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Abstract—Mobile user’s usage behaviour changes throughout
the day and the desirable Quality of Service (QoS) could thus
change for each session. In this paper, we propose a QoS aware
agent to monitor mobile user’s usage behaviour to find the target
frame rate, which satisfies the desired user’s QoS, and applies
reinforcement learning based DVFS on a CPU-GPU MPSoC to
satisfy the frame rate requirement. Experimental study on a real
Exynos hardware platform shows that our proposed agent is able
to achieve a maximum of 50% power saving and 29% reduction
in peak temperature compared to stock Android’s power saving
scheme. It also outperforms the existing state-of-the-art power
and thermal management scheme by 41% and 19 %, respectively.

Index Terms—agent system, reinforcement learning, machine
learning, CPU, GPU, power optimization, thermal optimization,
MPSoCs, user behaviour, user interaction, smartphone, mobile

I. INTRODUCTION

Due to fast advancement in chip integration technology
in the past couple of decades, we can see an increased
adaptation of heterogeneous multi-processor System-on-Chip
(MPSoC) in Edge devices, especially in smartphones and
tablets. Market research performed by eMarketer [1] shows
that in 2018 mobile users in the USA spend 4 hours 16
minutes on an average on in-apps and mobile web with the
availability of the mobile Internet on their smartphones and
tablets. This includes an average of 1 hour 56 minutes on the
top 5 social media platforms: Youtube, Facebook, Snapchat,
Instagram and Twitter [2]. Another market research by Deloitte
US and Rescue Time [3], [4] shows that an average person
picks-up/look at their phones 52 times during their workday,
where 70% of the sessions are less than 2 minutes, 25%
of the sessions lasting between 2 to 10 minutes and 5%
of the sessions prolonged more than 10 minutes. Even the
duration of the user picking-up/looking at their Edge device
every time varies from user to user and hence, making the
sessions stochastic in nature and furthermore making existing
resource management (DPTM) techniques inefficient for real-
world Quality of Service driven applications on Edge devices.

Fig. 1 shows the varying frames per second (FPS) gen-
eration (frame rate denoted as schedutil FPS in the primary
vertical axis) while using home screen, facebook and spotify
apps on Samsung Galaxy Note 9 [5], which employs Exynos
9810 MPSoC [6], over a 5 minutes of session. Frame rate
is the frequency at which a new frame is rendered. In Fig.
1, FPS is recorded and shown every 3 seconds to provide a
holistic view on the variation of frame rate during the session,
especially the frame rate could vary even for one application
based on the user’s usage behaviour. In Fig. 1, the secondary
vertical axis shows the operating frequency of the big and
LITTLE CPUs of Exynos 9810 MPSoC, where the Freq. B.
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Fig. 1. FPS generation, operating frequency of big and LITTLE CPUs in
Samsung Note 9 while using home screen, Facebook and Spotify apps during
a session on schedutil governor

sched denotes the operating frequency of the big cores, and
Freq. L. sched denotes the operating frequency of the LITTLE
cores.
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Fig. 2. Interaction between the user and an app on a smartphone happens

through display/Ul

User experience or Quality of Service (QoS) of an appli-
cation on an Edge device, especially smartphones, is often
a measure of their frame rates. On modern smartphones, the
user interacts with the display/UI which then triggers an event
(action), which is again tied to some function(s) or instructions
of the application with which the user is interacting [7], [8],
as shown in Fig. 2. Contrary to popular belief that the QoS
of games or media applications, such as videos, are the only
applications where the user experience is evaluated through
their frame rates, the user’s experience of any application on
a modern smartphone with a touch screen display is measured
with the frame rate as well. As the frame rate increases, the
display experience tends to appear smoother and more fluid to
the human eye and hence, very high frames-per-second (FPS)
is often translated to a much richer experience for the user.
Typically most commercial mobile devices render a maximum
of 60 FPS to match their display’s refresh rate of 60 Hz. A
display refresh rate is the frequency at which the display is
updated. Although at the moment there are some commercial
devices which have higher display refresh rate such as 90 Hz,
120 Hz, 60 Hz display refresh rate continues to be the most
popular mobile display refresh rate available in the majority
of the devices.



