorithm 8: GPP Tiles Mappings Evaluation at Reduced Tile Count

Input: Best mapping α using (p+ 1) GPP tiles.
Output: Mappings using p GPP tiles.
Select p+ 1 GPP tiles (∈ T) containing actor(s);
for each unique pair of selected tiles do

Move actor(s) from one GPP tile to another to generate a new mapping β;
Compute throughput and energyConsumption of β;
Add β with its throughput and energyConsumption to set M ;

end

count, i.e. mappings using (p− 1) GPP tiles by following the steps of Algorithm 8. The

same process is repeated until the tile count reduces to one. Thus, all the mappings using

different number of GPP tiles get stored into the mapping set M . We have assumed that

GPP implementation alternative is available for all the actors. However, this assumption

can easily be removed by allocating the actors to their first available implementation

alternatives.

7.2.1.2 Evaluating Heterogeneous Tiles Mappings

The heterogeneous tiles combination mappings are evaluated by using the GPP tiles

mappings (M) obtained in the previous step. Such mappings are possible only when

implementation alternatives other than GPP tiles are also available. To evaluate the

combination mappings, we have devised two exploration strategies. In one, the explo-

ration is performed exhaustively in order to evaluate all the possible mappings. The

exhaustive exploration is not scalable as the number of mappings grows exponentially

with the number of actors or tiles. In another strategy, we perform the exploration by

pruning among the mappings. The evaluated mappings are added to the same mapping

set M . Next, we introduce the two strategies.

Heterogeneous Exhaustive Design Space Exploration (HetEDSE)

In HetEDSE, the exploration is performed by using Algorithm 9. The algorithm evaluates

all the possible combination mappings corresponding to each mapping in set M. This

143

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

Algorithm 9: Exhaustive Heterogeneous Tiles Combination Mappings Evaluation

Input: GPP tiles mappings M.
Output: Heterogeneous tiles combination mappings to be added to set M .
for each GPP tiles mapping α (∈ M) do

findHeterogTilesCombMappings(α, t1);
end

function findHeterogTilesCombMappings(Mapping β, Tile startGPPTile)
if startGPPTile == lastGPPTile+1 then

return;
end
for Tile i = firstGPPTile to lastGPPTile (in current mapping) do

for each implementation alternative κ other than GPP (e.g., DSP, ACC, RH tiles) do
if tile i contains actor(s) ∈ A and all have their implementation alternatives as κ then

Move actor(s) of tile i to a κ-type tile having no previous actor to generate a new
mapping α;
Compute throughput and energyConsumption of α;
Add α with its throughput and energyConsumption to set M ;
findHeterogTilesCombMappings(α, i+1);

end

end

end
end function

approach explores more number of mappings and decreases the chance of missing the

maximum through mapping at different combinations, but the exploration overhead is

high.

Heterogeneous Pruning-based Design Space Exploration (HetPDSE)

In HetPDSE, the exploration is performed by using Algorithm 10. At each tile count

(tileCount), the maximum throughput mapping using GPP tiles is selected to generate

mappings at different processing tile-combinations. For the selected mapping, the actors

on each GPP tile are moved to another tile type (implementation alternative) in order

to generate a new mapping provided all the actors on the GPP tile can be supported

on the other tile type. The actors moving condition avoids the evaluation of mappings

using non-supported tile-combinations. The generated mapping with its throughput and

144

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

Algorithm 10: Pruning-based Heterogeneous Tiles Combination Mappings Evaluation

Input: GPP Tiles Mappings M .
Output: Heterogeneous tiles combination mappings to be added to set M .
for tileCount = n (number of actors in the AG); tileCount >= 1; tileCount−− do

Select maximum throughput mapping γ using tileCount GPP tiles from set M ;
maxNrTileTypesUsed = 1 // only GPP tiles used;
repeat

Initialize the mapping set S, i.e., S = { };
for each GPP tile t (∈ T) in the current mapping γ do

for each implementation alternative κ other than GPP (e.g., DSP, ACC, RH
tiles) do

if t contains actor(s) ∈ A and all have their implementation alternatives as κ
then

Move actor(s) of tile i to a κ-type tile having no previous actor to generate
a new mapping δ;
Compute throughput and energyConsumption of δ;
Add δ with its throughput and energyConsumption to set S and to global
set M ;
Move actor(s) back on the initial tile t to reset γ;

end

end

end
Select maximum throughput mapping from set S and assign as current mapping γ;
maxNrTileTypesUsed++;

until maxNrTileTypesUsed ≤ tileCount;

end

energy consumption is added to set M and temporary set S. The mappings at next

possible tile-combinations are evaluated by selecting the maximum throughput mapping

from the temporary set S. By selecting the maximum throughput mapping at different

places in the algorithm, evaluation of inefficient mappings is discarded.

7.2.1.3 Selecting and Storing Best Mapping at Each Processing Resource
Combination

At each possible processing tile-combination, we get a number of mappings. This step

selects the maximum throughput mapping and minimum energy consumption mapping

at each tile-combination, and stores them into the mappings with throughput & energy

database (MTED) (Fig. 7.5). In cases when both the maximum throughput and mini-

145

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

mum energy consumption mapping are the same, only one mapping is stored. The stored

mappings are sorted by number of tiles used by them in increasing order. The number

of used tiles are referred to as tile count. At each tile count, the mappings get stored in

increasing order of heterogeneity as explained in Algorithm 10. Increasing heterogeneity

implies use of more number of tile types.

Storing the mappings in such order facilitates for run-time selection from lower tile

count to higher tile count and in increasing order of heterogeneity at each tile count. The

run-time approach finds a throughput-satisfying mapping using the minimum number of

tiles (tile count) and having minimum energy consumption. While evaluating mappings

by Algorithm 10, it might be possible that all the possible tile-combinations are not

covered because of the pruning consideration to speed up the exploration. In such cases,

at run-time we need to look for a combination that is subset of the covered combination.

The run-time algorithm is described later in Section 7.2.2.

7.2.1.4 Optimization

Amongst the stored mappings in the database MTED, it might be possible that some

of them are sub-optimal. The sub-optimal mappings require more number of processing

processing tiles as compared to others and have less throughput (performance) and higher

energy consumption. For example, for an application, a mapping requiring 3 GPP & 1

ACC tiles might have less throughput and high energy consumption as compared to a

mapping requiring only 2 GPP & 1 ACC tiles. The former mapping is sub-optimal and it

has to cater for larger communication overhead without much gain in parallel processing

and thus provides less throughput and consumes high energy. There is no point in keeping

such sub-optimal mappings. So, we perform an optimization on MTED to discard all

such mappings in order to store only Pareto-optimal mappings as Optimal Mappings with

Throughput & Energy (OMTED) (Fig. 7.4).

146

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

The concepts of Pareto algebra has been used to find the Pareto-optimal mappings

[163]. In optimization, we compare throughput and energy consumption of mappings

requiring higher number of tiles to ones requiring lower number of tiles. If throughput

of a mapping using higher number of tiles is the same or smaller than the throughput

of a mapping using lower number of tiles, energy consumption in latter mapping is the

same or lower than the former mapping and processing tiles in the latter mapping are a

subset of processing tiles in the former mapping, then the former mapping is discarded.

The same process is performed for each processing tile-combination to discard all the

sub-optimal mappings. The optimization result includes Pareto-optimal mappings and

each such mapping is better than another in terms of throughput, energy consumption or

resource usage. Keeping only the optimal mappings reduces memory requirement to store

them and overhead in selecting the best mapping since the run-time mapping strategy

needs to select from a relatively smaller set of mappings.

Design-time Analysis: Complexity

The design-time analysis complexity in terms of number of actors n, number of imple-

mentation alternatives µ and max hop distance h has been computed. The worst-case

complexity (C) is determined by the total number of evaluated mappings (M) in the

DSE flow (Figure 7.5) when all the actors have µ implementation alternatives. We have

computed the total mappings when pruning-based DSE is performed during both the

homogeneous and heterogeneous tiles mappings evaluation. For a given value of n, µ and

h, the total number of mappings evaluated over the DSE loops is calculated by Equation

Eq. 7.9. The number of homogeneous and heterogeneous tiles mappings is evaluated by

Equation Eq. 7.10 and Eq. 7.11, respectively.

C = h× [nrHomogeneousT ilesMappings+ nrHeterogeneousT ilesMappings]
(Eq. 7.9)

147

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

nrHomogeneousT ilesMappings = 1 +
n−1∑
p=1

((p+1)C2) = 1 +
n−1∑
p=1

(
p2

2
+

p

2

)
= 1 +

n3 − n

6

(Eq. 7.10)

nrHeterogeneousT ilesMappings = (µ− 1)
n∑

p=1

{p+ (p− 1) + (p− 2) + ...+ 2 + 1}

= (µ− 1)
n∑

p=1

(
p2

2
+

p

2

)
= (µ− 1)

(
n3

6
+

n2

2
+

2n

6

)
(Eq. 7.11)

Thus, the total number of mappings can be calculated as follows.

C = h×
[
1 +

n3 − n

6
+ (µ− 1)

(
n3

6
+

n2

2
+

2n

6

)]
= h×

[
µn3

6
+

(µ− 1)n2

2
+

(2µ− 3)n

6
+ 1

]
(Eq. 7.12)

In Equation Eq. 7.10, (p+1)C2 is the number of unique pair of GPP tiles at tile count

of p + 1. Each pair forms a mapping using p GPP tiles. Heterogeneous tiles mappings

are possible only when any actor has more than one implementation alternative, i.e. µ >

1. So, Equation Eq. 7.11 is valid for µ > 1. Total number of mappings can be calculated

from Equation Eq. 7.12, which has complexity of O(hµn3). The existing and exhaustive

exploration strategies evaluate more number of mappings as compared to the pruning-

based strategy and thus have complexity of higher orders. The mappings evaluated by

existing strategies are discussed in Section 7.4 and compared with our strategies.

Design-time Analysis for a Given Platform Size

The DSE strategy presented in Figure 7.5 considers a generic MPSoC platform. However,

for a given platform (PG) containing smaller number of tiles than the number of actors

in the application (AG), the mappings with more number of tiles than present in the

given platform will never be used. Such mappings have been referred to as infeasible

mappings for the given platform. The DSE process can be speeded up by discarding the

evaluation of such infeasible mappings.

148

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

Evaluation of infeasible mappings is avoided by extending the DSE flow presented in

Figure 7.5. The number of tiles (nrTiles) in the given platform is taken as one additional

input to the DSE flow. Homogeneous tiles mappings are evaluated in the similar manner.

While evaluating heterogeneous tiles combination mappings, Algorithm 10 is modified to

start the mappings evaluation starting from tile count value of nrTiles in order to discard

evaluation of infeasible mappings. All the mappings using a maximum of nrTiles tiles

are then selected and stored, which will be applicable to the given platform.

7.2.2 Run-time Mapping

The Design-time Analysis step performs all the compute intensive analysis and thus

leaves for minimum computation at run-time. The generated mappings in the analysis are

applicable to any target MPSoC platform considered at run-time as long as i) the target

platform tile types are subset of the analyzed tile types and ii) the maximum distance

between the chosen target platform tiles for mapping is less than or equal to the maximum

separation for which the DSE was performed. Thus, no additional design-time analysis is

needed in case of such different target platforms. This approach is analogues to analyze

once & run everywhere, which is similar to Java’s write-once-run-everywhere capability.

Figure 7.6 shows a demonstration for three types of tiles (GPP, RH, ACC) analyzed

during DSE with maximum separation between the tiles as 3 hop (hop distance). The

analyzed results will be applicable to the three shown target platforms as their tile types

and max hop distance are subset of the tile types and maximum separation considered

during DSE.