The refresh rate and the frame rate are synchronized to
update the display of the device through the process of Vertical
Synchronization (VSync) [7]. On the Android OS, 3 buffers
consisting of 1 front buffer and 2 back buffers are used for
VSync. CPU/GPU renders the new frames in the back buffers
while the display shows the content of the front buffer. When
a new frame is rendered in the back buffer, after each VSync
the content of the back buffer is pushed to the front buffer and
hence the display outputs the front buffer content to the user.
Since most displays have a 60 Hz refresh rate, the VSync is
generated every 16.67 ms for such devices. The display is only
refreshed on each VSync regardless of whether new frames are
generated within the VSync period. When CPU/GPU fails to
produce a frame within the VSync period, the front buffer is
not updated and the display continues to render the previous
frame, which results in a drop of the frame (frame drop) and
hence, hindering the user experience. These frame drops lead
to lag or stutter and hence reduced QoS is achieved. Every
mobile application on smartphones is a dynamic application
consisting of periodic, aperiodic and sporadic tasks [9], where
the load of the application constantly varies based on the user
interaction and the mechanics of the application itself.

For example, the primary vertical axis of Fig. 1 shows that
for the same (intra-) mobile application (Facebook or Spotify)
different FPS is generated at the different time period during
the session based on varied interaction between the user and
the application through the display/Ul. If we take a closer
look at the operating frequency of the big and LITTLE CPU
cores (as shown in the secondary vertical axis of Fig. 1) of the
Exynos 9810 MPSoC while using the applications (Facebook
or Spotify) we could notice that the operating frequency
remains relatively very high yet generating less FPS at certain
occasions (as is evident in Fig. 1). This phenomenon is more
evident while using the Spotify app during the session where
the FPS drops close to O yet the operating frequencies of the
big and LITTLE cores are very high, which results in high
power consumption and operating temperature of the device.

Several power and thermal management schemes [10]—[20]
for power and thermal efficiency while considering frame rate
or QoS have been proposed over the years. However, neither of
the techniques tries to improve power and thermal efficiency
by taking user’s interaction with the mobile into account to
cater for improved QoS. Moreover, most of the existing studies
focus on maximizing performance per watt (P PW), however,
for a mobile platform reducing power consumption as well as
the temperature of the device is very important while catering
for the performance requirement and trying to maximize PPW
is not enough for such platform. To overcome this limitation
in this paper we also introduce a new metric to incorporate
performance, power consumption and thermal behaviour of the
mobile device.

A. Efficacy of our proposed technique .
In"this paper, we propose a reinforcement learning based

intelligent agent, called Next (Next generation user interaction
aware DVFS), that learns the user’s usage pattern of the mobile
applications and then utilizes DVFS to save power and reduce
the temperature during the mobile usage session while catering
for the QoS required by the user. In order to determine the
desired QoS for the user for each session, we also define a new
metric, which is optimized by Next to improving the reward
generated using reinforcement learning. Fig. 3 shows the
average power consumption in the primary vertical axis and
peak temperature of the big CPUs of Note 9 platform in the
secondary vertical axis while utilizing the Next technique for a
similar user session using home screen, Facebook and Spotify
application. For the similar session using the Next technique

we are able to save 41.88% more power (refer to primary
vertical axis of Fig. 3) on an average over the time period when
compared to default schedutil governor of Android, whereas
we are also able to reduce the peak temperature of the big
CPU cores by 21.02% (refer to secondary vertical axis of
Fig. 3) compared to the temperature of the big cores while
on schedutil governor. In mobile MPSoC, the big CPU cores
consume the most energy [21] and are also the focus of hot
spots on the chip, and hence in this case, we have focused
on the thermal behaviour of the big cores for the comparative
study.
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Fig. 3. Power consumption and temperature of big CPUs on Samsung Note
9 while using home screen, Facebook and Spotify apps during a session on
schedutil vs Next

B. Contributions

The concrete contributions of this paper are the following.

o We define a new metric to optimize QoS based on power
consumption and peak temperature obtained.

o To the best of our knowledge, ours is the first work that
explores DVFS in mobile CPU and GPU based on user’s
interaction behaviour using a software agent based on
reinforcement learning.

o We implement our power and thermal management tech-
nique in the application layer of the Android platform
on Galaxy Note 9 smartphone utilizing Exynos 9810
MPSoC, and evaluate its efficacy with the latest popular
applications from the Google Play store.

II. STATE-OF-THE-ART TECHNIQUES

Several methodologies [10]-[14] to cater for performance,
power consumption and thermal behaviour of mobile devices
have been proposed over the years, however, they have their
own limitations.

In [10], Pathania et al. proposed an integrated CPU-GPU
power management mechanism for 3D mobile games, which
requires high FPS to satisfy the QoS of the user. In this
methodology, the FPS range, which is assumed to be the
required performance in this technique, is averaged over a time
period and then CPU and GPU’s operating frequencies are
set accordingly to cater for its averaged performance while
reducing lower power consumption based on a cost model
incorporating QoS. This technique has to find out the target
FPS as the desired performance in order to evaluate the cost
model and set the operating frequency. However, from Fig. 1
we have already noticed that the FPS generation within the
same session and for the same application could vary by a
large range and hence, utilizing this methodology will lead to
much reduced QoS for the users on real commercial devices
running multiple applications sequentially.

Sahin et al. [11] proposed a QoS-aware CPU frequency
capping mechanism to reduce the peak thermal behvaiour of
the mobile devices. In this methodology, the Instructions Per
Second (IPS) and the maximum chip temperature is monitored,



and the maximum operating frequency of the CPU is set
to keep the temperature within the maximum limit while
catering for the desired QoS. However, the mechanism utilizes
IPS value of CPU to set the maximum operating frequency
of the CPU, which could not be translated to GPU having
different utilization capacity based on workload and hence, the
methodology is not scalable to GPU nor it has the provision
to reduce power consumption reactively or proactively.

An online reinforcement learning based proactive DVFS
approach targeting frame-based applications is presented in
[12] to improve energy efficiency. In this methodology, the
workload is evaluated by the reinforcement learning algorithm
and then frequency selection using DVES is performed as an
action to cater for that workload. This methodology could
be used for inter- as well intra-application QoS requirement,
however, the technique does not consider GPU load towards
the QoS requirement, which is an important criteria for gaming
applications where the CPU workload could be significantly
less yet with very high GPU workload. This work also does
not consider reduction in peak temperature of the device.

In [13], Peters et al. proposed a power management strategy
for mobile games based on frame- and thread-based workload
prediction on MPSoC. This work manages power by using
the frame rate and thread workload as metrics to evaluate
the appropriate workload predictors and applies thread-to-core
mapping along with DVFES to cater for FPS constraint. This
work is catered towards gaming applications and not gener-
alized for all types of application. Moreover, this mechanism
requires workload prediction, which could be time-consuming
in real time for mobile applications and hence induce an
overhead, reducing QoS for the users.

Bhat et al. [14] proposed an approach to achieve dynamic
power-thermal management in heterogeneous MPSoCs by
adapting models for performance, power consumption and
temperature of various processing elements in the SoC. This
work predicts temperature and power consumption through
online learning of GPU frame processing time, GPU power
consumption and power-temperature dynamics of a SoC. Sev-
eral performance counters such as GPU utilization, L2 cache
references per instruction, per core CPU utilization are used
in this approach, however, none of the performance counters
could translate to user’s behaviour and usage pattern to provide
QoS more suited towards the user’s need. Moreover, high GPU
or CPU load and utilization does not mean that the frame rate
would be high, and vice-versa. For example, when a game/app
is loading on the smartphone the FPS drops close to O while
the splash screen is shown to the user and the CPU/GPU load
could be very high in order to reflect all the computation
that needs to be done to start the game/app. However, in
this scenario running all the CPU-GPU on highest operating
frequency could also lead to wasted power consumption. In
order to overcome this challenge, we need a mechanism to
understand the user’s mobile usage along with the user’s
QoS requirement and the app utilization to set the operating
frequencies to cater for the QoS requirement.

III. SYSTEM, METRIC AND PROBLEM FORMULATION
A. Hardware & Software Infrastructure

Nowadays heterogeneous MPSoCs consist of different types
of cores, either having the same or different instruction set
architecture (ISA). Moreover, the number of cores of each type
of ISA can vary based on MPSoCs and are usually clustered
if the types of cores are similar. For this research, we have
chosen an Asymmetric Multi-processors (AMPs) system-on-
chip (AMPSoC), which has clustered cores on the system. We
chose to execute our experimental evaluation on Galaxy Note