Run-time mapping of throughput-constrained multimedia applications onto a plat-

form is handled by the Run-time Manager (Figure 7.4). Out of many available processors

in the platform, one of them is used as manager processor that is responsible for actor

mapping, actor scheduling, platform resource control and configuration control. The re-

sources status is updated at run-time when an actor is loaded in the platform in order

149

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

max_sep = 3 hop

GPP

max_hop = 1

max_hop = 2

RH

GPP RH

RH RH

max_hop = 3ACC RH

GPP ACC

GPP

RH

Target Platform 1 Target Platform 2 Target Platform 3

GPP

RH ACC

GPP General Purpose Processor

RH Reconfigurable Hardware

ACC Accelerator

Design-time considered

platform tile types

Run-time Target Platforms

Figure 7.6: Analyze once & run everywhere demonstration.

to provide the manager processor with accurate knowledge of resource occupancy which

is required for taking the mapping decision based on available resources at run-time.

Run-time manager (RTM) maps the applications on the platform one after another, i.e.

after accomplishing mapping for one application, it goes on to map the next application

till all the applications are mapped. The strategy adopted by the RTM to map an ap-

plication is presented in Algorithm 11. The strategy takes the application, its desired

throughput, platform with updated resources’ status and the optimized mapping storage

OMTED as input and selects the best mapping from the OMTED depending upon the

desired throughput and available platform tiles. The selected best mapping satisfies the

throughput requirement, uses minimum resources and has minimum energy consump-

tion. The platform is then configured based on the actors to tiles allocations provided in

the selected mapping.

The RTM first finds the maximum number of tiles that might get used (Max Tiles Used)

by the application and then the number of available tiles (Tiles Available) in the plat-

form. Amapping satisfying the throughput constraint of the application (τ ≤ thrMapping)

and having minimum energyconsumption is selected from the OMTED by iterating from

tile count one to Max Tiles Iter. Maximum tiles iteration value Max Tiles Iter is cal-

culated as minimum of Tiles Available & Max Tiles Used in order to restrict unnec-

150

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

Algorithm 11: Hybrid Run-time Mapping

Input: Application AG, Required throughput τ , Platform PG, Optimized mapping database
OMTED.

Output: The best mapping satisfying the throughput-constraint τ .
Max Tiles Used = nrActors(AG); Tiles Available = nrAvailTiles(PG); Max Tiles Iter =
0; tile count = 1;
if Tiles Available > 0 then

Max Tiles Iter = min(Max Tiles Used, Tiles Available);
repeat

for each mapping ϕ using tile count tiles in OMTED do
Select closest available tile count tiles used by ϕ in PG ;
hop max = findMaximumHop(selected tiles);
thrMapping = Find(OMTED, AG, tile count, ϕ, hop max);
if τ ≤ thrMapping then

Mapping list = Find all throughput satisfying mappings using the same
resource combination as of ϕ from OMTED ;
Select the mapping having minimum energyconsumption from Mapping list
and exit;

end

end
tile count++;

until tile count ≤ Max Tiles Iter;
No mapping found;

else
Application can’t be supported, i.e., no mapping found;

end

essary search in the OMTED. For each mapping using tile count tiles, first, the RTM

selects closest available tiles in the platform, then finds maximum hop distance (hop max)

between the selected tiles, and finally, throughput of the mapping (thrMapping) to be

checked against the throughput constraint τ . As soon as a throughput satisfying mapping

ϕ is found (τ ≤ thrMapping), all the throughput satisfying mappings using the same

resource combination as of ϕ are found and added into a mapping list (Mapping list).

Thereafter, the mapping having minimum energy consumption is selected from the map-

ping list and the platform is configured based on the selected mapping. If a throughput

satisfying mapping is not found then the application cannot be supported on the plat-

form with the available resources. In such case, the application mapping may be tried

151

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

with relaxed throughput requirement in order to support it on the platform.

Throughput computation for a mapping takes much more time than the time to find

the mapping, i.e. tasks to tiles allocations. Our RTM just selects the best mapping with-

out involving throughput computation at run-time and thus accelerates the run-time

mapping process. Further, the selected throughput satisfying mapping uses minimum

number of tiles as search is performed from lower tile count to higher tile count. The se-

lected mapping has minimum energy consumption as well. Therefore, the RTM performs

effective and efficient mapping.

7.3 Implementing Hybrid Mapping

The hybrid mapping flow has been applied onto some applications to demonstrate how

the flow first performs design-time analysis, and then maps the required applications onto

a platform at run-time.

Design-time Analysis

The DSE step of design-time analysis evaluates multiple mappings for an application. Let

us consider an application modeled with 3 actors (a1, a2 and a3) having implementation

alternatives as GPP, DSP and ACC tiles for each of them. The DSE flow first considers

a platform containing 3 tiles of each implementation alternative, and then evaluates

mappings using GPP tiles followed by mappings using combinations of GPP, DSP and

ACC tiles. The GPP, DSP and ACC tiles are represented in different shades as shown

in Figure 7.7.

Mappings using only GPP tiles are evaluated by the HomPDSE strategy described

in Section 7.2.1.1. First, 1 actor-to-1 GPP tile mapping is evaluated where each GPP

tile contains exactly one actor as shown in Figure 7.7 (top-left mapping). Only the used

tiles of the mapping are shown. The edges are mapped on connections between the tiles

152

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

Mappings using 3 tiles

(tile_count = 3)

Maximum throughput mapping

a1

Forward the mapping

Maximum throughput mapping

Forward the mapping

Maximum

throughput

mapping

Maximum throughput mapping

Maximum throughput mapping

Maximum throughput mapping

Mappings using 2 tiles

(tile_count = 2)

Mappings using 1 tile

(tile_count = 1)

General Purpose Processor (GPP)

Digital Signal Processor (DSP)

Accelerator (ACC)a2 a3

a1 a2 a3

a1 a2 a3

a1 a2 a3

a1 a2 a3

a1 a2 a3

a1 a2 a3

a1 a2 a3

a1 a2 a3

a1 a2 a3

a1 a2 a3

a1 a2 a3

a1 a2 a3

a1,a2 a3

a1 a2,a3

a2 a1,a3

a2 a1,a3

a2 a1,a3

a2 a1,a3

a2 a1,a3

a2 a1,a3

a2 a1,a3

a1,a2,a3

a1,a2a3

a1,a2,a3

Figure 7.7: Design space exploration for an application modeled with 3 actors a1, a2 and
a3.

which we have not shown as we want to focus only on the number of mappings that

depends upon placement of the actors. Here, for each mapping, the tiles are shown as

linearly arranged as we just want to illustrate the DSE flow, whereas in the actual flow

the separation between the tiles can be any fixed value of hop distance. Next, mappings

at one reduced tile count, i.e., mappings using 2 GPP tiles are evaluated by Algorithm

8. The algorithm finds 3 (3C2) unique pair of tiles containing actor(s) from 1 actor-

to-1 GPP tile mapping as shown in Figure 7.7. The maximum throughput mapping at

each tile count is selected and forwarded to evaluate mappings at reduced tile count. We

have considered the highlighted mapping as the maximum throughput one so the same

is forwarded. We get a mapping using one GPP tile. Thus, the flow evaluates a total of

5 mappings, which is the same as the ones calculated from equation Eq. 7.10, i.e., [1 +

(33 - 3)/6].

Mappings using combination of GPP, DSP and ACC tiles are evaluated by the Het-

PDSE strategy (Algorithm 10) described in Section 7.2.1.2. At each tile count, Algorithm

153

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

10 takes maximum throughput mapping using GPP tiles as input and evaluates map-

pings using combination of tiles as shown in Figure 7.7. Each task is moved from GPP

tile to DSP and ACC tiles to generate mappings. The maximum throughput mapping

(highlighted one) is selected and forwarded to evaluate mappings at further tile combina-

tions by moving only the tasks of GPP tiles to DSP and ACC tiles. The same process is

repeated until all the tasks of GPP tiles are moved to DSP or ACC tiles. The algorithm

evaluates a total of 20 mappings, which is the same as the ones calculated from equation

Eq. 7.11 by putting n and µ equal to 3.

Similarly, DSE can be demonstrated for multimedia applications modeled with dif-

ferent number of actors. Similar demonstration can be performed by using other DSE

strategies for evaluating homogeneous and heterogeneous tiles mappings. Let us assume

that the target platform on which the applications need to be mapped is a 4×4 grid of

tiles as shown in Figure 7.8. For this platform, the value of max hop distance is 6, so the

DSE is repeated 6 times by considering platform tiles separated by hop distance of 1 to

6.

Run-time Mapping

The run-time mapping of the analyzed applications on the target platform is handled by

the run-time strategy presented in Algorithm 11. The applications are mapped one after

another. For each application, the strategy selects the best mapping from the OMTED

subject to desired throughput and available platform tiles. Let some applications be

already mapped on the platform and they are using the busy tiles as shown in Figure

7.8. Run-time mapping of H.263 decoder (Figure 7.2) and DSE demonstrated application

(modeled with 3 actors a1, a2 and a3) on the available tiles is shown in Figure 7.8.

Let us assume that for H.263 decoder and the demonstrated application, throughput

satisfying mappings using 3 and 2 tiles respectively are found which uses different tile

type combinations.

154

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

BUSY

a2a1,a3idct,mc

BUSYiqvld

BUSYBUSYBUSYBUSY

BUSYBUSYBUSY

t1 t2 t3 t4

t5 t6 t7 t8

t9 t10 t11 t12

t13 t14 t15 t16
BUSY

BUSY

BUSY

Busy GPP Tile

Busy DSP Tile

Busy ACC Tile

Available GPP Tile

Available DSP Tile

Available ACC Tile

H.263 decoder mapping Example application mapping

Figure 7.8: Run-time mapping of H.263 decoder (4 actors) and the example application
(3 actors a1, a2 and a3).

The four actors vld, iq, idct & mc of H.263 decoder are mapped onto the 3 closest

available tiles t2, t5 & t6 based on the allocations provided in its found mapping as shown

in Figure 7.8. In the found mapping, all the edges are separated by a hop distance

of 2. So, mapping the actors on the available tiles as shown will satisfy the throughput

constraint for sure as some edges will be mapped at lower hop distances (lower latencies).

Edges are mapped on the connections between the tiles. Similarly, three actors a1, a2

& a3 of the demonstrated application are mapped onto 2 closest available tiles t3 & t4

based on its found mapping, as shown in the Figure 7.8.

7.4 Performance Evaluation

The proposed hybrid mapping strategy has been implemented as an extension of the

publicly available SDF3 tool set [93]. As a benchmark to evaluate the run-time and

quality of the strategy, models of real-life multimedia applications H.263 decoder (4

actors), H.263 encoder (5 actors), JPEG decoder (6 actors), MP3 decoder (14 actors)

and models of synthetic applications containing varying number of actors have been

155

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

considered. Experiments are performed on a Core 2 Duo processor at 3.16 GHz.

The same generic platform graph is considered to evaluate the different strategies for

an application. In the platform, the number of tiles and their types depend upon the

number of actors and their implementation alternatives provided in the application. We

consider tile-based architecture but any other type of architecture can also be considered

based on the known latencies between the tiles as discussed earlier.

The same generic platform graph is considered to evaluate the different strategies for

an application. In the platform, the number of tiles and their types depend upon the

number of actors and their implementation alternatives provided in the application. We

consider tile-based architecture but any other type of architecture can also be considered

based on the known latencies between the tiles as discussed earlier. For an actor, the

implementation alternative could be GPP, accelerator, RH etc. ARM7TDMI [164] is used

as GPP. The accelerator for each actor is different as it is customized for a specific task to

be performed by the actor. The RH can be configured to support actors according to their

requirement and as an accelerator. The considered applications contain some common

actors and we have considered the same RH for an actor. The common actors video length

decoding (vld) [165], inverse quantization (iq) [166], inverse discrete cosine transform

(idct) [167], motion compensation (mc), motion estimation (me) and Deblocking [168] are

considered to have their one of the implementation alternatives as RH. While performing

simulation, execution time and power consumption of different actors are considered

based on their mapping on different types of tiles.