9 [5], which is the latest mobile device from Samsung and
utilizes the Exynos 9810 MPSoC [6]. Exynos 9810 MPSoC
has two CPU clusters, one for big CPU cores consisting of 4
Mongoose 3 CPU cores, and the other cluster for LITTLE
CPU cores consisting of 4 Cortex A-55 CPU cores. The
Mongoose 3 CPU cores allow cluster wise DVFS and has
18 frequency scaling levels ranging from 650 MHz to 2704
MHz (2704 MHz, 2652 MHz, 2496 MHz, 2314 MHz, 2106
MHz, 2002 MHz, 1924 MHz, 1794 MHz, 1690 MHz, 1586
MHz, 1469 MHz, 1261 MHz, 1170 MHz, 1066 MHz, 962
MHz, 858 MHz, 741 MHz, 650 MHz). Similarly, the LITTLE
Cortex-AS55 CPU cores allow cluster wise DVFS and has 10
frequency scaling levels ranging from 455 MHz to 1794 MHz
(1794 MHz, 1690 MHz, 1456 MHz, 1248 MHz, 1053 MHz,
949 MHz, 832 MHz, 715 MHz, 598 MHz, and 455 MHz).
Exynos 9810 MPSoC also hosts ARM Mali-G72 MP18 GPU,
which has 18 cores operating at a frequency range of 260
MHz to 572 MHz with 6 frequency scaling levels (572 MHz,
546 MHz, 455 MHz, 338 MHz, 299 MHz and 260 MHz).
There are 5 thermal sensors on the device, out of which one
is placed on the big CPU cluster, and one virtual sensor! is
used for overall device temperature.

The Galaxy Note 9 was running on Android 9 (Pie) [22]
OS utilizing Linux kernel version 4.9.59, which has only one
governor named schedutil based on Energy Aware Scheduling
(EAS) [23].

B. Metric and Problem Definition

The main focus of this work is to meet QoS while optimiz-
ing power consumption and peak thermal behaviour based on
user’s interaction with the application. Most studies available
at the moment focus on Performance per watt, however, there
is no provision for thermal behaviour in the metric. Therefore,
in this work we define a new metric, which incorporates
both power consumption and peak temperature to evaluate
the performance at a given time period. We call this metric
performance per degree watt (PPDW), which is represented by
the Eq. 1. In Eq. 1, PPDW; is the performance per degree
watt at a time period ¢, F'PS;, P; and T; are the frames-per-
second, power consumption and temperature respectively at
that time, and 7y, is the ambient temperature.

FPS;

AT x P}’

The main objective is to minimize the value of PPDW,
however, the optimum minimal value, which is PPDW zesired,
needs to be between PPDW,ors¢ and PPDWyes: (re-
fer to Eq. 2), which are defined as: PPDW

FPS worst -
least — mazx
gmam_T AET and PPDWyest

PPDW,; = ,where AT =T, — T, (1)

(Tleaat_T )Xpleast
worst 18 obtained when FPS generated is least

(F PSjeqst) while the maximum power (P,4;) is consumed
and the device reaches the maximum peak temperature (7,,4:)
allowed on the device; for example, generated FPS is 1 while
executing all CPU and GPU cores at their corresponding maxi-
mum frequencies. On the other hand, the goal is to achieve the
highest FPS possible with the least power consumed and least
peak temperature achieved, which is denoted by PPD W,
equation, where F'PS,,,, is the maximum FPS, Tj.,s is
the least peak temperature achieved and Pje,s; is the least
power consumed; for example, PP DW).; is obtained when
60 FPS is achieved while consuming least power with no rise
in temperature. Fig. 4 shows the general trend of PPDW value
as the FPS scales along with power consumption and peak
temperature of the big CPUs achieved on Exynos 9810 MPSoC

IThe overall temperature of the device is computed using the manufacturer’s
proprietor formula.



while executing Lineage 2 Revolution mobile game, which is
a very computationally intensive game. In Fig. 4, the PPDW
values (for FPS: 0, 1, 10) marked by red colour are the worst
values achieved for the corresponding FPS while consuming
the most power and achieving the maximum peak temperature
of the big CPUs.
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Fig. 4. PPDW value trend as the FPS, peak temperature of big CPUs and
power consumption scale accordingly

optimize(PPDW) — PPDWyest > PPDWesireda > PPDWyorst
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IV. PROPOSED METHODOLOGY: NEXT
A. Overview of Next

Next is a software agent that executes continuously on the
application layer of the Edge device employing MPSoC and
runs on the most power efficient CPU, which is the LITTLE
CPU of Exynos 9810 MPSoC, in order to consume the least
power while executing. Since the agent runs on the application
layer, no modifications to the existing hardware/software of the
device is required.