In particular, while evaluating homogeneous tiles mappings, we present results ob-

tained from our design-time pruning-based (HomPDSE) exploration flow and compare

them to that of the exhaustive exploration (HomEDSE) flow, the flow presented in [138]

and [141]. While evaluating heterogeneous tiles mappings, we present results obtained

from HetEDSE and HetPDSE flows and compare them to the existing flows. For evaluat-

ing the homogeneous and heterogeneous tiles mappings when HomPDSE and HetPDSE

156

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

are employed respectively, the overall approach is referred to as heuristic DSE (HDSE)

and when HomEDSE and HetEDSE are employed, the approach is referred to as ex-

haustive DSE (EDSE). We implemented the flow in [138], [141], EDSE and HDSE flows

with similar steps in order to make a fair comparison amongst them. The flow in [141]

is applied to scenarios, where each scenario contains a different version of the same ap-

plication. The different versions model different behavior of an application at different

times. We consider a single scenario, i.e., a single version of the application that has

always the same behavior. So, mappings obtained with this flow can be fairly compared

with our DSE flows. We have compared HDSE flow with above mentioned flows as they

also perform exploration to evaluate mappings providing different throughput values and

we target throughput aware run-time mapping. The results from the hybrid run-time

mapping (HRM) technique are compared to that of run-time techniques presented in

[129] and [J-1].

7.4.1 Design Space Exploration

Table 7.3 shows the design-time HDSE results for the H.263 decoder (4 actors) at

max hop distance of 4 when each actor has two implementation alternatives ARM and

RH. The DSE flow runs 4 times from hop distance of 1 (hop 1) to 4 (hop 4). For each run,

the numbers of evaluated and best mappings at different tile-combinations are shown as

nrMaps and nrBestMaps respectively. A total of 31 mappings are evaluated, which is the

same as calculated from equation Eq. 7.12 with n and µ values as 4 and 2 respectively. At

each tile-combinations, the best mappings (nrBestMaps) are chosen from the evaluated

mappings (nrMaps). The best mappings excel in throughput or energy consumption. We

can get more than one best mapping as the evaluated mappings might have throughput-

energy trade-offs. At each hop, the best mappings’ throughput & energy consumption is

shown. The last two rows (for tile count value of 1) are empty for hop 1 through hop 4

157

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

Tile Tile Best mappings’ throughput (× 10−10/time-units) & energy consumption (× 10−3mJ)
Count Combinations nrMaps nrBestMaps hop 0 hop 1 hop 2 hop 3 hop 4

4 4ARM 1 1 × 28,655 & 393 28,616 & 515 28,578 & 638 28,540 & 761
3ARM & 1RH 4 1 × 29,170 & 301 29,130 & 424 29,090 & 547 29,050 & 670
2ARM & 2RH 3 2 × 29,170 & 249 29,130 & 372 29,090 & 495 29,051 & 618

× 29,612 & 268 29,571 & 390 29,530 & 513 29,489 & 636
1ARM & 3RH 2 1 × 29,612 & 216 29,571 & 369 29,530 & 461 29,489 & 584

4RH 1 1 × 29,612 & 194 29,571 & 317 29,530 & 439 29,489 & 562
3 3ARM 6 1 × 62,669 & 352 62,665 & 434 62,661 & 515 62,657 & 597

2ARM & 1RH 3 1 × 67,387 & 227 67,382 & 309 67,378 & 390 67,373 & 472
1ARM & 2RH 2 2 × 67,387 & 175 67,383 & 257 67,378 & 338 67,374 & 420

× 69,970 & 205 69,965 & 287 69,960 & 369 69,956 & 450
3RH 1 1 × 69,970 & 153 69,965 & 235 69,960 & 317 69,956 & 398

2 2ARM 3 1 × 91,585 & 311 91,583 & 352 91,580 & 393 91,578 & 434
1ARM & 1RH 2 1 × 123,230 & 164 123,228 & 205 123,227 & 246 123,226 & 287

2RH 1 1 × 123,230 & 112 123,228 & 153 123,227 & 194 123,226 & 235
1 1ARM 1 1 73,961 & 270 × × × ×

1RH 1 1 106,204 & 71 × × × ×

Table 7.3: DSE results for H.263 decoder.

as hop distance between mapped actors on the single tile will be zero. This hop distance

is referred to as hop 0 and it is not applicable when actors will mapped on more than

one tile, denoted as ×. Similar DSE results have been obtained for other multimedia

applications. The results can easily be extended for higher hops by taking a large value

of max hop distance, which can cater for larger future target platforms. At run-time, one

can select a mapping having maximum throughput and minimum energy consumption

depending upon the available tiles and maximum hop distance between them.

The Pareto-optimal mappings are highlighted in Table 7.3. These mappings require

less number of tiles and provide the same or better performance (throughput and energy

consumption). It can be seen in Table 7.3 that the mappings using 3 or 4 tiles have worst

performance than mappings using only 2 tiles. This is because of larger communication

overhead while using more number of tiles and not gaining much in parallel processing.

Similar optimization results have been obtained for other multimedia applications.

We have applied the exhaustive DSE (EDSE), the flow in [141] and the HDSE flow to

find the number of mapping to be evaluated by them. The EDSE flow evaluates all the

possible mappings at different tile-combinations. The number of mappings evaluated by

EDSE flow increases exponentially with the number of actors. Further, the number of

158

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

mappings increases even more when the implementation alternatives of actors, i.e. num-

ber of tile types on which the actors can be supported get increased. For n actors having

nrTileTypes implementation alternatives for each of them, the EDSE flow considers a

platform containing n tiles of each implementation alternative and uses a maximum of

n tiles in mappings to be evaluated. The total number of mappings are calculated as

the number of ways placing n labeled balls into n unlabeled (but nrTileTypes-colored)

boxes, where balls and boxes represent tasks and tiles respectively. The number of map-

pings by the DSE flow in [141] are limited by X times the number of actors times the

number of tiles, where X is the maximum number of partial bindings that is carried over

to the next iteration for evaluating the mappings. The HDSE flow considers pruning

where maximum throughput mapping is selected for further evaluation and thus limits

the number of mappings to be evaluated.

Table 7.4 shows the number of mappings evaluated by the EDSE, [141] and HDSE

flow as the number of actors (nrActors) increases at different number of available imple-

mentation alternatives (nrTileTypes) for each of the actor. At nrTileTypes equal to 1,

the number of mappings evaluated by the EDSE at increasing values of nrActors follows

bell numbers which represents the number of ways of placing nrActors labeled balls into

nrActors indistinguishable boxes [169]. The number of mappings by [141] flow is shown

for X equal to 10. The number of mappings increases with the value of X and it may

lead to an explosion in the number of mappings. The number of mappings evaluated

by HDSE follows Equation Eq. 7.12. For nrActors and nrTileTypes equal to 14 and 3

respectively, the EDSE evaluates 461,101,962,108 mappings. If we assume 1 millisecond

(ms) to evaluate one mapping then it is going to take around 15 years in evaluating all

the mappings. In our experiments, evaluation of each mapping takes close to 250 ms.

Thus, EDSE is not scalable and evaluation is not always feasible.

159

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

EDSE Flow Ref. [141] Flow HDSE Flow
nrTileTypes nrTileTypes nrTileTypes

nrActors 1 2 3 1 2 3 1 2 3
1 1 2 3 1 2 3 1 2 3
2 2 6 12 6 20 42 2 6 10
3 5 22 57 39 102 180 5 15 25
4 15 94 309 100 132 372 11 31 51
5 52 454 1,866 180 410 615 21 56 91
6 203 2,430 12,351 282 612 918 36 92 148
7 877 14,214 88,563 406 854 1281 57 141 225
8 4,140 89,918 681,870 552 1136 1704 85 205 325
9 21,147 610,182 5,597,643 720 1458 2187 121 286 451
10 115,975 4,412,798 48,718,569 910 1820 2730 166 386 606
14 190,899,322 20,732,504,062 461,101,962,108 1834 3668 5502 456 1,016 1,576

Table 7.4: Number of mappings by Exhaustive DSE (EDSE), Ref. [141] DSE and Heuris-
tic DSE (HDSE) at different number of actors (nrActors) and their available implemen-
tation alternatives (nrTileTypes).

7.4.2 Speed Up and Quality of Results

The HDSE has been employed to speed up the exploration process while providing almost

the same quality of mappings as of the EDSE. The exploration flows HDSE and EDSE are

applied to 100 random applications modeled as SDFGs with 4, 5, 6 and 7 actors having

their implementation alternatives as ARM and RH tiles generated randomly. For each

application, the best mapping at each resource combination has been captured. Figure 7.9

shows the quality (throughput) of the best mapping at 2 ARM and 1 RH tiles resource

combination for all the 100 applications when tiles are assumed to be separated by a

fixed hop distance. The best mapping throughput obtained by HDSE is normalized with

respect to (w.r.t.) EDSE. The normalized throughput values are plotted after sorting

them in descending order.

It has been observed that loss in quality of mappings is more when the number

of actors increases. Further, the HDSE provides the same best mappings as of EDSE

for more than 80% of the applications. Similar behavior is obtained at other resource

combinations. Thus, we can say that for most of the applications, we get the same quality

160

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping
)

0.8

0.85

0.9

0.95

1

1.05

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0
0

HDSE

T
h
ro
u
g
h
p
u
t

(n
o
rm

a
li
ze
d

 w
.r
.t
.
E
D
S
E
)

0.8

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0
0

T

(n
o
rm

a

Applications (sorted by normalized throughput values)

Figure 7.9: Quality of mappings by HDSE over EDSE for 100 random applications.

of mappings. It can be observed that for applications where we don’t get the same quality

of mappings by HDSE and EDSE, the quality varies only by 10%. So, in case of 10%

relaxed throughput constraint at run-time, the mappings generated by HDSE will be

acceptable for all the applications. The HDSE flow decreases the chances of missing the

best mappings at different tiles combinations as it starts from a maximum throughput

mapping to find mappings at each possible tiles combination.

Figure 7.10 shows the speed up obtained by HDSE over the EDSE for the same set

of applications. The applications are sorted by the number of actors within them. It can

be observed that HDSE is faster over the EDSE for all the applications. It also can be

observed that as the number of actors in the applications increases, the speed up obtained

by HDSE increases as the strategy evaluates lesser number of mappings by adopting

pruning for evaluating both the homogeneous and heterogeneous tiles mappings. On an

average, the HDSE is faster by 18× when compared to EDSE. For large size applications,

exhaustive exploration time may be days or weeks so HDSE needs to be employed for

performing exploration within a reasonable time.

We have applied EDSE and HDSE flows on multimedia applications H.263 decoder (4

actors), H.263 encoder (5 actors) and JPEG decoder (6 actors) too. It has been observed

that for H.263 decoder/encoder the best mapping at different tiles combinations is the

same by all the flows, whereas for JPEG decoder, HDSE misses best mapping at a few

tiles combinations.

161

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

30
35
40
45
50

HDSE

u
p

D
S
E
)

0
5

10
15
20
25
30
35
40
45

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0
0

4 actors 5 actors 6 actors 7 actors

S
p
e
e
d

 u
p

(w
.r
.t
.
E
D
S
E
)

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0
0

4 actors 5 actors 6 actors 7 actors

Applications (sorted by number of actors within the applications)

Figure 7.10: Speed up obtained by HDSE over EDSE for 100 random applications.

7.4.3 Design Space Exploration for a Given Platform

We performed multimedia applications DSE for given platforms that may contain any

arbitrary number of tiles. Table 7.5 shows the DSE results for multimedia applications

H.263 decoder, H.263 encoder and JPEG decoder for platforms containing 1×2, 2×2,

3×3 and 4×4 grid of tiles. For each platform, exploration time (milliseconds) and the

best mapping throughput (× 10−12/time-units) has been tabulated when the exploration

approach of [141], EDSE and HDSE have been employed. The different platform tiles are

ARM tiles, i.e homogeneous platforms are considered. So, the EDSE and HDSE explore

only homogeneous tiles mappings by employing HomEDSE and HomPDSE, respectively.