The most important part of the Next methodology is to
understand the user’s interaction behaviour with the display/UI
and its effect on the frame rate. To achieve this, the agent
continuously monitors the frame rate every 25 ms for a
window of n seconds. We call this virtual window of frame
rates as frame window. From our empirical data we found
that choosing the frame window for 4 seconds generates the
best frame rate pattern analysis from user’s interaction. Since,
frame rate is usually denoted by frames per second (FPS), the
agent has to scale the FPS accordingly due to monitoring of
the frame rate every 25 ms. For 4 seconds of frame window
we are able to capture 160 distinct values of frame rate
during the user’s interaction for that 4 seconds. The agent
now computes the mathematical mode operation of all the 160
distinct values, which actually determines the most possible
frame rate suitable to provide the desirable QoS for the user
during that session.

Now, as shown in Fig. 5, the mode value is fed to the
reinforcement learning (RL) module of the agent as the target
FPS to achieve till the target FPS changes during the next
frame window of user’s interaction. The target FPS is now
used for training purposes by the RL agent, and more details
are provided in section IV-B. If we consider that the MPSoC
consists of m number of processing element (PE) clusters and
the current operating frequency of each cluster for cluster wise
DVFS is denoted by f¢ where M € 1,2,..m then the
frequency values are fed to the RL module of the agent as part
of the states. In our implementation, Samsung Note 9 (Exynos
9810 MPSoC) has 3 PE clusters namely: big CPU, LITTLE
CPU and GPU. Once the agent is aware of the frequency states
of the PE clusters along with power consumption, temperature,
current FPS (referred to as F'PS.y;rent), Which is the frame
rate of the front buffer of VSync, and target FPS (referred to
as Target_F PJS), the agent takes action to maximize reward,
which in our case is to achieve the target FPS along with the

best PPDW value. Once the training is complete based on the
states and action values, the agent selects the desired operating
frequencies (M . where M € 1,2,...m) for the respective
PE clusters and the maxfreq (maximum operating frequency)
of each cluster is set to that desired operating frequency in
order to achieve the target FPS and best PPDW for that FPS.
Setting the maxfreq provides the flexibility for the PEs to
operate within the range of maximum and minimum allowed
operating frequencies.

Frame Window

Reinforcement Learning Module

| n mode(FPS)

Actions (a)
states(s) Up Down

Do Nothing

Cluster 1
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Fig. 5. Block digram of Next agent

B. Online Reinforcement Learning

Next is modeled to follow Q-Learning of reinforcement
learning (RL) [24]. RL agent defines an environment (¢), in
which the agent observes the state (s;) at a time instance ¢
and performs an action (a;), and receives a reward (r;) for
that instance. At every time instance (i), the agent chooses an
action a; from a predefined list of actions with a; € 1,2, ... K,
where K is the maximum number of actions allowed for a
given state. Following the action at time ¢ any changes are
perceived in the e are observed at time ¢ + 1, when the state
of € changes to s;41.

For our use case, if there are m number of PE clusters
then for each cluster we would obtain 3 actions: Frequency
up, frequency down, do nothing. Here we are under the
assumption that each cluster of PEs only allow cluster wise
DVEFS (operating frequency is allowed for the cluster and not
individual PEs). In this applicative case, we have 3 PE clusters
on Exynos 9810 MPSoC and hence, there are 9 actions:
big frequency up, big frequency down, do not change big
frequency, LITTLE frequency up, LITTLE frequency down,
do not change LITTLE frequency, GPU frequency up, GPU
frequency down & do not change GPU frequency. It should
be noted that setting operating frequency (up, down and
do nothing) means to set the maxfreq of the respective PE
(big, LITTLE, GPU) to that operating frequency. Setting the
maxfreq to a particular value also means that the frequency
is free to operate between the minimum allowed frequency
(minfreq) of the PE cluster and the set maxfreq. In Next,
the environment ¢ is defined by the states such as frame
rate, power consumption and peak temperature of the Edge
device running an application. For our Next implementa-
tion on Exynos 9810 MPSoC the following states are cho-
sen as input: big_CPUfyeq, LITTLE_CPUfreq, GPUfpeq,
FPScyrrent, Target_F'PS, Powercyrrent, Temperaturey;q
and Temperaturegeyice”. Here, the value of Target_F PS is
the mode of FPS values achieved from the frame window. Next
is invoked every 100 ms to record the states and take actions.