The number of evaluated mappings by the approach of [141] depends upon the num-

ber of tiles present in the platform. So, for larger platforms (containing more number

of tiles), the approach of [141] evaluates higher number of mappings and thus shows

increased exploration time as shown in the Table 7.5. The approach evaluates some du-

plicate mappings which differ in only placement of actors on different tiles providing the

same throughput. So, in some cases, it evaluates more number of mappings (including

duplicates) than the EDSE and thus takes more time than the EDSE as shown in Table

7.5.

The EDSE flow evaluates all the possible mappings without any duplicate ones and

162

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

Exploration Time (ms) Best Mapping Throughput
Application Platform Ref. [141] EDSE HDSE Ref. [141] EDSE & HDSE

1×2 7,243 4,739 2,894 7,352,890 9,138,520
H.263 2×2 11,479 9,476 5,787 7,396,120 9,158,520
decoder 3×3 19,010 18,956 11,572 7,396,120 9,158,520
(4 actors) 4×4 24,738 28,444 17,358 7,396,120 9,158,520

1×2 10,576 18,559 5,817 649,689 794,199
H.263 2×2 21,918 37,128 11,633 662,473 941,289
encoder 3×3 38,659 74,154 23,265 662,473 941,289
(5 actors) 4×4 45,378 111,367 34,897 662,473 941,289

1×2 13,443 11,497 1,690 363,423,000 678,426,000
JPEG 2×2 23,175 22,847 3,345 384,225,000 678,426,000
decoder 3×3 42,341 45,873 6,765 384,225,000 678,426,000
(6 actors) 4×4 56,983 68,783 10,152 384,225,000 678,426,000

Table 7.5: Multimedia applications DSE at different platforms for exploration time (ms)
and best mapping throughput (× 10−12/time-units)

the HDSE flow performs pruning to discard evaluation of inefficient mappings. The EDSE

and HDSE flows are executed in the similar manner. Larger platforms are covered by

executing the flow repeatedly by considering higher separation (hop distance) between

the tiles. For 1×2, 2×2, 3×3 and 4×4 platforms, maximum hop distance between the

tiles is 1, 2, 4 and 6 respectively, so the flow is repeated maximum hop distance times

by increasing the delay of connections according to the hop distance. In each execution

of the flow, for H.263 decoder (4 actors), H.263 encoder (5 actors) and JPEG decoder

(6 actors), the EDSE flow evaluates a total of 15, 52 and 203 mappings, whereas the

HDSE flow evaluates a total of 11, 21 and 36 mappings respectively, as discussed earlier

in Table 7.4. Table 7.5 shows the exploration time for complete execution of the EDSE

and HDSE flow. It can be seen that HDSE shows lower exploration time than other DSE

flows.

It can be observed from Table 7.5 that the HDSE flow does not miss the best through-

put mapping despite requiring much lower time for exploration. On an average, for H.263

decoder, H.263 encoder and JPEG decoder, exploration time of the HDSE flow is lowered

by 39%, 35% and 83% as compared to the flow in [141], and by 38%, 68% and 85% as

163

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

4
ti
le
s

3
ti
le
s

2
ti
le
s

1
ti
le

5
ti
le
s

4
ti
le
s

3
ti
le
s

2
ti
le
s

1
ti
le

6
ti
le
s

5
ti
le
s

4
ti
le
s

3
ti
le
s

2
ti
le
s

1
ti
le

1
4
ti
le
s

1
3
ti
le
s

1
2
ti
le
s

1
1
ti
le
s

1
0
ti
le
s

9
ti
le
s

8
ti
le
s

7
ti
le
s

6
ti
le
s

5
ti
le
s

4
ti
le
s

3
ti
le
s

2
ti
le
s

1
ti
le

H.263 decoder

(4 actors)

H.263 encoder

(5 actors)

JPEG decoder

(6 actors)

MP3 decoder

(14 actors)

HDSE Flow Stuijk et. al First Flow Stuijk et. al Second Flow

T
h
ro
u
g
h
p
u
t

(n
o
rm

a
li
ze
d

 w
.r
.t
.
H
D
S
E

 f
lo
w

 a
t
e
a
ch

 t
il
e

 c
o
u
n
t)

Figure 7.11: The best mapping throughput comparison at different platforms for different
applications when HDSE Flow, Stuijk et. al First [138] and Second [141] Flows are
employed.

compared to EDSE flow respectively. The difference in the number of explored mappings

from EDSE and HDSE flow increases with the number of actors in the application and

thus the difference in the exploration time as shown in Table 7.5. The exploration by

EDSE is not feasible within a limit time when the number of actors are large as explained

earlier. However, HDSE performs exploration within a limited time. The best mapping

throughput for H.263 decoder, H.263 encoder and JPEG decoder is improved by 23%,

37% and 44% respectively over the approach of [141].

Figure 7.11 shows the throughput for the best mappings for multimedia applications

where different number of ARM tiles is used for HDSE flow, the flow presented in [138]

and [141]. The throughput at each tile count (number of used tiles by the mappings)

has been normalized with respect to (w.r.t.) the HDSE flow. It can be observed that

the HDSE flow always provides better quality (throughput) of mappings at all the tile

counts. For each application, the same best mapping is obtained by all the flows at

platforms containing one (1tile) and the same number of tiles as the number of actors.

We also performed DSE of multimedia applications for given platforms containing

different types of tiles such as GPP, DSP and RH tiles. For a given platform containing

164

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

5 GPP and 5 RH tiles, the HDSE flow explores a total of 56 mappings for H.263 encoder

(5 actors) when each actor has its implementation alternatives as GPP and RH tiles.

The exploration took a run-time of 35,178 ms. For given platforms of 2 GPP & 1

RH tiles and 1 GPP & 1 RH tiles, the HDSE flow starts from tile count values of

3 and 2 respectively while evaluating heterogeneous tiles mappings by Algorithm 10,

and evaluates a total of 31 and 25 mappings in a run-time of 19,683 and 15,825 ms,

respectively. For given platforms containing tiles which are subset of total available

implementation alternatives of actors in the application, HDSE flow discards evaluation of

infeasible mappings requiring more tiles than available. Thus, DSE process gets speeded

up in the case of smaller platforms.

7.4.4 Run-time Mapping Results

The results obtained from the hybrid run-time mapping (HRM) strategy proposed in

this chapter have been compared with existing run-time strategies that start mapping

an application without any previous analysis and perform the required analysis at run-

time. Table 7.6 shows the time required (in milliseconds) to map throughput-constrained

multimedia applications on a 4×4 MPSoC platform when the strategies Nearest Neighbor

(NN) proposed in [129], Packing-based Best Neighbor (PBN), Communication-aware

Packing-based Best Neighbor (CPBN) proposed in [J-1] and HRM are employed. The

NN strategy tries to map the communicating actors on the same or neighboring tiles,

whereas CPBN strategy tries to map the maximum communicating pairs of actors on

the same tile. Then, throughput for the mapping is computed at run-time. Throughput

computation for a mapping takes much more time than the time to find the mapping. The

strategy needs to find a new mapping and then to calculate throughput for the same in

case throughput-constraint is not fulfilled with the current mapping. Such strategies take

time firstly in finding a mapping and secondly in computing throughput for the same,

165

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

NN PBN CPBN HRM
H.263 decoder 27.98 27.98 27.96 2.47
H.263 encoder 29.98 29.98 29.97 2.84
JPEG decoder 35.74 35.71 35.32 3.21
MP3 decoder 771.87 771.86 771.83 3.93

Table 7.6: Time required (in ms) to map the applications by different run-time mapping
strategies

whereas the HRM strategy just selects the best mapping satisfying the throughput-

constraint from the optimized mappings database. The selected mapping is used to

configure the actors on the platform tiles. So, the total time consists of selection and

placement time only. On average, HRM strategy is faster by about 93% as compared to

CPBN that requires less time than NN and PBN.

7.4.5 Hop distance Overestimation Penalty

Our DSE flows evaluate mappings by assuming that all the platform tiles are separated

by some fixed hop distance. However, in real situations, it is quite possible that not

all available tiles at run-time are at the same hop distance. Thus, our flow enforces

a penalty for estimating higher hop distances. At run-time, we look for a throughput

satisfying mapping from the explored design-time mappings which contain tiles sepa-

rated by maximum possible hop distance between the available tiles. So, by mapping

the actors on the available tiles based on the found mapping will definitely satisfy the

throughput constraint since latency of some connections will be smaller as compared

to ones considered during analysis. To map H.263 decoder on 4 ARM tiles, when all

edges are mapped at a hop distance of 2, i.e. tiles containing actors are separated by 2

hops, then throughput is 2.86168 × 10−6 (1/time-units) (Table 7.3) and when 2 edges are

mapped at hop distance of 1 and remaining edges at hop distance of 2, then throughput

is 2.86343 × 10−6 (1/time-units). The two throughput values vary only by 0.0006% and

166

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

thus very less penalty in overestimating hop distances. Therefore, the stored results from

our design-time analysis are acceptable to be used for run-time mapping. Further, we

always get better throughput than the stored one as actors are mapped on available tiles,

making the approach suitable for real-time.

7.5 Summary

In this chapter, we have proposed a hybrid mapping strategy for efficient run-time map-

ping of throughput-constrained applications on MPSoC platforms. The hybrid strategy

first performs extensive design-time analysis of the applications providing multiple design

points. This is followed by a run-time mapping strategy to select the best point from

the many available design points subject to available resources and desired throughput

in order to map an application. In contrast, the existing mapping strategies perform

mapping either at design-time or at run-time without any previous analysis of the ap-

plication. A design-time strategy is incapable of handling dynamism in applications and

a run-time approach can miss the timing deadline due to large computation require-

ments. The hybrid approach performs compute intensive analysis at design-time and

leaves for minimal computation at run-time. This facilitates for a light-weight run-time

platform manager that dynamically and efficiently configures the applications based on

the platform resources status.

In order to perform design-time analysis of applications, we have proposed efficient

design space exploration (DSE) strategies. The DSE strategies consider a generic MP-

SoC platform while performing design-time analysis, making the generated design points

to be applicable to any target platform so long the target platform tile types and maxi-

mum separation between the tiles are subset of the tile types and maximum separation

considered during DSE. It has been shown that our DSE strategies are scalable with the

number of application tasks and platform tiles. Further, our DSE strategies are faster

167

Chapter 7. Hybrid Strategy for Accelerating Run-time Mapping

and provide better quality of solutions when compared to existing approaches. During

the design-time analysis, an optimization is performed on the design points to discard

non-optimal points, which results in reduced memory requirement to store them and

facilitates for faster run-time selection. The newly proposed run-time mapping strategy

is very efficient as it uses design-time analysis results, whereas conventional run-time

approaches perform the time consuming analysis at run-time. However, the hybrid ap-

proach has limited flexibility, since all applications and maximum platform size must be

known at design-time for performing the analysis.

168

Chapter 8

Conclusion and Future Directions

In this chapter, we summarize the contributions presented in this thesis and close with

possible future research directions.

8.1 Conclusion

This thesis has proposed a number of novel techniques for run-time mapping of appli-

cations on NoC-based Heterogeneous MPSoC architectures. A detailed literature survey

helped to establish that the mapping techniques were mostly limited to mapping one task

per processing element (PE). It was also established that communication bottlenecks con-

tinue to be a concern, thereby limiting performance gains in large scale realizations.