The goal of the RL agent is to maximize reward 7; in
the future. The propagation of information from the future

2Temperatureb¢g is the temperature of the big CPU cluster, whereas,
Temperaturegeyice is the temperature of the overall device consisting of
temperature of the battery and MPSoC, which could be captured from the
device.



is discounted by a v factor at every time step such that:

r; = Zf” ~;r; in order to dampen the rewards’ effect on the
agent’s choice of action. For every time step the probability
that the agent chooses an action at a given state is defined by a
policy function. In this policy, the function which maximizes
the agent’s long term reward generation is called action-value
function, which is defined by Q(s;,a;) as shown in Eq. 3.

Q(si,a;) = Q(si,a;) +alri — Q(8s, a;) + ymaz,Q(Sit1, a%)

In Eq. 3, « is the learning rate at which the agent learns
new information. We have to keep in mind that the optimal
action-value function could be obtained by iteratively updating
Q(s;,a;) in Eq. 3. Now, to maximize the reward generation
we require a reward function (R(s;,a;)). For our reward
function we use the Eq. 1 such that R(s;,a;) = PPDW;.
The agent’s goal is to maximize reward, which means the
agent has to optimize PPDW according to Eq. 2 and achieve
FPS.yrrent = Target_FPS. The max reward generation
could be represented using the following equation:

max R(s;,a;) = max(PPDW;),
where

maz(PPDW;) = PPDWyess > PPDW; > PPDWyorst
“4)
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Fig. 6. Increase in training time for online vs cloud (offline) as the frame
rate increases at part of the chosen states

For each application the training needs to be performed
in order for the agent to make a learned decision when the
application is executed by referring to the action-values. It
should be kept in mind that if we consider all the possible
value of frame rates (FPS 0 to 60) as part of the states
and reward generation as mentioned above then the training
time would be significant and hence quantizing the frame
rate would be desirable for improved training time. Data
series for Training time online in Fig. 6 shows the increase
in average training time required for different frame rates
for each application on the device. If we choose 60 frame
rate then no quantization is required since that is the highest
frame rate at 60 Hz refresh rate, whereas, for other frame
rates we quantize the frame rate range. In our experimentation,
choosing 30 frame rate results in the best training period on
the Note 9 device. Since, through empirical data the average
training period lasts around 3 minutes 27 seconds for a new
application, which has not been executed/trained before, the
agent achieved the best reward (PPDW) for the amount of
time spent in training. Due to the Next agent executing on
LITTLE CPU, the average power consumption during the
training time does not exceed more than 6% of the average
power consumption while executing the mobile application in
general. The training for every newly executing application
is only performed once and the Q-table (action-value) results
are stored on the memory so that later when the application is

executed again the agent is able to refer to the Q-table to set
the correct frequency of different clusters (CPU/GPU). Given
the training time is not significant compared to daily usage of
mobile applications (4 hours 16 minutes), no offline training
is required and the whole training could be performed on the
device.

C. Offline training using Federated Learning or in Cloud

Given the fact that each Edge device manufacturers gen-
erally produce several different Edge device models, which
are capable of executing similar mobile applications, a new
type of machine learning called federated learning [25] could
be utilized to train the agent more effectively by leveraging
the computational power of the cloud. The training data
from the Edge devices are sent back to the cloud server
where the training of the agent happens. Once the training
is complete the learned data (action-values) is sent back to
the Edge devices, and hence, reducing the need of wasting
local computing resource of the Edge device for training.
Since cloud is computationally more powerful, the training
period could significantly reduce to few seconds instead of
minutes. Data series for Training time in cloud in Fig. 6 shows
the reduced training time for different frame rate while the
training is performed in a cloud system having Intel Xeon
E7-8860V3 processor (16 cores) with 64 GB DDR3 RAM.
Although it should also be noted that there was a maximum
communication (to- and fro-) overhead of 4 secs between the
device and the cloud system.

V. EXPERIMENTAL RESULTS

Experimental setup: In this section, we compare the pro-
posed Next methodology against the independent Linux CPU-
GPU power management solution used in Android platforms
by schedutil governor (we refer to it as schedutil) and QoS-
aware power management methodology proposed by Pathania
et al. [10] (we refer to it as Int. QoS PM). Due to lack in
manufacturer’s support and vendor locking it was not possible
to install additional libraries in the Android kernel to access
performance counters, and hence, we were not able to compare
Next with other state-of-the-art methodologies such as [13],
[14], which mostly rely on performance counter values to
optimize power consumption or thermal behaviour. To evaluate
the efficacy of Next we chose different types of applications
from Google Play store [26] to get a more holistic view on
power saving and reduction of thermal behaviour for such
applications. From the pool of most popular applications we
chose the following to represent different types of apps that
a user would normally use: Facebook, Spotify music app,
Chrome web browser (referred to as Web Browser), Lineage 2
Revolution gaming app (referred to as Lineage), PubG Mobile
gaming app (referred to as PubG) and Youtube video stream-
ing app. All the applications were used between 1 minute 30
seconds to 5 minutes per session, which is the general usage
pattern by users according to [4], and the results reflect the
average power consumption and peak temperature recorded
during the sessions. For gaming applications (Lineage and
PubG) each session lasted for 5 minutes, whereas, for other
types of applications (Facebook, Spotify, Web Browser and
Youtube) each session lasted between 1 minute 30 seconds
to 3 minutes. For the results related to peak temperature
observation, the experiments were all performed on the same
day while the ambient temperature around the device was
maintained around 21°C using controlled thermostat. All re-
sults for Next were observed when it was fully trained on the
respective applications.

Power evaluation: Fig. 7 shows the average power con-
sumption of Next, schedutil and Int. QoS PM for the chosen



aforementioned applications. For Next approach the power
savings for Facebook, Lineage, PubG, Spotify, Web Browser
and Youtube compared to schedutil are 37.05%, 50.68%,
40.95%, 32.98%, 32.11% and 40.6% respectively. Since, Int.
QoS PM is used for power management for mobile games and
the methdology could not be extended to all applications, we
could only evaluate the methodology for Lineage and PubG
apps. The power savings of Int. QoS PM for Lineage and PubG
compared to schedutil are 16.31% and 23.84% respectively,
making Next more power efficient by 41.07% and 22.47%
respectively for the gaming apps when compared to Int. QoS
PM, proving the effectiveness of Next in terms of power saving
over the state-of-the-art power management approach such as
Int. QoS PM.
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Fig. 7. Average power consumption for different mobile applications using
schedutil, Next and Int. QoS PM approaches
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Fig. 8. Average peak temperature of big CPUs and the device for different
mobile applications using schedutil, Next and Int. QoS PM approaches

Thermal evaluation: Fig. 8 shows the average peak tem-
perature of big CPU cluster and the Samsung Note 9 device
in general using schedutil, Next and Int. QoS PM. In the Fig.
8, Int. QoS PM big represents the average peak temperature
of big CPU cluster using Int. QoS PM, Int. QoS PM dev.
represents the average peak temperature of the device using
Int. QoS PM, Next big represents the peak temperature of
big CPU cluster using Next, Next dev. represents the peak
temperature of the device using Next, schedutil big represents
the peak temperature of big CPU cluster using schedutil, and
schedutil dev. represents the peak temperature of the device
using schedutil. From the Fig. 8 it is evident that comparing
the results against schedutil Next is capable of reducing peak
temperature by 29.16% (maximum) for big CPUs and 21.21%
(maximum) for the device in general, whereas Int. QoS PM
is only able to reduce the peak temperature by maximum of
22.80% for big CPU cluster and maximum of 3.51% for the

m Int. QoS PM big  m Int. QoS PM dev.

device. This proves the effectiveness of Next over schedutil
and state-of-the-art Int. QoS PM for its ability to reduce peak
temperature of big CPUs and overall device.

Overhead analysis: From our empirical data, we noticed
that the maximum overhead required for computation by the
Next agent is around 227 ns on an average, which is computed
over a session lasting for at least 5 minutes.

VI. CONCLUSION

In this paper, we propose a power and thermal efficiency
agent for mobile MPSoC platforms based on reinforcement
learning, which maximizes performance (FPS) while reducing
power consumption and temperature of the mobile applications
depending on the user’s interaction with the display/UI and
the desired QoS. Experimental evaluation on Exynos 9810
MPSoC shows the efficacy of the proposed approach along
with its improvement over state-of-the-art power and thermal
management scheme.
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