In this thesis, a new packing strategy has been devised to minimize the communication

overhead. Three new approaches based on the packing strategy were developed and

evaluated in an attempt to improve the performance for the case of one task per PE

based mapping process. The first approach aims to map tasks of an application in close

proximity so as to reduce the communication overhead. In this approach, each task was

mapped on the first available PE that is in closest proximity to the PE supporting its

nearest neighbor. While this approach lends well for rapid mapping, it does not consider

the best neighbor for a given set of tasks to be mapped at any given time. The second

approach was extended to consider all free supported neighboring PEs to identify the

169

Chapter 8. Conclusion and Future Directions

best neighboring PE. This was shown to reduce the communication overhead compared

to the first method. Moreover, it results in a more uniform distribution of channel loads

be it at the expense of run-time overhead to find the best neighbor. This prompted

the need to devise a third method to identify the most appropriate neighbor within a

given time constraint. The proposed time bounded approach provides for a systematic

method to identify the best possible neighbor without incurring unacceptable delays. It

was clearly established that the time bounded approach is essential for applications with

larger number of tasks. Our experimentation using varying number of tasks for a given

MPSoC platform show that the overall performance is improved when compared to the

second approach that identifies the best neighbor at all times. Moreover, comparisons

with state-of-the-art techniques show that the proposed techniques lead to reduction in

the average channel load of up to 22% for certain application scenarios.

The techniques that have been proposed for MPSoCs supporting only single task on

each PE were subsequently extended to MPSoCs supporting multiple tasks on each PE.

The extended techniques take advantage of multi-task supported PEs by mapping tightly-

coupled communicating tasks on the same PE whenever possible in order to reduce the

overall communication overhead. This has also contributed to significant reduction in the

communication time and energy savings. When compared to MPSoC with single task

supported PEs, the proposed approach leads to the identification of a better neighbor

without increasing the time bound. In addition, the time required for computing the

best neighbors have decreased notably.

Communication-aware mapping strategies were also introduced to favor PEs consist-

ing of tasks that exhibit tighter communication with the task to be mapped. This has

provided for a stronger clustering of tasks on a PE to further reduce the overall commu-

nication overhead. An accurate energy consumption model that estimates total energy

as the sum of computation and communication energy has been proposed to evaluate

170

Chapter 8. Conclusion and Future Directions

the effect of this approach on energy consumption. Experimental evaluations show that

the proposed techniques consistently lead to reduction in the average channel load, total

execution time, average packet latency and energy consumption as these performance

metrics depend directly on the communication overhead. In particular, energy savings

of up to 46% along with improvement in other performance metrics can be realized.

Furthermore, the total execution time can be reduced by up to 90% when compared to

existing methods that do not consider communication-aware mapping of multiple tasks

on a single PE.

A new computation and communication aware mapping technique has been proposed

to provide for a more holistic approach to address both the computation and communi-

cation costs. This approach relies on the systematic elimination of the longest commu-

nication path till computation load on any PE becomes the bottleneck. This is followed

by a process to merge tasks with minimum computation loads provided that the per-

formance of the associated PE does not degrade the overall performance. Experimental

results based on mapping models of real-life streaming applications with varying number

of tasks show that considering both the computation and communication overheads leads

to notable performance improvement when compared to approaches that considers only

the communication overhead. In a case study to map multiple scenarios of an MPEG-4

application, we show that total execution time, energy consumption and resource usage

are reduced by 33%, 39% and 37%, respectively.

A hybrid mapping strategy has also been proposed to accelerate the run-time map-

ping process in situations where the applications are known at design-time. It relies on

extensive design-time analysis to derive multiple design points that can aid the run-time

mapping process. This provides for a light-weight run-time mapping technique to select

the best mapping solution given a set of tasks and the available PEs for mapping. The

proposed hybrid strategy has been shown to accommodate a range of heterogeneous ar-

chitectures. Experimental evaluations reveal that the proposed strategy speeds up the

171

Chapter 8. Conclusion and Future Directions

run-time mapping by 93%. Moreover, the time required for the design-time analysis can

be reduced by 83% when compared to most recent method reported in the literature.

In conclusion, this thesis has presented novel run-time mapping techniques to handle

dynamism in applications incurred at run-time. The techniques have shown great poten-

tial for streaming multimedia applications and have potential to perform well for different

domain of applications that exhibit dynamism. It is noteworthy that the proposed tech-

niques lend well to minimize the run-time mapping overhead without compromising the

overall compute performance.

8.2 Future Research Directions

This section briefly discusses some future research directions which can extend or augment

the work in this thesis.

• Increasing Heterogeneity in Processing Elements: The mapping techniques

proposed in this thesis mainly consider two types of processing elements (PEs),

general purpose processor (GPP) and reconfigurable hardware (RH). However, it

would be interesting to extend this work to support the increase in the degree of

heterogeneity for incorporating different types of PEs. This must be addressed

with care due to the potential explosion in the number of permutations to be

considered at each stage. Although, the proposed techniques can be extended for

increased heterogeneity in the PEs, they will require to establish an upper limit on

the heterogeneity in order to maintain the low complexity of the techniques.

• Accelerating Design-time Analysis for Large Scale Problems: The pro-

posed design-time analysis techniques have been shown to be more efficient and

faster when compared to the existing techniques. With the emerging trend to avail

172

Chapter 8. Conclusion and Future Directions

large number of PEs to increase the performance of large size applications con-

taining hundreds of tasks, there exists a need to devise novel techniques to cater

for large scale problems. The techniques will need to evaluate only efficient design

points from a large number of possible design-points.

• Realizing Run-time Mapping on FPGA-based Hardware Platforms: Pre-

liminary work has been carried out to successfully map real-life applications on

NoC-based MPSoC on FPGA platform [C-5]. It would be interesting to evaluate

the proposed run-time mapping techniques on such a platform. This provides for

the detailed evaluation of communication and computation costs for each of the

proposed methods. Also, the additional resources required and their implications

on the compute performance can be examined in detail. It is worth exploring the

possibility to accelerate the run-time mapping process in hardware.

• Run-time Application-aware Architecture Morphing for Performance

Improvement: The mapping techniques target a fixed architecture at present.

However, with the feasibility to implement a heterogeneous MPSoC platform on

FPGA, the mapping techniques could be further extended to support the run-time

customization of the MPSoC architecture so as to optimize the utilization of PEs.

It is envisaged that the MPSoC architecture could be altered to support alternative

mapping scenarios to satisfy both the functional and non-functional requirements.

The run-time customization will include reconfiguring the FPGA fabric tiles for

different type of PEs in order to achieve maximum performance. The performance

will improve with increased heterogeneity in the architecture, but at the cost of re-

configuration overhead. Therefore, the extended techniques will need to maximize

the performance while simultaneously minimizing the configuration overhead.

173

Chapter 8. Conclusion and Future Directions

• Run-time Faults Consideration for Fault Tolerance: The run-time mapping

techniques presented in this thesis are very efficient. However, they cannot cope

with the random failures of PEs during run-time. Noting the reliability concerns

of emerging VLSI technologies, it would be appropriate to explore ways to accom-

modate such scenarios. This could be in the form of devising strategies to rely on

contingencies. Also, it is worth exploring ways to introduce sufficient redundancy

in the PEs or devising techniques to maximize the harvest of available PEs through

reconfiguration.

• Extending Mapping Techniques to Consider Leakage Power: It would be

interesting to incorporate leakage awareness in the mapping strategies as leakage

current is rapidly increasing with the shrinking device dimension. A five-fold in-

crease in leakage current is predicted with each technology generation and thus

recently there is large focus on the work on power and energy (leakage and dy-

namic energy) minimization. Recent works consider DVFS enabled processors for

energy minimization. Therefore, the packing-based strategies can be extended in

order to consider energy minimization in future research work.

The above research directions need to be carried out to take the run-time mapping

techniques for MPSoCs into the next era.

174

References

[1] E. Gordon, “Cramming more components onto integrated circuits,” Electronics

Magazine, vol. 4, pp. 114–117, 1965.

[2] “IMEC MPSoC Mapping Tools,” 2008,

http://www.imec.be/ScientificReport/SR2008/HTML/1225004.html (Last visited:

23 December, 2011).

[3] A. Jerraya, H. Tenhunen, and W. Wolf, “Guest Editors’ Introduction: Multipro-

cessor Systems-on-Chips,” Computer, vol. 38, no. 7, pp. 36–40, 2005.

[4] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[5] “The keys to success in multicore application development,” 2009,

http://eetimes.com/design/embedded/4008333/The-keys-to-success-in-multicore-

application-development (Last visited: 23 December, 2011).

[6] P. Ross, “Why CPU Frequency Stalled,” Spectrum, IEEE, vol. 45, no. 4, pp. 72–72,

April 2008.

[7] “MPSoC Forum,” http://www.mpsoc-forum.org/ (Last visited: 23 December,

2011).

[8] “Mapping Applications to MPSoCs,” 2009, http://www.artist-

embedded.org/artist/Overview,1614.html (Last visited: 23 December, 2011).

[9] S. Borkar, “Thousand core chips: a technology perspective,” in Proceedings of the

Design Automation Conference, 2007, pp. 746–749.

175

REFERENCES

[10] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Keutzer, D. Patter-

son, W. Plishker, J. Shalf, S. Williams et al., “The landscape of parallel computing

research: A view from berkeley,” Citeseer, Tech. Rep., 2006.

[11] “INTERNATIONAL TECHNOLOGY ROADMAP FOR

SEMICONDUCTORS (ITRS), 2008 UPDATE,” 2008,

http://www.itrs.net/Links/2008ITRS/Home2008.htm (Last visited: 23 December,

2011).

[12] L. Benini and G. De Micheli, “Networks on chips: a new SoC paradigm,” Computer,

vol. 35, no. 1, pp. 70–78, January 2002.

[13] J. Henkel, W. Wolf, and S. Chakradhar, “On-chip networks: A scalable,

communication-centric embedded system design paradigm,” in Proceedings of the

International Conference on VLSI Design, 2004, pp. 845 – 851.

[14] D. Bertozzi and L. Benini, “Xpipes: a network-on-chip architecture for gigascale

systems-on-chip,” IEEE Circuits and Systems Magazine, vol. 4, no. 2, pp. 18–31,

2004.

[15] M. Hill and M. Marty, “Amdahl’s Law in the Multicore Era,” Computer, vol. 41,

no. 7, pp. 33 –38, July 2008.

[16] “Amdahl’s Law Demonstration,” http://en.wikipedia.org/wiki/Amdahl’s law

(Last visited: 23 December, 2011).

[17] “Multi-core chips by academia and industry,” http://en.wikipedia.org/wiki/Multi-

core (Last visited: 23 December, 2011).

[18] “Raw Architecture Workstation (RAW),” 2003,

http://groups.csail.mit.edu/cag/raw/ (Last visited: 23 December, 2011).

[19] “Asynchronous Array of Simple Processors (AsAP),”

http://www.ece.ucdavis.edu/vcl/asap/ (Last visited: 23 December, 2011).

[20] “Tera-op, Reliable, Intelligently adaptive Processing System (TRIPS),”

http://www.cs.utexas.edu/∼trips/index.html (Last visited: 23 December, 2011).

176

REFERENCES

[21] “WaveScalar processor,” 2006, http://wavescalar.cs.washington.edu/index.html

(Last visited: 23 December, 2011).

[22] N. Saint-Jean, G. Sassatelli, P. Benoit, L. Torres, and M. Robert, “HS-Scale: a

Hardware-Software Scalable MP-SOC Architecture for embedded Systems,” in Pro-

ceedings of the IEEE Computer Society Annual Symposium on VLSI, 2007, pp.

21–28.

[23] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, P. Iyer,

A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote, and N. Borkar, “An 80-

Tile 1.28TFLOPS Network-on-Chip in 65nm CMOS,” in Proceedings of the IEEE

International Solid-State Circuits Conference, February 2007, pp. 98–589.

[24] “First 100-core Processor with the New TILE-Gx Family,” 2009,

http://www.tilera.com/ (Last visited: 23 December, 2011).

[25] S. Richardson, “MPOC: A chip multiprocessor for embedded systems,” HP Labo-

ratories Technical Report HPL-2002-186, Palo Alto, CA, USA, 2002.

[26] V. Nollet, P. Avasare, H. Eeckhaut, D. Verkest, and H. Corporaal, “Run-time

management of a MPSoC containing FPGA fabric tiles,” IEEE Trans. Very Large

Scale Integr. Syst., vol. 16, pp. 24–33, January 2008.

[27] G. J. Smit, A. B. Kokkeler, P. T. Wolkotte, and M. D. van de Burgwal, “Multi-

core architectures and streaming applications,” in Proceedings of the international

workshop on System level interconnect prediction, 2008, pp. 35–42.

[28] “4S - Smart ChipS for Smart Surroundings,” 2007,

http://caes.ewi.utwente.nl/research/8-projects/8 (Last visited: 23 December,

2011).

[29] T. Arpinen, P. Kukkala, E. Salminen, M. Hännikäinen, and T. D. Hämäläinen,

“Configurable multiprocessor platform with RTOS for distributed execution of

UML 2.0 designed applications,” in Proceedings of the conference on Design, au-

tomation and test in Europe, 2006, pp. 1324–1329.

177

REFERENCES

[30] N. Hristo, S. Todor et al., “Automated Integration of Dedicated Hardwired IP

Cores in Heterogeneous MPSoCs Designed with ESPAM,” EURASIP Journal on

Embedded Systems, vol. 2008, 2008.

[31] P. Heysters and G. Smit, “Mapping of DSP algorithms on the MONTIUM archi-

tecture,” in Proceedings of the International Parallel and Distributed Processing

Symposium, April 2003, pp. 22 – 26.

[32] “Altera FPGAs,” http://www.altera.com/ (Last visited: 23 December, 2011).

[33] A. Abnous, “Low-Power Domain Specific Processors for Dig-

ital Signal Processing,” Ph.D. dissertation, EECS Department,

University of California, Berkeley, 2001. [Online]. Available:

http://www.eecs.berkeley.edu/Pubs/TechRpts/2001/8190.html

[34] P. G. Paulin, C. Pilkington, E. Bensoudane, M. Langevin, and D. Lyonnard, “Ap-

plication of a Multi-Processor SoC Platform to High-Speed Packet Forwarding,” in

Proceedings of the conference on Design, automation and test in Europe, 2004, pp.

58–63.

[35] J. Leijten, J. van Meerbergen, A. Timmer, and J. Jess, “PROPHID: a heteroge-

neous multi-processor architecture for multimedia,” in Proceedings of the Interna-

tional Conference on Computer Design, 1997, pp. 164–169.

[36] M. J. Rutten, J. T. J. van Eijndhoven, E. G. T. Jaspers, P. van der Wolf, E.-J. D.

Pol, O. P. Gangwal, and A. Timmer, “A Heterogeneous Multiprocessor Architec-

ture for Flexible Media Processing,” IEEE Des. Test, vol. 19, pp. 39–50, July 2002.

[37] M. Kistler, M. Perrone, and F. Petrini, “Cell Multiprocessor Communication Net-

work: Built for Speed,” IEEE Micro, vol. 26, no. 3, pp. 10–23, 2006.

[38] S. Weiss and J. Smith, POWER and PowerPC. Morgan Kaufmann Publishers,

1994.

[39] J. De Oliveira and H. Van Antwerpen, “The Philips Nexperia digial video plat-

forms,” Winning the SoC Revolution. Experiences in Real Design, pp. 67–96, 2003.

178

REFERENCES

[40] P. Cumming, “THE TI OMAP PLATFORM APPROACH TO SOC,” Winning the

SoC revolution: experiences in real design, 2003.

[41] A. Artieri, “Nomadik: an MPSoC Solution for Advanced Multimedia,” in Pro-

ceedings of the International Forum on Application-Specific Multi-Processor SoC

(MPSoC), 2005.

[42] V. Baumgarte, G. Ehlers, F. May, A. Nuckel, M. Vorbach, and M. Weinhardt,

“PACT XPPa self-reconfigurable data processing architecture,” Journal of Super-

computing, vol. 26, no. 2, pp. 167–184, 2003.

[43] I. Held and B. VanderWiele, “Avispa-CH-embedded communications signal pro-

cessor for multi-standard digital television,” GSPx TV to Mobile, 2006.

[44] “Silicon Hive Inc,” http://www.siliconhive.com/ (Last visited: 23 December, 2011).

[45] “Tensilica Inc,” http://www.tensilica.com/ (Last visited: 23 December, 2011).

[46] R. E. Gonzalez, “Xtensa: A Configurable and Extensible Processor,” IEEE Micro,

vol. 20, pp. 60–70, March 2000.

[47] T. Halfhill, “Busy Bees at Silicon Hive,” Microprocessor Report, vol. 19, no. 6, pp.

17–20, 2005.

[48] C. Rowen, “Using configurable processors for high-efficiency multiple-processor sys-

tems,” in ERSA, 2006, pp. 7–10.

[49] B. Hounsell and R. Taylor, “Co-Processor Synthesis: A New Methodology for

Embedded Software Acceleration,” in Proceedings of the conference on Design,

automation and test in Europe, 2004, pp. 682 – 683.

[50] T. J. Callahan, “Automatic compilation of c for hybrid reconfigurable architec-

tures,” Ph.D. dissertation, 2002, chair-Wawrzynek, John.

[51] L. Smit, G. Smit, J. Hurink, H. Broersma, D. Paulusma, and P. Wolkotte, “Run-

time mapping of applications to a heterogeneous reconfigurable tiled system on chip

architecture,” in Proceedings of International Conference on Field-Programmable

Technology, December 2004, pp. 421–424.

179

REFERENCES

[52] S. Borgio, D. Bosisio, F. Ferrandi, M. Monchiero, M. D. Santambrogio, D. Sciuto,

and A. Tumeo, “Hardware DWT accelerator for MultiProcessor System-on-Chip

on FPGA,” in Proceedings of the International Conference on Embedded Computer

Systems: Architectures, Modeling and Simulation, July 2006, pp. 107–114.

[53] A. A. Jerraya and W. Wolf, “MultiProcessor Systems-on-Chips, Chapter The

What, Why, and How of MPSoCs,” pp. 1–20, 2005.

[54] “Xilinx FPGAs,” http://www.xilinx.com/ (Last visited: 23 December, 2011).

[55] E. Salminen, A. Kulmala, and T. D. Hamalainen, “On network-on-chip compari-

son,” in Proceedings of the Euromicro Conference on Digital System Design Archi-

tectures, Methods and Tools, 2007, pp. 503–510.

[56] R. Marculescu, U. Ogras, L.-S. Peh, N. Jerger, and Y. Hoskote, “Outstanding

Research Problems in NoC Design: System, Microarchitecture, and Circuit Per-

spectives,” IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 28, no. 1, pp. 3–21, January 2009.

[57] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez, and C. A. Zeferino,

“SPIN: A Scalable, Packet Switched, On-Chip Micro-Network,” in Proceedings of

the conference on Design, Automation and Test in Europe, 2003, pp. 70 – 73.

[58] K. Goossens, J. Dielissen, and A. Radulescu, “AEthereal Network on Chip: Con-

cepts, Architectures, and Implementations,” IEEE Des. Test, vol. 22, no. 5, pp.

414–421, 2005.

[59] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “QNoC: QoS architecture and

design process for network on chip,” J. Syst. Archit., vol. 50, pp. 105–128, February

2004.

[60] C. Hilton and B. Nelson, “PNoC: a flexible circuit-switched NoC for FPGA-based

systems,” IEE Proceedings on Computers and Digital Techniques, vol. 153, no. 3,

pp. 181 – 188, May 2006.

180

REFERENCES

[61] D. Castells-Rufas, J. Joven, and J. Carrabina, “A Validation And Performance

Evaluation Tool for ProtoNoC,” in Proceedings of the International Symposium on

System-on-Chip, November 2006, pp. 1 – 4.

[62] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, “Guaranteed Bandwidth Using

Looped Containers in Temporally Disjoint Networks within the Nostrum Network

on Chip,” in Proceedings of the conference on Design, automation and test in Eu-

rope, 2004, pp. 890 – 895.

[63] T. Bjerregaard and S. Mahadevan, “A survey of research and practices of Network-

on-chip,” ACM Comput. Surv., vol. 38, no. 1, 2006.

[64] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost, “HERMES: an infras-

tructure for low area overhead packet-switching networks on chip,” Integr. VLSI

J., vol. 38, no. 1, pp. 69–93, 2004.

[65] U. Y. Ogras and R. Marculescu, “Energy- and Performance-Driven NoC Commu-

nication Architecture Synthesis Using a Decomposition Approach,” in Proceedings

of the conference on Design, Automation and Test in Europe, 2005, pp. 352–357.

[66] A. Chagoya-Garzon, X. Guerin, F. Rousseau, F. Petrot, D. Rossetti, A. Lonardo,

P. Vicini, and P. S. Paolucci, “Synthesis of Communication Mechanisms for Multi-

tile Systems Based on Heterogeneous Multi-processor System-On-Chips,” in Pro-

ceedings of the IEEE/IFIP International Symposium on Rapid System Prototyping,

2009, pp. 48–54.

[67] Z. Yang, A. Kumar, and Y. Ha, “An area-efficient dynamically reconfigurable Spa-

tial Division Multiplexing network-on-chip with static throughput guarantee,” in

Proceedings of the International Conference on Field-Programmable Technology,

December 2010, pp. 389 –392.

[68] “Sonics Inc: The Nettwork-on-Chip Company,” http://www.sonicsinc.com/ (Last

visited: 23 December, 2011).

[69] “Arteris: The Nettwork-on-Chip Company,” http://www.arteris.com/ (Last vis-

ited: 23 December, 2011).

181

REFERENCES

[70] J. Hu and R. Marculescu, “DyAD: smart routing for networks-on-chip,” in Pro-

ceedings of the Design Automation Conference, 2004, pp. 260–263.

[71] S. Murali, D. Atienz, L. Benini, and G. De Michel, “A multi-path routing strategy

with guaranteed in-order packet delivery and fault-tolerance for networks on chip,”

in Proceedings of the 43rd annual Design Automation Conference, 2006, pp. 845–

848.

[72] G. Martin, “Overview of the MPSoC design challenge,” in Proceedings of the Design

Automation Conference, 2006, pp. 274–279.

[73] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri, “MPARM:

Exploring the Multi-Processor SoC Design Space with SystemC,” J. VLSI Signal

Process. Syst., vol. 41, no. 2, pp. 169–182, 2005.

[74] M. Monchiero, G. Palermo, C. Silvano, and O. Villa, “A Modular Approach to

Model Heterogeneous MPSoC at Cycle Level,” in Proceedings of the EUROMICRO

Conference on Digital System Design Architectures, Methods and Tools, 2008, pp.

158–164.

[75] J. Cong, K. Gururaj, G. Han, A. Kaplan, M. Naik, and G. Reinman, “MC-Sim:

an efficient simulation tool for MPSoC designs,” in Proceedings of the IEEE/ACM

International Conference on Computer-Aided Design, 2008, pp. 364–371.

[76] Y. Atat and N.-E. Zergainoh, “Simulink-based MPSoC Design: New Approach to

Bridge the Gap between Algorithm and Architecture Design,” in Proceedings of the

IEEE Computer Society Annual Symposium on VLSI, 2007, pp. 9–14.

[77] “SystemC,” http://www.accellera.org/home/ (Last visited: 23 December, 2011).

[78] P. Paulin, C. Pilkington, and E. Bensoudane, “StepNP: A System-Level Explo-

ration Platform for Network Processors,” IEEE Des. Test, vol. 19, pp. 17–26,

November 2002.

182

REFERENCES

[79] G. Beltrame, D. Sciuto, C. Silvano, P. Paulin, and E. Bensoudane, “An Applica-

tion Mapping Methodology and Case Study for Multi-Processor On-Chip Archi-

tectures,” in Proceedings of the IFIP International Conference on Very Large Scale

Integration, October 2006, pp. 146–151.

[80] H. Nikolov, T. Stefanov, and E. Deprettere, “Systematic and Automated Multi-

processor System Design, Programming, and Implementation,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 3, pp.

542–555, March 2008.

[81] M. D. Nava, P. Blouet, P. Teninge, M. Coppola, T. Ben-Ismail, S. Picchiottino, and

R. Wilson, “An Open Platform for Developing Multiprocessor SoCs,” Computer,

vol. 38, no. 7, pp. 60–67, 2005.

[82] D. Atienza, P. G. Del Valle, G. Paci, F. Poletti, L. Benini, G. De Micheli, and J. M.

Mendias, “A fast HW/SW FPGA-based thermal emulation framework for multi-

processor system-on-chip,” in Proceedings of the 43rd annual Design Automation

Conference, 2006, pp. 618–623.

[83] F. Sun, S. Ravi, A. Raghunathan, and N. Jha, “Application-specific heteroge-

neous multiprocessor synthesis using extensible processors,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 9, pp.

1589–1602, September 2006.

[84] A. Kumar, S. Fernando, Y. Ha, B. Mesman, and H. Corporaal, “Multiprocessor

systems synthesis for multiple use-cases of multiple applications on FPGA,” ACM

Trans. Des. Autom. Electron. Syst., vol. 13, pp. 40:1–40:27, July 2008.

[85] S. Lukovic and L. Fiorin, “An Automated Design Flow for NoC-based MPSoCs

on FPGA,” in Proceedings of the IEEE/IFIP International Symposium on Rapid

System Prototyping, 2008, pp. 58–64.

[86] S. V. Tota, M. R. Casu, M. R. Roch, L. Macchiarulo, and M. Zamboni, “A case

study for NoC-based homogeneous MPSoC architectures,” IEEE Trans. Very Large

Scale Integr. Syst., vol. 17, pp. 384–388, March 2009.

183

REFERENCES

[87] A. Kumar, A. Hansson, J. Huisken, and H. Corporaal, “Interactive presentation:

An FPGA design flow for reconfigurable network-based multi-processor systems on

chip,” in Proceedings of the conference on Design, automation and test in Europe,

2007, pp. 117–122.

[88] T. Dorta, J. Jimenez, J. Martin, U. Bidarte, and A. Astarloa, “Overview of FPGA-

Based Multiprocessor Systems,” in Proceedings of the International Conference on

Reconfigurable Computing and FPGAs, December 2009, pp. 273 –278.

[89] G.-G. Mplemenos and I. Papaefstathiou, “MPLEM: An 80-processor FPGA Based

Multiprocessor System,” in Proceedings of the International Symposium on Field-

Programmable Custom Computing Machines, April 2008, pp. 273 –274.

[90] A. Krasnov, A. Schultz, J. Wawrzynek, G. Gibeling, and P.-Y. Droz, “RAMP Blue:

A Message-Passing Manycore System in FPGAs,” in Proceedings of the Interna-

tional Conference on Field Programmable Logic and Applications, August 2007, pp.

54 –61.

[91] J. Ceng, J. Castrillon, W. Sheng, H. Scharwächter, R. Leupers, G. Ascheid,

H. Meyr, T. Isshiki, and H. Kunieda, “MAPS: an integrated framework for MPSoC

application parallelization,” in Proceedings of the Design Automation Conference,

2008, pp. 754–759.

[92] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: task graphs for free,” in Pro-

ceedings of the international workshop on Hardware/software codesign, 1998, pp.

97–101.

[93] S. Stuijk, M. Geilen, and T. Basten, “SDF3: SDF For Free,” in Proceeding Inter-

national Conference on Application of Concurrency to System Design, June 2006,

pp. 276–278.

[94] M. Ruggiero, A. Guerri, D. Bertozzi, F. Poletti, and M. Milano, “Communication-

aware allocation and scheduling framework for stream-oriented multi-processor

systems-on-chip,” in Proceedings of the conference on Design, automation and test

in Europe, 2006, pp. 3–8.

184

REFERENCES

[95] M. Ruggiero, A. Guerri, D. Bertozzi, M. Milano, and L. Benini, “A fast and accurate

technique for mapping parallel applications on stream-oriented MPSoC platforms

with communication awareness,” Int. J. Parallel Program., vol. 36, no. 1, pp. 3–36,

2008.

[96] J. Hu and R. Marculescu, “Energy- and performance-aware mapping for regular

NoC architectures,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 24, no. 4, pp. 551–562, April 2005.

[97] C. Marcon, A. Borin, A. Susin, L. Carro, and F. Wagner, “Time and energy efficient

mapping of embedded applications onto NoCs,” in Proceedings of the Asia and

South Pacific Design Automation Conference, 2005, pp. 33–38.

[98] S. Murali, M. Coenen, A. Radulescu, K. Goossens, and G. De Micheli, “A method-

ology for mapping multiple use-cases onto networks on chips,” in Proceedings of the

conference on Design, automation and test in Europe, 2006, pp. 118–123.

[99] C.-E. Rhee, H.-Y. Jeong, and S. Ha, “Many-to-Many Core-Switch Mapping in 2-D

Mesh NoC Architectures,” in Proceedings of the IEEE International Conference on

Computer Design, 2004, pp. 438–443.

[100] T. Lei and S. Kumar, “Algorithms and Tools for Network on Chip Based System

Design,” in Proceedings of the 16th symposium on Integrated circuits and systems

design, 2003, p. 163.

[101] D. Wu, B. M. Al-Hashimi, and P. Eles, “Scheduling and Mapping of Conditional

Task Graphs for the Synthesis of Low Power Embedded Systems,” in Proceedings

of the conference on Design, Automation and Test in Europe, 2003, p. 10090.

[102] S. Manolache, P. Eles, and Z. Peng, “Fault and energy-aware communication map-

ping with guaranteed latency for applications implemented on NoC,” in Proceedings

of the Design Automation Conference, 2005, pp. 266–269.

[103] L.-Y. Lin, C.-Y. Wang, P.-J. Huang, C.-C. Chou, and J.-Y. Jou, “Communication-

driven task binding for multiprocessor with latency insensitive network-on-chip,”

185

REFERENCES

in Proceedings of the Asia and South Pacific Design Automation Conference, 2005,

pp. 39–44.

[104] H. Orsila, T. Kangas, E. Salminen, T. D. Hämäläinen, and M. Hännikäinen,

“Automated memory-aware application distribution for Multi-processor System-

on-Chips,” J. Syst. Archit., vol. 53, no. 11, pp. 795–815, 2007.

[105] M. Branca, L. Camerini, F. Ferrandi, P. L. Lanzi, C. Pilato, D. Sciuto, and

A. Tumeo, “Evolutionary algorithms for the mapping of pipelined applications

onto heterogeneous embedded systems,” in Proceedings of the Annual conference

on Genetic and evolutionary computation, 2009, pp. 1435–1442.

[106] L. Thiele, I. Bacivarov, W. Haid, and K. Huang, “Mapping Applications to Tiled

Multiprocessor Embedded Systems,” in Proceedings of the International Conference

on Application of Concurrency to System Design, 2007, pp. 29–40.

[107] G. Chen, F. Li, S. Son, and M. Kandemir, “Application mapping for chip multipro-

cessors,” in Proceedings of the ACM/IEEE Design Automation Conference, June

2008, pp. 620–625.

[108] N. Satish, K. Ravindran, and K. Keutzer, “A decomposition-based constraint opti-

mization approach for statically scheduling task graphs with communication delays

to multiprocessors,” in Proceedings of the conference on Design, automation and

test in Europe, 2007, pp. 57–62.

[109] P. Marwedel, J. Teich, G. Kouveli, I. Bacivarov, L. Thiele, S. Ha, C. Lee,

Q. Xu, and L. Huang, “Mapping of applications to MPSoCs,” in Proceedings of

the IEEE/ACM/IFIP international conference on Hardware/software codesign and

system synthesis, 2011, pp. 109–118.

[110] C.-L. Chou and R. Marculescu, “User-aware dynamic task allocation in networks-

on-chip,” in Proceedings of the conference on Design, automation and test in Eu-

rope, 2008, pp. 1232–1237.

186

REFERENCES

[111] Z. Peter, S. Gilles, U. Nurten, S. Nicolas, B. Pascal, and G. Manfred, “A Decen-

tralised Task Mapping Approach for Homogeneous Multiprocessor Network-On-

Chips,” International Journal of Reconfigurable Computing, vol. 2009, 2009.

[112] E. W. Briáo, D. Barcelos, and F. R. Wagner, “Dynamic task allocation strategies in

MPSoC for soft real-time applications,” in Proceedings of the conference on Design,

automation and test in Europe, 2008, pp. 1386–1389.

[113] C.-L. Chou and R. Marculescu, “Incremental run-time application mapping for ho-

mogeneous NoCs with multiple voltage levels,” in Proceedings of the IEEE/ACM in-

ternational conference on Hardware/software codesign and system synthesis, 2007,

pp. 161–166.

[114] A. Ngouanga, G. Sassatelli, L. Torres, T. Gil, A. Soares, and A. Susin, “A con-

textual resources use: a proof of concept through the APACHES’ platform,” in

Proceedings of the IEEE Design and Diagnostics of Electronic Circuits and sys-

tems, 2006, pp. 42–47.

[115] A. Mehran, A. Khademzadeh, and S. Saeidi, “DSM: A Heuristic Dynamic Spiral

Mapping algorithm for network on chip,” IEICE Electronics Express, vol. 5, no. 13,

pp. 464–471, 2008.

[116] G. Sassatelli, N. Saint-Jean, P. Benoit, L. Torres, M. Robert, C. Woszezenki, I. A.

Grehs, and F. Moraes, “Run-time mapping and communication strategies for Ho-

mogeneous NoC-Based MPSoCs,” in Proceedings of the IEEE Symposium on Field-

Programmable Custom Computing Machines, 2007, pp. 295–296.

[117] C. Ykman-Couvreur, V. Nollet, F. Catthoor, and H. Corporaal, “Fast Multi-

Dimension Multi-Choice Knapsack Heuristic for MP-SoC Run-Time Management,”

in Proceedings of the International Symposium on System-on-Chip, November 2006,

pp. 1 –4.

[118] H. Shojaei, A. Ghamarian, T. Basten, M. Geilen, S. Stuijk, and R. Hoes, “A pa-

rameterized compositional multi-dimensional multiple-choice knapsack heuristic for

CMP run-time management,” in Proceedings of the 46th Annual Design Automa-

tion Conference, 2009, pp. 917–922.

187

REFERENCES

[119] O. Moreira, J. J.-D. Mol, and M. Bekooij, “Online resource management in a

multiprocessor with a network-on-chip,” in Proceedings of the ACM symposium on

Applied computing, 2007, pp. 1557–1564.

[120] P. K. F. Hölzenspies, J. L. Hurink, J. Kuper, and G. J. M. Smit, “Run-time spatial

mapping of streaming applications to a heterogeneous multi-processor system-on-

chip (MPSoC),” in Proceedings of the conference on Design, automation and test

in Europe, 2008, pp. 212–217.

[121] T. D. ter Braak, P. K. F. Hölzenspies, J. Kuper, J. L. Hurink, and G. J. M. Smit,

“Run-time spatial resource management for real-time applications on heterogeneous

MPSoCs,” in Proceedings of the Conference on Design, Automation and Test in

Europe, 2010, pp. 357–362.

[122] M. A. Al Faruque, R. Krist, and J. Henkel, “ADAM: run-time agent-based dis-

tributed application mapping for on-chip communication,” in Proceedings of the

Design Automation Conference, 2008, pp. 760–765.

[123] A. Schranzhofer, J.-J. Chen, and L. Thiele, “Power-Aware Mapping of Probabilistic

Applications onto Heterogeneous MPSoC Platforms,” in Proceedings of the IEEE

Real-Time and Embedded Technology and Applications Symposium, 2009, pp. 151–

160.

[124] T. Lei and S. Kumar, “A Two-step Genetic Algorithm for Mapping Task Graphs

to a Network on Chip Architecture,” in Proceedings of the Euromicro Symposium

on Digital Systems Design, 2003, pp. 180 – 187.

[125] M. Becchi and P. Crowley, “Dynamic thread assignment on heterogeneous multi-

processor architectures,” in Proceedings of the conference on Computing frontiers,

2006, pp. 29–40.

[126] T. Theocharides, M. K. Michael, M. Polycarpou, and A. Dingankar, “Towards

embedded runtime system level optimization for MPSoCs: on-chip task allocation,”

in Proceedings of the ACM Great Lakes symposium on VLSI, 2009, pp. 121–124.

188

REFERENCES

[127] S. Schneider, A. Meisel, and W. Hardt, “Communication-Aware Hierarchical

Online-Placement in Heterogeneous Reconfigurable Systems,” in Proceedings of the

IEEE/IFIP International Symposium on Rapid System Prototyping, 2009, pp. 61–

67.

[128] J. Huang, A. Raabe, C. Buckl, and A. Knoll, “A workflow for runtime adaptive task

allocation on heterogeneous MPSoCs,” in Proceedings of the Design, Automation

Test in Europe Conference Exhibition, March 2011, pp. 1 –6.

[129] E. Carvalho and F. Moraes, “Congestion-aware task mapping in heterogeneous MP-

SoCs,” in Proceedings of the International Symposium on System-on-Chip, Novem-

ber 2008, pp. 1–4.

[130] V. Nollet, T. Marescaux, P. Avasare, and J.-Y. Mignolet, “Centralized Run-Time

Resource Management in a Network-on-Chip Containing Reconfigurable Hardware

Tiles,” in Proceedings of the conference on Design, Automation and Test in Europe,

2005, pp. 234–239.

[131] S. Bertozzi, A. Acquaviva, D. Bertozzi, and A. Poggiali, “Supporting task migra-

tion in multi-processor systems-on-chip: a feasibility study,” in Proceedings of the

conference on Design, automation and test in Europe, 2006, pp. 15–20.

[132] H. Kalte and M. Porrmann, “Context saving and restoring for multitasking in

reconfigurable systems,” in Proceedings of the International Conference on Field

Programmable Logic and Applications, August 2005, pp. 223–228.

[133] O. Moreira, F. Valente, and M. Bekooij, “Scheduling multiple independent hard-

real-time jobs on a heterogeneous multiprocessor,” in Proceedings of the 7th ACM

& IEEE international conference on Embedded software, 2007, pp. 57–66.

[134] Y. Ahn, K. Han, G. Lee, H. Song, J. Yoo, K. Choi, and X. Feng, “SoCDAL: System-

on-chip design AcceLerator,” ACM Trans. Des. Autom. Electron. Syst., vol. 13, pp.

17:1–17:38, February 2008.

189

REFERENCES

[135] J. Keinert, M. Streub&uhorbar;hr, T. Schlichter, J. Falk, J. Gladigau, C. Haubelt,

J. Teich, and M. Meredith, “SystemCoDesigner an automatic ESL synthesis ap-

proach by design space exploration and behavioral synthesis for streaming appli-

cations,” ACM Trans. Des. Autom. Electron. Syst., vol. 14, pp. 1:1–1:23, January

2009.

[136] W. Liu, M. Yuan, X. He, Z. Gu, and X. Liu, “Efficient SAT-Based Mapping and

Scheduling of Homogeneous Synchronous Dataflow Graphs for Throughput Opti-

mization,” in Proceedings of the Real-Time Systems Symposium, 2008, pp. 492–504.

[137] A. Bonfietti, M. Lombardi, M. Milano, and L. Benini, “Throughput Constraint for

Synchronous Data Flow Graphs,” in Proceedings of the International Conference on

Integration of AI and OR Techniques in Constraint Programming for Combinatorial

Optimization Problems, 2009, pp. 26–40.

[138] S. Stuijk, T. Basten, M. C. W. Geilen, and H. Corporaal, “Multiprocessor resource

allocation for throughput-constrained synchronous dataflow graphs,” in Proceedings

of the Design Automation Conference, 2007, pp. 777–782.

[139] G. Mariani, P. Avasare, G. Vanmeerbeeck, C. Ykman-Couvreur, G. Palermo, C. Sil-

vano, and V. Zaccaria, “An industrial design space exploration framework for sup-

porting run-time resource management on multi-core systems,” in Proceedings of

the Conference on Design, Automation and Test in Europe, 2010, pp. 196–201.

[140] N. H. Zamora, X. Hu, and R. Marculescu, “System-level performance/power analy-

sis for platform-based design of multimedia applications,” ACM Trans. Des. Autom.

Electron. Syst., vol. 12, pp. 2:1–2:29, February 2007.

[141] S. Stuijk, M. Geilen, and T. Basten, “A Predictable Multiprocessor Design Flow for

Streaming Applications with Dynamic Behaviour,” in Proceedings of the Euromicro

Conference on Digital System Design: Architectures, Methods and Tools, 2010, pp.

548–555.

[142] B. Giovanni, L. Fossati, and D. Sciuto, “Decision-theoretic design space exploration

of multiprocessor platforms,” Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 29, pp.

1083–1095, July 2010.

190

REFERENCES

[143] G. Palermo, C. Silvano, and V. Zaccaria, “Multi-objective design space exploration

of embedded systems,” J. Embedded Comput., vol. 1, pp. 305–316, August 2005.

[144] G. Ascia, V. Catania, A. G. Di Nuovo, M. Palesi, and D. Patti, “Efficient de-

sign space exploration for application specific systems-on-a-chip,” J. Syst. Archit.,

vol. 53, pp. 733–750, October 2007.

[145] M. Lukasiewycz, M. Glaß, C. Haubelt, and J. Teich, “Efficient symbolic multi-

objective design space exploration,” in Proceedings of the Asia and South Pacific

Design Automation Conference, 2008, pp. 691–696.

[146] Z. J. Jia, A. Pimentel, M. Thompson, T. Bautista, and A. Nunez, “NASA: A generic

infrastructure for system-level MP-SoC design space exploration,” in Proceedings

of the IEEE Workshop on Embedded Systems for Real-Time Multimedia, October

2010, pp. 41 –50.

[147] P. van Stralen and A. Pimentel, “Scenario-based design space exploration of MP-

SoCs,” in Proceedings of the IEEE International Conference on Computer Design,

October 2010, pp. 305 –312.

[148] G. Palermo, C. Silvano, and V. Zaccaria, “Robust optimization of SoC architec-

tures: A multi-scenario approach,” in Proceedings of the IEEE/ACM/IFIP Work-

shop on Embedded Systems for Real-Time Multimedia, October 2008, pp. 7 –12.

[149] L. Benini, D. Bertozzi, and M. Milano, “Resource Management Policy Handling

Multiple Use-Cases in MPSoC Platforms Using Constraint Programming,” in Pro-

ceedings of the 24th International Conference on Logic Programming, 2008, pp.

470–484.

[150] A. Schranzhofer, J.-J. Chen, and L. Thiele, “Dynamic Power-Aware Mapping of

Applications onto Heterogeneous MPSoC Platforms,” IEEE Transactions on In-

dustrial Informatics, vol. 6, no. 4, pp. 692 –707, November 2010.

[151] C. Ykman-Couvreur, P. Avasare, G. Mariani, G. Palermo, C. Silvano, and V. Za-

ccaria, “Linking run-time resource management of embedded multi-core platforms

191

REFERENCES

with automated design-time exploration,” IET Computers Digital Techniques,

vol. 5, no. 2, pp. 123 –135, March 2011.

[152] P. Yang, P. Marchal, C. Wong, S. Himpe, F. Catthoor, P. David, J. Vounckx,

and R. Lauwereins, “Managing dynamic concurrent tasks in embedded real-time

multimedia systems,” in Proceedings of the 15th international symposium on System

Synthesis, 2002, pp. 112–119.

[153] L. Xue, O. ozturk, F. Li, M. Kandemir, and I. Kolcu, “Dynamic partitioning of pro-

cessing and memory resources in embedded MPSoC architectures,” in Proceedings

of the conference on Design, automation and test in Europe, 2006, pp. 690–695.

[154] L. Möller, I. Grehs, E. Carvalho, R. Soares, N. Calazans, and F. Moraes, “A NoC-

based Infrastructure to Enable Dynamic Self Reconfigurable Systems,” pp. 1–27,

2007.

[155] H. Yu, Y. Ha, and B. Veeravalli, “Communication-aware application mapping and

scheduling for NoC-based MPSoCs,” in Proceedings of International Symposium on

Circuits and Systems, 2010, pp. 3232 –3235.

[156] J. C. S. Palma et al., “Mapping embedded systems onto NoCs: the traffic effect on

dynamic energy estimation,” in Proceedings of the Integrated circuits and system

design, 2005, pp. 196–201.

[157] J. Hu and R. Marculescu, “Energy-Aware Communication and Task Scheduling

for Network-on-Chip Architectures under Real-Time Constraints,” in Proceedings

of the conference on Design, automation and test in Europe - Volume 1, ser. DATE

’04. Washington, DC, USA: IEEE Computer Society, 2004, pp. 10 234–. [Online].

Available: http://dl.acm.org/citation.cfm?id=968878.969037

[158] “TILE64 PROCESSOR,” 2008, http://www.tilera.com/products/TILE64.php.

[159] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, and

G. De Micheli, “NoC Synthesis Flow for Customized Domain Specific Multiproces-

sor Systems-on-Chip,” IEEE Trans. Parallel Distrib. Syst., vol. 16, pp. 113–129,

February 2005.

192

REFERENCES

[160] C. Grecu, P. Pande, A. Ivanov, and R. Saleh, “Timing analysis of network on chip

architectures for MP-SoC platforms,” Microelectronics J., vol. 36, no. 9, pp. 833 –

845, 2005.

[161] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous data flow

programs for digital signal processing,” IEEE Trans. Comput., vol. 36, pp. 24–35,

January 1987.

[162] A. H. Ghamarian, M. C. W. Geilen, S. Stuijk, T. Basten, B. D. Theelen, M. R.

Mousavi, A. J. M. Moonen, and M. J. G. Bekooij, “Throughput Analysis of Syn-

chronous Data Flow Graphs,” in Proceedings of the Sixth International Conference

on Application of Concurrency to System Design, 2006, pp. 25–36.

[163] M. Geilen, T. Basten, B. Theelen, and R. Otten, “An algebra of Pareto points,”

in Proceedings of the International Conference on Application of Concurrency to

System Design, june 2005, pp. 88 – 97.

[164] S. Segars, “ARM7TDMI power consumption,” IEEE Micro, vol. 17, no. 4, pp. 12

–19, jul/aug 1997.

[165] S. H. Cho, T. Xanthopoulos, and A. Chandrakasan, “A low power variable length

decoder for MPEG-2 based on nonuniform fine-grain table partitioning,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 7, no. 2, pp.

249 –257, june 1999.

[166] M. Hentati, Y. Aoudni, J. Nezan, M. Abid, and O. Deforges, “FPGA dynamic

reconfiguration using the RVC technology: Inverse quantization case study,” in

International Conference on Design and Architectures for Signal and Image Pro-

cessing (DASIP), nov. 2011, pp. 1 –7.

[167] T.-Y. Sung, Y.-S. Shieh, C.-W. Yu, and H.-C. Hsin, “High-Efficiency and Low-

Power Architectures for 2-D DCT and IDCT Based on CORDIC Rotation,” in

International Conference on Parallel and Distributed Computing, Applications and

Technologies, dec. 2006, pp. 191 –196.

193

REFERENCES

[168] J. Ren and N. Kehtarnavaz, “Comparison of Power Consumption for Motion Com-

pensation and Deblocking Filters in High Definition Video Coding,” in IEEE In-

ternational Symposium on Consumer Electronics, june 2007, pp. 1 –5.

[169] “Encyclopedia of Integer Sequences,” http://oeis.org/ (Last visited: 23 December,

2011).

194

